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Abstract. We classify all sets of nonzero vectors in R3 such that the angle formed by each pair
is a rational multiple of π. The special case of four-element subsets lets us classify all tetrahedra
whose dihedral angles are multiples of π, solving a 1976 problem of Conway and Jones: there are
2 one-parameter families and 59 sporadic tetrahedra, all but three of which are related to either
the icosidodecahedron or the B3 root lattice. The proof requires the solution in roots of unity of a
W (D6)-symmetric polynomial equation with 105 monomials (the previous record was 21 monomials).

1. Introduction

1.1. Rational-angle line configurations. Call an angle rational if its degree measure is rational,
or equivalently if its radian measure is in Qπ. Our main theorem classifies all sets S of nonzero
vectors in R3 such that the angle formed by each pair is rational.

Scaling a nonzero vector v does not affect whether the angles it forms with other vectors are
rational, so it is natural to consider the lines Rv. In this paper, line means line in R3 through
0, and plane is defined similarly. A rational-angle line configuration is a set of lines such that
each pair forms a rational angle. Call two configurations equivalent if there exists an orthogonal
transformation mapping one to the other.

Example 1.1. Let L ⊂ P be a line and plane. The set of lines in P forming a rational angle
with L together with the line perpendicular to P is a rational-angle line configuration. Call it a
perpendicular configuration. See the first image in Figure 1.

L

Figure 1. A perpendicular configuration, an icosidodecahedron, and the B3 root system.

Any subset of a rational-angle line configuration is another, so it suffices to classify maximal
rational-angle line configurations, those not contained in a strictly larger one. For n < 4, describing
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n number of maximal rational-angle n-line configurations
ℵ0 1
15 1
9 1
8 5
6 22, plus 5 one-parameter families
5 29, plus 2 one-parameter families
4 228, plus 10 one-parameter families and 2 two-parameter families
3 1 three-parameter family

Table 1. The number of maximal rational-angle line configurations with n lines, up
to equivalence. For each n not shown, there are none. For the definition of family,
see Definition 2.8. For a complete description of the families, see Section 11.

the rational-angle configurations of n lines is trivial since there are no equations that the angles
between them must satisfy, only the obvious inequalities.

Theorem 1.2. The maximal rational-angle line configurations, up to equivalence, fall into finitely
many families and sporadic examples as enumerated in Table 1. In particular, each rational-angle
line configuration not contained in a perpendicular configuration has at most 15 lines.

Remark 1.3. Neither the finiteness in the first sentence nor the existence of any bound in the second
sentence seems to follow from prior results in the literature. In fact, it seems that it was not even
guessed that such bounds could exist. We ourselves will not know that such bounds exist, even in
principle, until completing our entire argument.

Here are geometric descriptions of the three largest configurations:

Example 1.4. The ℵ0-line configuration is the perpendicular configuration.

Example 1.5. The 15-line configuration consists of the lines connecting an icosidodecahedron’s
center to each of its 30 vertices. (The vertices of an icosidodecahedron are the midpoints of the
edges of a regular icosahedron, or equivalently, the midpoints of the edges of a regular dodecahedron;
see the second image in Figure 1.) The angles formed are all the multiples of π/2, π/3, π/5 in (0, π).

Example 1.6. The 9-line configuration consists of the lines in the directions of the 18 roots of the
B3 root lattice (or equivalently, the C3 root lattice, since the lengths are irrelevant). The angles
formed are all the multiples of π/3 and π/4 in (0, π). See the third image in Figure 1.

Some additional examples are described in Section 10.

Remark 1.7. The following problems are equivalent:

(a) classifying sets of nonzero vectors in R3 forming rational angles;
(b) classifying rational-angle line configurations;
(c) classifying rational-angle plane configurations, i.e., sets of planes such that each pair forms a

rational angle (proof: take the perpendicular subspaces);
(d) classifying spherical codes with distances in Qπ, i.e., subsets of the unit sphere such that the

spherical distance between any two points lies in Qπ (proof: intersect each line with the sphere);
and

(e) classifying convex polyhedra such that every two extended faces either form a rational angle
or are parallel (for each rational-angle plane configuration P whose normal vectors span R3,
choose closed half-spaces bounded by one or two planes parallel to each plane in P, and consider
their intersection, if bounded).
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Therefore Theorem 1.2 solves all of them.

Remark 1.8. There exist polyhedra with rational dihedral angles having two extended faces meeting
at an irrational angle outside the polyhedron. These we do not classify in general.

1.2. Tetrahedra. Call a tetrahedron rational if all six of its dihedral angles are rational. Rational
tetrahedra have Dehn invariant 0, or equivalently are scissors-congruent to a cube [Deh01,Syd65],
and as such are candidates for tetrahedra that can tile R3 [Deb80], the study of which dates back to
Aristotle [Sen81]. Conway and Jones in 1976 called attention to the problem of classifying rational
tetrahedra.1 We solve the problem in Theorem 1.9 below.

A plane configuration is in general position if any three planes intersect in a point, or equivalently,
if in the corresponding line configuration, no three lines are contained in any plane. Rational
tetrahedra up to similarity are in bijection with rational-angle 4-plane configurations in general
position up to equivalence: given a tetrahedron, take the plane through 0 parallel to each face.
Because of this and Remark 1.7, Theorem 1.2 contains the classification of rational tetrahedra.

Given a tetrahedron with faces labeled 1, 2, 3, 4, let αij be the dihedral angle formed by faces i
and j, and list dihedral angles in the order (α12, α34, α13, α24, α14, α23) so as to pair each edge with
the opposite edge.

Theorem 1.9. The rational tetrahedra are those with dihedral angles

(π/2, π/2, π − 2x, π/3, x, x) for π/6 < x < π/2,

(5π/6− x, π/6 + x, 2π/3− x, 2π/3− x, x, x) for π/6 < x ≤ π/3,

and the 59 sporadic tetrahedra listed in Table 3. (Here, x ∈ Qπ is assumed.)

Remark 1.10. The first family in Theorem 1.9 was discovered in 1895 [Hil95, Art. 4]; see also [Had51]
for a generalization to higher dimension and [MM18, §2] for an elegant calculation of its angles. The
second family in Theorem 1.9 appears to be new.

Of the 59 sporadic rational tetrahedra, 15 (the tetrahedra H2(π/4), T0–T7, T13, T16–T18, T21, T23

in [Bol78, pp. 170–173]) were discovered between 1895 and 1974 [Hil95; Cox48, p. 192; Syd56; Gol58;
Len62; Gol74], and the other 44 appear to be new.

Remark 1.11. We can “explain” almost all of the sporadic rational tetrahedra: Under the action
of the Regge group R (see Section 4), 56 of the 59 are equivalent to a tetrahedron coming from a
4-line subconfiguration of the 15- or 9-line configuration. The remaining three are in the R-orbit of
the tetrahedron with dihedral angles (π/7, 3π/7, π/3, π/3, 4π/7, 4π/7).

1.3. Strategy of proof. Geometry reduces the problem of determining rational-angle 4-line con-
figurations to solving a polynomial equation whose variables are constrained to lie in the set µ of all
roots of unity. There are two known methods for solving equations in roots of unity; one is practical
for equations in up to 21 monomials, and the other is practical for equations in up to 3 variables,
roughly. The complexity of each algorithm grows faster than exponentially.

What distinguishes our equation is that it has 105 monomials in 6 variables! To solve it, we need
the key idea, never before used to solve equations in roots of unity in characteristic 0, of building
upon work of Dvornicich and Zannier [DZ02] by working first in the quotient Z[µ]/(2) of the subring
Z[µ] ⊂ C; this makes the problem barely doable:

1. Reducing modulo 2 yields a polynomial equation in Z[µ]/(2) with only 12 monomials!

1Conway and Jones wrote “It seems quite probable that the general tetrahedron all of whose dihedral angles are
rational can be found by our techniques” [CJ76, p. 239]. But we consider it unlikely that this is true — as explained
in Section 1.3, our argument requires a combination of several different techniques, and the Conway–Jones method is
only a small part of our proof.
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2. We adapt the first method above to parametrize all solutions in µ to such equations in Z[µ]/(2).
This restricts the possible 6-tuples to lie in finitely many families, each parametrized by at most
3 variables.

3. Substituting each parametrization back into the original equation yields a polynomial equation
(no longer mod 2) in at most 3 variables.

4. We solve each of these equations using the second method above.

Actually, we do not fully solve the equations as above, but we do enough to constrain the roots of
unity in sporadic solutions to be of certain orders up to 840; then a large numerical computation,
followed by an algebraic certification of results, handles these “small” cases. This yields a description
of all 4-line configurations, in terms of 84696 parametrized families and sporadic examples of
angle matrices recording the pairwise angles between vectors along the lines. These include the
configurations corresponding to the tetrahedra in Theorem 1.9 but also many others in which at
least three of the lines lie in a plane. Finally, the n-line configurations for n = 5, 6, . . . , 16 in turn
are determined by finding all n× n matrices for which each 4× 4 principal submatrix belongs to

one of the 84696 families; we employ an “early abort” strategy to avoid having to analyze 84696(164 )

cases. The code for the various computations, written in C++, Magma [Magma], SageMath [Sage],
and Singular [Sing], is available at https://github.com/kedlaya/tetrahedra/.

Remark 1.12. Dvornicich, Veneziano, and Zannier [DVZ20] study the rational angles formed by
vectors in a lattice in R2. This leads to a problem of a different type, involving up to three variables
constrained to be roots of unity, but also some variables constrained to be integers. Their analysis
requires the determination of the rational points on some curves of genus ≥ 1.

Remark 1.13. Conway and Jones [CJ76, p. 239] claim that the “harder problem” of enumerating
all tetrahedra scissors-congruent to a cube reduces via their method to an “ordinary diophantine
equation”. This does not seem correct, but nevertheless we expect that some of our new techniques
might lead to progress on this problem, at least for tetrahedra satisfying additional constraints.
As of now, it is not known that such tetrahedra form finitely many parametrized families, even in
principle.

2. Realizability of angle matrices

Definition 2.1. If A = (aij) ∈ Mn(R) and I ⊂ {1, . . . , n} with |I| = m, then (aij)i,j∈I ∈ Mm(R) is
called an m×m principal submatrix of A. Its determinant is called a principal minor of A.

Given nonzero v,w ∈ Rd, let ∠vw ∈ [0, π] be the radian measure of the angle they form. Let
Σd−1 be the unit sphere in Rd; its elements are unit vectors. Let Mn(R)sym

0 be the set of symmetric
n×n matrices with diagonal entries equal to 0. Call Θ ∈ Mn(R) realizable in Rd if it is in the image
of

(Σd−1)n ∠∠∠−→ Mn(R)sym
0

(v1, . . . ,vn) 7−→ (∠vivj).

Proposition 2.2. Suppose that Θ = (θij) ∈ Mn(R)sym
0 has entries in [0, π]. Let C = (cos θij). Then

Θ is realizable in Rd if and only if

1. for every m ≤ d, each m×m principal minor of C is nonnegative, and
2. each (d+ 1)× (d+ 1) principal minor of C equals 0.

Proof. See the proof of Lemma 2.1 of [BG17]. �

Corollary 2.3. Let Θ ∈ Mn(R) for some n ≥ d+ 1. Then Θ is realizable in Rd if and only if every
(d+ 1)× (d+ 1) principal submatrix of Θ is realizable in Rd.
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Remark 2.4. The 1× 1 and 2× 2 principal minors of C in Proposition 2.2 are 1 and 1− cos2 θij ,
which are automatically nonnegative.

Remark 2.5. The nonnegative real numbers α, β, γ are sides of a possibly degenerate spherical
triangle if and only if α ≤ β + γ, β ≤ γ + α, γ ≤ α + β, and α + β + γ ≤ 2π. Therefore, such
angle inequalities give the condition for a 3× 3 principal minor of C as in Proposition 2.2 to be
nonnegative.

Let Pn ⊂ Mn(R)sym
0 be the polytope defined by the 4

(
n
3

)
inequalities, four as in Remark 2.5 from

each of the 3× 3 principal submatrices of Θ. Let Hn ⊂ Mn(R)sym
0 be the analytic subvariety defined

by the vanishing of the determinants of the 4×4 Gram matrices (cos θij)i,j∈I , one for each 4-element
subset I ⊂ {1, . . . , n}.
Corollary 2.6. The set of Θ ∈ Mn(R) realizable in R3 is Pn ∩Hn.

Proof. Combine the d = 3 case of Proposition 2.2 with Remarks 2.4 and 2.5. �

Definition 2.7.

(i) A family of R3-realizable n× n rational-angle matrices is a polytope Q contained in Pn ∩Hn
such that
• the vertices of Q are matrices with entries in Qπ.
• some element of Q has no off-diagonal angles equal to 0 or π; and
• Q is not strictly contained in another polytope satisfying these conditions.

(ii) The number of parameters of the family is the dimension of Q.
(iii) Call Q maximal if there is no family Q′ of R3-realizable (n+1)× (n+1) rational-angle matrices

such that Q equals the set of upper left principal submatrices of the matrices in Q′.

Definition 2.8. An r-parameter family of rational-angle line configurations is the set of line
configurations represented by all matrices with entries in Qπ belonging to a particular polytope Q
as described in Definition 2.7.

3. Subvarieties of algebraic tori

Identify M4(R)sym
0 with R6 via Θ 7→ (θ12, θ34, θ13, θ24, θ14, θ23). Let P = P4 ⊂ [0, π]6. Let

H = H4 ⊂ R6; it is the analytic hypersurface

det (cos θij)1≤i,j≤4 = 0. (1)

Expanding (1) and substituting cos θ = (eiθ + e−iθ)/2 yields the six-variable equation

− 20 + 4
∑

z±1
12 z

±1
13 z

±1
23 − 2

∑
z±2

12 − 2
∑

z±1
12 z

±1
13 z

±1
24 z

±1
34 +

∑
z±2

12 z
±2
34 = 0 (2)

in which each sum ranges over the S4-orbit of each monomial and over all possible choices of signs.
The number of monomials is 1 + 4 · 23 + 6 · 21 + 3 · 24 + 3 · 22 = 105.

Let Z be the subvariety of the algebraic torus G6
m over Q defined by (2). Let exp: R6 → G6

m(C)
be the map applying θ 7→ eiθ to each coordinate, so H = exp−1(Z(C)). The monomials appearing
in (2) generate an index-8 subgroup Λ of the group of all Laurent monomials in the zij ; let T be
the torus whose coordinate ring is their span. Thus there is an isogeny τ : G6

m → T and a closed
subvariety Y ⊂ T such that Z = τ−1Y . The kernel of τ is the elementary abelian group of order 8
consisting of (zij) ∈ {±1}6 such that zijzjkzik = 1 for all i < j < k. To summarize, we have a
cartesian diagram of spaces

H //� _
��

Z(C) // //
� _��

Y (C)� _
��

(Σ2)4 ∠∠∠ // M4(R)sym
0 ' R6 exp // G6

m(C)
τ // // T (C)

(3)
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For an abelian group G, let Gtors be its torsion subgroup. The following problems are equivalent:

1. Determine all rational-angle 4-line configurations.
2. Determine P ∩H ∩ (Qπ)6. (Here we use the n = 4 case of Corollary 2.6.)
3. Determine Z(C) ∩ µ6. (We have θ ∈ Qπ if and only if eiθ ∈ µ. We dropped the inequalities

defining P, but these are easy to impose at the end of the computation.)
4. Determine Y (C) ∩ T (C)tors.

To solve 1, we will solve 3, but we will also use that Z = τ−1Y and that Y has additional
symmetry described in the next section.

4. Regge symmetry

The signed permutation group S±n := Sn n {±1}n acts on (Σd−1)n by permuting and negating
the n vectors. Similarly, Sn acts on Mn(R)sym

0 by simultaneously permuting rows and columns, and
the ith generator of {±1}n acts affine-linearly by applying x 7→ π − x to each entry of the ith row
and ith column except the (i, i) entry. The element (−1, . . . ,−1) acts trivially on Mn(R)sym

0 .
Now let n = 4 and d = 3. The S±4 -action on M4(R)sym

0 is compatible with algebraic actions
of S±4 on G6

m (not fixing 1) and T (fixing 1) such that the maps in the bottom row of (3) are
S±4 -equivariant.

The S±4 -action on M4(R)sym
0 preserves H and P. Surprisingly, there is a larger group that

preserves H and P, coming from exotic symmetries of the space of labeled tetrahedra, as we will
explain.

Fix an unordered partition of {1, 2, 3, 4} into pairs, say {{1, 2}, {3, 4}}, which we abbreviate as
12,34. Following [Reg59], let r = r12,34 be the linear operator on M4(R)sym

0 ' R6 sending (xij) to (x′ij)

where x′12 := x12, x′34 := x34, and x′ij := s−x′ij for all other i < j, where s := (x13+x24+x14+x23)/2.

Let ∆ ⊂ R3 be a labeled tetrahedron; labeled means that the faces are numbered 1, 2, 3, 4. For
each i 6= j, let eij be the edge formed by intersecting faces i and j, let `ij be the length of eij , and
let αij be the dihedral angle along eij . Define L∆ = (`ij) and A∆ = (αij); both are in M4(R)sym

0 .

Theorem 4.1 (Ponzano and Regge). For each labeled tetrahedron ∆, there exists a labeled tetrahedron
∆′, unique up to congruence, such that L∆′ = rL∆ and A∆′ = rA∆. Moreover, ∆ and ∆′ are
scissors-congruent.

Proof. The first statement was proved in [PR68, Appendices B and D] by a brute force calculation.
Geometric proofs have recently been discovered [AI19,Rud19], but they are not simple. The scissors
congruence was first observed in [Rob99, Corollary 10]. �

Remark 4.2. The same theorem holds in spherical and hyperbolic geometry: see [Moh03,TW05,
AI19,Rud19].

Definition 4.3. Call the operator r = r12,34 and its analogues r13,24 and r14,23 Regge operators.
Together with S4, they generate a subgroup R ⊂ GL(M4(R)sym

0 ) ' GL6(R); in fact, r and S4 already
generate R since the other Regge operators are S4-conjugates of r. The group R is isomorphic to
S4 × S3 [Reg59], but the isomorphism sends the original S4 to the graph of a surjection S4 → S3,
not a normal subgroup, let alone a direct factor. Let R± be the subgroup of the affine linear
group of M4(R)sym

0 generated by the image of S±4 and the Regge operators. Then |R| = 2432 and
|R±| = 2732.

Identify the zij with the standard basis of Z6, but scale the Euclidean norm so that 〈zij , zij〉 = 1/2.
Then Λ is a lattice. For each c ∈ Z, let Λc ⊂ Λ be the set of monomials in (2) with coefficient
c. Checking inner products shows that Λ−2 is a copy of the D6 root system! Let W (D6) be the
Weyl group, which we view as acting on the right on Λ, so that it acts on the left on T . For
each c ∈ {−20, 4,−2, 1}, the set Λc is a W (D6)-orbit, so W (D6) preserves Y . By the theory of
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representations of reductive groups (see [Mil17, Theorem 22.38]), it follows that the left side of (2)
is the character of a virtual representation of the algebraic group Spin12.

The S±4 -action on T preserves the norm on Λ, so it factors through W (D6). A brief calculation
shows that the action of r on M4(C)sym

0 corresponds to a linear action on Q6 ' Λ⊗Q that preserves
Λ−2 and hence is in W (D6), so the homomorphism S±4 →W (D6) extends to R± →W (D6). Since
(3) is cartesian, R± preserves H.

In summary, we have a two-row cartesian diagram of spaces and a sequence of homomorphisms
of groups, each acting on the spaces above it, compatibly with respect to the homomorphisms:

H //� _
��

Z(C) // //
� _��

Y (C)� _
��

(Σ2)4 ∠∠∠ // M4(R)sym
0 ' R6 exp // G6

m(C)
τ // // T (C)

S±4
// R± �

� // W (D6).

(4)

Finally, S±4 preserves P, and direct calculation shows that r does too, so R± preserves P. This
extra symmetry will simplify our calculations and the statements of our results.

5. Cyclotomic relations

Recall from the end of Section 3 that we need to find the torsion points on a hypersurface Z in a
torus G6

m; this amounts to solving (2) in roots of unity. Prior to our work, there were two general
approaches to solving such problems:

• Classify integer relations involving few roots of unity (this section).
• Use the Galois theory of cyclotomic fields and induction on the dimension (Section 7).

But, crucially, we develop also a new method in Section 6 involving cyclotomic relations modulo 2.
We need all three methods to find the torsion points on our particular variety Z; see Section 9.

The classification of additive relations among roots of unity grows out of work of Gordan [Gor77],
de Bruijn [dB53], Rédei [Réd59,Réd60], and Schoenberg [Sch64]. Relations among n roots of unity
have been classified for n ≤ 7 by Mann [Man65], n ≤ 8 by W lodarski [W lo69], n ≤ 9 by Conway
and Jones [CJ76, Theorem 6], n ≤ 12 by Poonen and Rubinstein [PR98, Theorem 3.1], n ≤ 21 by
Christie, Dykema, and Klep [CDK20], and partially for n ≤ 24 by Fu [Fu19]. The case n ≤ 12 has
the following consequence.

Theorem 5.1. Let x1, . . . , xn ∈ Q be a sequence with n ≤ 6 such that
∑n

i=1 cos(2πxi) = 0, but
no nonempty proper subsequence has the same property. Then x1, . . . , xn can be obtained from
one of the sequences in Table 2 by some combination of permutation of terms, individual negation,
individual addition of integers, and simultaneous addition of 1/2.

Proof. Combine Theorem 3.1, Lemma 4.1, and Lemma 4.2 of [PR98]. �

Remark 5.2. Building on these ideas, algorithms for finding the solutions of a polynomial equation
in roots of unity have been described by Sarnak and Adams [SA94]; Filaseta, Granville, and Schinzel
[FGS08]; and Leroux [Ler12]. But these algorithms scale exponentially in the number of variables
and the number of monomials, so executing them on a polynomial with 105 monomials, as in (2), is
infeasible.

6. Mod 2 cyclotomic relations

Let µ be the image of µ in Z[µ]/(2), so µ ' µ/{±1}. (We would lose too much information if
instead we chose a prime p above 2 and worked in the residue field Z[µ]/p ' F2.) For n ≥ 1, let

µn := {z ∈ µ : zn = 1}, let µn be the image of µn in Z[µ]/(2), and let ζn := e2πi/n ∈ µn.
7



Length Type Values

1 n/a 1
4

2∗ 2R2 x+ (0, h)

3 (R5 : R3) 1
3 + h, 1

5 ,
2
5

3∗ 2R3 x+ (0, 1
3 ,

2
3)

4 (R5 : 3R3) 1
3 ,

1
3 + 1

5 ,
2
3 + 1

5 ,
2
5 + h

1
3 ,

1
3 + 2

5 ,
2
3 + 2

5 ,
1
5 + h

(R7 : R3) 1
3 + h, 1

7 ,
2
7 ,

3
7

5 (R7 : 3R3) 1
3 ,

1
3 + 1

7 ,
2
3 + 1

7 ,
2
7 + h, 3

7 + h
1
3 ,

1
3 + 2

7 ,
2
3 + 2

7 ,
1
7 + h, 3

7 + h
1
3 ,

1
3 + 3

7 ,
2
3 + 3

7 ,
1
7 + h, 2

7 + h

(R7 : R5) 1
5 + h, 2

5 + h, 1
7 ,

2
7 ,

3
7

5∗ 2R5 x+ (0, 1
5 ,

2
5 ,

3
5 ,

4
5)

6 (R7 : 5R3) 1
3 ,

1
3 + 1

7 ,
1
3 + 2

7 ,
2
3 + 1

7 ,
2
3 + 2

7 ,
3
7 + h

1
3 ,

1
3 + 1

7 ,
1
3 + 3

7 ,
2
3 + 1

7 ,
2
3 + 3

7 ,
2
7 + h

1
3 ,

1
3 + 2

7 ,
1
3 + 3

7 ,
2
3 + 2

7 ,
2
3 + 3

7 ,
1
7 + h

(R7 : R5, 2R3) 1
5 ,

2
5 ,

1
3 + 1

7 ,
2
3 + 1

7 ,
2
7 + h, 3

7 + h
1
5 ,

2
5 ,

1
3 + 2

7 ,
2
3 + 2

7 ,
1
7 + h, 3

7 + h
1
5 ,

2
5 ,

1
3 + 3

7 ,
2
3 + 3

7 ,
1
7 + h, 2

7 + h

(R7 : (R5 : 2R3)) 2
5 + h, 1

3 + 1
5 ,

2
3 + 1

5 ,
1
7 ,

2
7 ,

3
7

1
5 + h, 1

3 + 2
5 ,

1
3 + 2

5 ,
1
7 ,

2
7 ,

3
7

(R11 : R3) 1
3 + h, 1

11 ,
2
11 ,

3
11 ,

4
11 ,

5
11

6∗ 2(R5 : R3) x+ (1
3 + h, 2

3 + h, 1
5 ,

2
5 ,

3
5 ,

4
5)

Table 2. Indecomposable additive relations among at most 6 cosines of rational
multiples of 2π, up to transformations listed in Theorem 5.1. The symbol h stands
for 1

2 . A length of n∗ indicates a shift by an auxiliary parameter x ∈ Q. The type is
notated as per [PR98, Table 3.1 and Table 3.2]. By Theorem 6.10, this table (with
one addition) also describes mod 2 cosine relations; in these, we may ignore shifts by
h.

By a mod 2 relation, we mean a finite subset S ⊂ µ summing to 0 in Z[µ]/(2). Call S inde-
composable if S 6= ∅ and S is not the disjoint union of two nonempty relations. The weight of S
is w(S) := |S|. The level `(S) is the smallest n ≥ 1 such that S ⊂ µn. Call relations S and S′

equivalent if S′ = λS for some λ ∈ µ. Call S minimal if `(S) ≤ `(S′) for all S′ equivalent to S.
The goal of this section is Theorem 6.10, the mod 2 analogue of Theorem 5.1. We follow the

proof of [PR98, Theorem 3.1]. First we establish an analogue of [CJ76, Theorem 1]:

Lemma 6.1. The level of any minimal indecomposable mod 2 relation is odd and squarefree.

Proof. Let S be the relation. Let N = `(S). Suppose that p is a prime such that p2 divides N .
Since

Z[ζN ] = Z[ζN/p][T ]/(T p − ζN/p)
8



and similarly after reduction mod 2, the intersection of S with each coset of the group µN/p is
another relation. Since S is indecomposable, it is contained in a single coset, so S is equivalent to a
relation of level dividing N/p, a contradiction. Thus N is squarefree. If N is even, then µN = µN/2,

so `(S) 6= N . �

Definition 6.2. For each odd prime p, let Rp denote the set µp viewed as a weight p relation.

Let ⊕ denote symmetric difference of sets.

Definition 6.3. For relations S, T1, . . . , Tj , let (S : T1, . . . , Tj) denote any relation of the form
S′ ⊕ T ′1 ⊕ · · · ⊕ T ′j , where S′, T ′1, . . . , T

′
j are equivalent to S, T1, . . . , Tj , respectively; #(S′ ∩ T ′i ) = 1

for all i; and T ′i ∩ T ′k = ∅ whenever i 6= k. (The equivalence class of such a relation need not be
determined by the equivalence classes of S, T1, . . . , Tj .)

The following is an analogue of [PR98, Lemma 3.4], and, by extension, of [CJ76, Theorem 5]. A
direct analogue of the latter result, working modulo any prime, can be found in [DZ02].

Lemma 6.4. Let S be a minimal indecomposable mod 2 relation of level pM , where p - M . If S
intersects some coset of µM in at most one element, then S is of the form (Rp : T1, . . . , Tj), where
0 ≤ j < p, each Ti is nonempty with `(Ti) |M , and

j∑
i=1

(w(Ti)− 2) = w(S)− p. (5)

Proof. Reducing
Z[ζpM ] = Z[ζM ][T ]/(T p−1 + · · ·+ T + 1),

modulo (2) shows that the intersections of S with the cosets of µM must have sums which are
rotations of each other by powers of ζp. No such intersection can be empty, or else each intersection
would itself be a relation, equivalent to one of level dividing M , contradicting the hypotheses on S.
Therefore some intersection has one element. Then each of the other intersections is either itself a
singleton set or the complement of a single root of unity in some mod 2 relation. �

Corollary 6.5. Each minimal indecomposable mod 2 relation S of weight at most 5 is R3 or R5.

Proof. Let p be the largest prime dividing `(S). In Lemma 6.4, w(Ti) ≥ 3 for each i, so w(S) ≥ p,
with equality if and only if S = Rp. If p = 3, then w(S) ≤ `(S) = 3 = p; if p ≥ 5, then w(S) ≤ 5 ≤ p.
Thus the equality holds, with p = 3 or p = 5. �

Lemma 6.6. Let S be a minimal indecomposable mod 2 relation of level pM with p -M . Then the
intersections of S with the cosets of µM cannot all have exactly two elements.

Proof. As in the proof of Lemma 6.4, S∩ ζipµm = ζipUi for some two-element sets U0, . . . , Up−1 which
all have equal sum. By Corollary 6.5, each Ui ⊕ Uj must be empty, so U0 = · · · = Up−1. Then S is
the union of two relations of type Rp, contradicting indecomposability. �

Theorem 6.7. For each w ∈ {3, . . . , 12}, the indecomposable mod 2 relations of weight w are
precisely the mod 2 reductions of the indecomposable relations of weight w listed in [PR98, Table 3.1].

(The statement of Theorem 6.7 must exclude w = 2, because R2 reduces mod 2 to the empty
relation.)

Proof of Theorem 6.7. Let S be a minimal indecomposable mod 2 relation of level N and weight w.
By Lemma 6.1, we can write N = p1 · · · ps where 2 < p1 < · · · < ps. By Lemma 6.4, ps ≤ w ≤ 12,
so ps ≤ 11.

• Suppose that ps = 3. Then Lemma 6.4 yields S = R3.
9



• Suppose that ps = 5. Each coset of µ3 is itself a relation of weight 3, so the intersection of
S with any such coset has at most two elements. By Lemma 6.6, the intersections cannot
all have exactly two elements, so Lemma 6.4 yields S = (R5 : jR3) for some j ∈ {0, . . . , 4}.
• Suppose that ps = 7. Then Lemma 6.4 implies that S = (R7 : T1, . . . , Tj) for some j with∑j

i=1(w(Ti) − 2) ≤ 5. By the previous step, each Ti must have one of the forms R3, R5,
(R5 : R3), (R5 : 2R3), which have w(Ti)− 2 being 1, 3, 4, 5, respectively. By considering the
partitions of 5 into parts of these sizes, we obtain relations of the indicated forms.
• Suppose that ps = 11. Then Lemma 6.4 yields S = R11 or S = (R11 : R3). �

Corollary 6.8. Every mod 2 relation of weight at most 12 is the reduction of a genuine cyclotomic
relation (i.e., a subset of µ summing to 0 in Z[µ]) of the same weight.

Proof. Reduce to the indecomposable case and apply Theorem 6.7. �

To pass from mod 2 cyclotomic relations to cosine relations, we argue as in [PR98, Lemma 4.1].
Keep in mind that the decomposition of a mod 2 relation into indecomposable relations is not a
priori guaranteed to be unique.

Lemma 6.9. Let S be a mod 2 relation with w(S) ≤ 12. Suppose that S is stable under complex
conjugation.

(a) There is a partition of S in which each part is either a conjugation-stable indecomposable relation
or the disjoint union of two conjugate indecomposable relations.

(b) If S has even weight, then each conjugation-stable indecomposable relation in (a) has even
weight.

Proof. (a) We use induction on w(S). Let T ⊂ S be any indecomposable relation. Let T ′ be its
conjugate. If T = T ′ or T ∩ T ′ = ∅, remove T ∪ T ′ from S and apply the inductive hypothesis.
Otherwise, apply induction to T ⊕ T ′ and its complement in S.

(b) A conjugation-stable relation has odd weight if and only if it contains 1. �

Theorem 6.10. Let x1, . . . , xn ∈ Q be a sequence with n ≤ 6 such that
∑n

j=1 2 cos(2πxj) ≡ 0

(mod 2Z[µ]), but no nonempty proper subsequence has the same property. Then either n = 1 and
2x1 ∈ Z, or the given sequence can be obtained from one of the sequences listed in Table 2 by some
combination of permutation of terms, individual negation, and individual translation by half-integers.

Proof. This follows by applying Theorem 6.7 and Lemma 6.9 to the mod 2 cyclotomic relation
coming from the sum

∑n
j=1

(
e2πixj + e−2πixj

)
, except in the case where this sum cancels completely

mod 2. Given the indecomposability hypothesis on the original sequence (which implies in particular
that the xj are distinct modulo 1

2Z), this happens only if n = 1 and 2x1 ∈ Z. �

Remark 6.11. Theorem 6.7 implies that for each w ∈ {3, . . . , 12}, reduction modulo 2 defines a
weight-preserving bijection between equivalence classes of weight w indecomposable cyclotomic
relations and equivalence classes of weight w indecomposable mod 2 cyclotomic relations, but this
does not hold for all w. The cyclotomic polynomial Φ105 has two coefficients equal to −2; it yields
a weight 35 indecomposable cyclotomic relation reducing to a weight 31 indecomposable mod 2
relation; see [DZ02, p. 105].

7. Torsion closures

Throughout this section, let K be a subfield of C, let T be the torus Gn
m = SpecK[x±1 , . . . , x

±
n ],

and let X be a closed subscheme of T . For P ∈ T (K), let tP : T → T be the translation-by-P map.
For a positive integer m, let [m] : T → T be the mth power map, and let T [m] ⊂ T (C) be its kernel.

Definition 7.1. A torsion coset of T is a translate of a subtorus of TC by a point in
⋃
m≥1 T [m].
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Definition 7.2. The torsion closure of X in T is the Zariski closure of X(C) ∩ µn, viewed as a
reduced K-subscheme of X.

Theorem 7.3 (Laurent). The torsion closure of XC is a finite union of torsion cosets of T .

Proof. This is a special case of [Lau84]. It is also a special case of a conjecture of Lang [Lan83, Notes
for Chapter 8] combining the Manin–Mumford and Mordell conjectures, which is itself now known
in full generality [McQ95]. See also [Hin06] for a survey. �

Since torsion cosets are definable over Q(µ), the general problem of computing torsion closures can
be reduced to the case in which X is defined over the field K = Q(ζN ) for some N ; see [AS12, §3.3].

The key idea behind our algorithm for computing torsion closures is that certain field automor-
phisms act on torsion points in the same way as certain morphisms of varieties; for example, there
is an automorphism of C that acts on odd-order roots of unity in the same way as the squaring
morphism Gm → Gm. This idea appears in the proof of the case n = 2 of Laurent’s theorem by
Ihara, Serre, and Tate [Lan83, §8.6], and in subsequent presentations by Ruppert [Rup93], Beukers
and Smyth [BS02], and Aliev and Smyth [AS12].

In writing K = Q(ζN ), we may assume that N = 2em with e ≥ 1 and m odd. If e = 1, choose
τ ∈ AutK such that τ(ζm) = ζ2

m. If e ≥ 2, choose σ ∈ AutK such that σ(ζN ) = −ζN . Extend τ to
a Q-automorphism of K[x±1 , . . . , x

±
n ] acting trivially on the xi. Then Spec τ is a Q-endomorphism

of T . Similarly, define Specσ ∈ AutQ T . Define the following finite sets of Q-endomorphisms of T :

S1 := {tP : P ∈ T [2] \ {1}},

S2 :=

{
∅, if e = 1,

{(Specσ) ◦ tP : P ∈ T [2]}, if e ≥ 2,

S3 :=

{
{(Spec τ) ◦ tP ◦ [2] : P ∈ T [2]}, if e = 1,

∅, if e ≥ 2.

Let S = S1 ∪ S2 ∪ S3. Intersections of subschemes below are always scheme-theoretic intersections.

Lemma 7.4. The torsion closure of X is contained in
⋃
f∈S(X ∩ f−1X).

Proof. Each α ∈ AutC induces a coordinatewise map T (C)→ T (C). Suppose that w ∈ T (C) and

α(w) = z. Then Specα|K maps the image of SpecC z→ T to the image of SpecC w→ T , because the
diagram

SpecC

z
��

Specα// SpecC

w
��

T
Specα|K // T

commutes (check on rings); in particular, if w ∈ X(C), then z ∈ ((Specα|K)−1X)(C).
Let z = (z1, . . . , zn) ∈ X(C) be a torsion point. Write K(z) ∩ µ = 〈ζM 〉, so N |M .

• Suppose that 4 - M . Extend τ to α ∈ AutC such that α(ζM ) = −ζ2
M . Then α(zi) = ±z2

i
for each i, so α(z) = (tP ◦ [2])(z) for some P ∈ T [2]. By the first paragraph of the proof,
(tP ◦ [2])(z) ∈ (Spec τ)−1X)(C), so z ∈ (f−1X)(C) for some f ∈ S3.
• Suppose that 4|M . Let σ′ ∈ AutK be 1 or σ, according to whether M/N is even or not.

Then σ′ extends to α ∈ AutC such that α(ζM ) = −ζM . Then α(zi) = ±zi for all i, so
α(z) = tP (z) for some P ∈ T [2]. If P = 1, then α fixes z but not K(z), so σ′ = α|K 6= 1.
By the first paragraph again, z ∈ (f−1X)(C) for some f in S1 or S2, according to whether
σ′ is 1 or σ. �

Lemma 7.4 suggests the following recursive algorithm for computing the torsion closure of X.
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Algorithm 7.5. Suppose that K = Q(ζN ). Given a closed subscheme X of T , return another
closed subscheme of T as follows.

1. If X ⊆ f−1X for some f ∈ S, then choose one such f (using any deterministic tiebreaker) and
proceed as follows.
a. If f ∈ S1, compute the closed subgroup T0 := StabT (X) of T (see [Mil17, Corollary 1.81]),

apply the algorithm to X/T0 ⊂ T/T0, and return the pullback of the result along T → T/T0.
b. If f ∈ S2, let K ′ = Q(ζN/2), write P = ((−1)e1 , . . . , (−1)en) with ei ∈ {0, 1}, and put
Q = (ζe1N , . . . , ζ

en
N ), so that σ(Q)/Q = P . Then Specσ preserves tQ(X) ⊂ T , and taking

quotients (or invariant coordinate rings) yields X ′ ⊂ T ′ = Gn
m,K′ . Apply the algorithm to X ′

in T ′ over K ′, and return the pullback of the result along T
tQ→ T → T ′.

c. If f ∈ S3, then check whether X is reducible. If so, return the union of the torsion closures of
the irreducible components of X; otherwise, return the reduced subscheme of X.

2. If X 6⊆ f−1X for every f ∈ S, then apply the algorithm to X ∩ f−1X for each f ∈ S and return
the union of the results.

Theorem 7.6. Algorithm 7.5 returns the torsion closure of X.

Proof. We first verify termination. It suffices to check that no branch of the recursion can proceed
to infinite depth. In step 1a, f = tP for some nontrivial P , and P ∈ T0, so T0 6= {1}; thus step 1a
cannot occur twice without an instance of step 2 in between. In step 1b, we replace K with a
smaller number field; thus along a given branch, step 1b cannot occur more than [K : Q] times
without an instance of step 2 in between. Finally, along each branch, after steps 1a and 1b occur
for the last time, steps 1c and 2 can occur only finitely many times since T is noetherian.

We next verify correctness. The reduction in step 2 is valid by Lemma 7.4. The reductions in
steps 1a and 1b are valid since torsion closures respect field extension and pullback by isogenies or
translations by torsion points. The reduction in the reducible case of step 1c is valid since torsion
closures can be computed on irreducible components. Finally, in the irreducible case of step 1c, the
reduced subscheme of X equals the torsion closure, by the following lemma. �

Lemma 7.7. Let K be a number field. Fix τ ∈ AutK, a torsion point P ∈ T (K), and an integer
m ≥ 2. Let f : T → T be the Q-morphism x 7→ (Spec τ) ◦ tP ◦ [m]. If X is integral and f(X) ⊆ X,
then X equals its torsion closure.

Proof. By replacing f by an iterate, we may assume that τ = 1. Let Z1, . . . , Zr be the irreducible
components of XK . Since X is integral, the Zi are Galois conjugates, so they have the same
dimension. Since f is finite, it maps Z1 to some Zj , and then the conjugates of Z1 are mapped to
the conjugates of Zj , so f induces a permutation of {Z1, . . . , Zr}. By replacing f by an iterate, we
may assume that f(Zi) = Zi for each i. By [Hin88, Lemme 10], Zi is a translate of a subtorus of
TK . Since f(Zi) = Zi, it must be a torsion coset. Thus X equals its torsion closure. �

Remark 7.8. We have implemented a variant of Algorithm 7.5 in SageMath. To speed up the
algorithm, we incorporated the following modifications:

• When we detect that the defining ideal of X contains a univariate polynomial, we factor
this polynomial (after enlarging K suitably) so that we can reduce the dimension of T .
• When applying step 1a, we first check whether there exists a positive-dimensional subtorus
T1 of T such that X arises by pullback from T/T1. If so, we use T1 in place of T0; otherwise,
we use 〈tP 〉 in place of T0. This does not affect termination.
• When applying step 2 to f ∈ S3, at the next level of recursion we replace S by {f}. This

does not affect correctness because this branch of the recursion needs to account for only
torsion points of order not divisible by 4.
• We sometimes cut down X based on its reduction modulo 2, as in Section 6.
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In experiments, we compute torsion closures easily when dimX ≤ 1, with difficulty when dimX = 2,
and not at all when dimX ≥ 3. Our use of Gröbner bases makes it difficult to analyze the
running time, but a similar algorithm using resultants was analyzed in [AS12]; its complexity is
superexponential in the number of variables.

8. Low order solutions to the Gram determinant equation

In this section, we prove the following statement.

Proposition 8.1. For N ∈ {48, 90, 120, 132, 168, 280, 420}, every 4-line configuration with angles
in Zπ/N appears in some configuration accounted for in Theorem 1.2.

To prove this, we make a rigorous computation of the solutions Θ = (θ12, θ34, θ13, θ24, θ14, θ23) ∈
M4(R)sym

0 to (1) with θij ∈ Zπ/N . This computation combines numerical and algebraic methods.
In Section 9, a separate computation will show that these account for all solutions outside of some
specific families.

Write θij = mijπ/N with mij ∈ {1, . . . , N − 1}. By exploiting S4-symmetry, we may assume

m14 +m23 ≤ m13 +m24 ≤ m12 +m34,

m34 ≤ m12,

m24 ≤ m13;

(6)

but we cannot also assume m23 ≤ m14. The plan is to loop over m12,m34,m13,m24,m14; then (1)
expresses cos θ23 as a root of a quadratic equation, so we can numerically solve for the possibilities
for m23, rounding them to the nearest integer, and carry out three tests on the resulting 6-tuple:

i) We test whether (1) holds to within 10−11 using C++ and double precision arithmetic. (In a
few cases, this requires computing m23 using more working precision; see below.)

ii) If the first test passes, we test whether (1) holds to within 10−50 using Bailey’s C++ quad-
double package [QD] (approximately 65 decimal digits of working precision).

iii) If the second test passes, we rigorously verify (2) and hence (1) by an algebraic computation
in Q(ζ2N ) in SageMath.

To save time, we precompute the values of cos(mπ/N) and cos2(mπ/N), in both double and
quad-double precision, for all m < N .

The first and second test were run on a MacBook Pro with a 2.9GHz Intel Core i7 CPU. The
case of N = 420 dominated the time needed and took one day of computation using one core of the
CPU. Most tuples were ruled out by the first test, so the second and third tests took a negligible
amount of time.

While the third test, being algebraic, confirms rigorously that we have no false positives, we must
do some analysis to rule out false negatives. We state this in the form of a lemma.

Lemma 8.2. For N ≤ 420, any tuple satisfying (1) and (6) passes tests 1 and 2.

Proof. We begin with some observations about the accuracy of underlying floating-point arithmetic
in our computations. Note that C++ doubles correspond to IEEE-754 doubles, with 52 of 64 bits
devoted to the mantissa, i.e., at least 15 decimal digits. Moreover, we compared the cosine values in
doubles to quad doubles, finding agreement to within 10−15; this ensures the accuracy of the cosines
in doubles to more than 50 bits.

For a 6-tuple eliminated in the first test, we have to rule out a relative error of greater than 10−4

(since the cosines are accurate to 15 decimal places, whereas only 11 decimal places are used to
distinguish the determinant (1) from zero). The computation of the determinant from the matrix
entries involves a few dozen multiplications and additions of cosines that are bounded in size by 1,
and thus is quite safe provided that m23 is correctly computed from the other values. That is, let
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cos θ23 be a root of Ax2 +Bx+ C with A = cos2 θ14 − 1 and B and C given by more complicated
expressions in the five other cosines; we must ensure that when we solve the quadratic equation to
obtain

m23 =
N

π
arccos

−B ± (B2 − 4AC)1/2

2A
, (7)

we are guaranteed to obtain m23 to within 0.5. In general this will not yield an integer, but we
nonetheless round the computed value to the nearest integer and then test whether (1) holds. (In
most cases this is redundant because the true value of m23 is not an integer, but this extra step
takes negligible time due to our use of precomputed values, as described above.)

We analyze the numerical stability of (7) by stepping through the computation. The denominator,

2A = 2(cos2 θ14−1), can be as small as 2(cos2(π/420)−1) = 0.00011 · · · . Let α = −B±(B2−4AC)1/2

and β = 2A, and let α+ ∆1, β + ∆2 be the numerical values computed for α, β; then

α

β
− α+ ∆1

β + ∆2
=
α∆2 − β∆1

β(β + ∆2)
.

The factor α∆2/β
2 can act to magnify the error; for α ≈ 10 and β = 0.00011 · · · , this is roughly 109.

Additionally, taking the arccos introduces a further factor of (N/π)(1− x2)−1/2 to the error, coming
from the mean value theorem applied to (N/π) arccos(x); in the worst case N = 420 and x ≈ π/420,
this yields a factor of ≈ 18000. We conclude that in a few cases, we may lose more than 13 decimal
digits of accuracy; however, if (|α|+ |β|)/|β|2 < 108, the previous analysis guarantees that m23 is
safely computed correctly using double precision. In the remaining cases, we recomputed m23 in
quad-double precision to confirm its value; in practice we only had to resort to quad doubles for
this step, in total, for less than 1/2000 of the cases examined, and this had a negligible impact on
the overall runtime. �

After determining whether a given 6-tuple (m12,m34,m13,m24,m14,m23) is a solution to (1), we
further check whether condition 1 in Proposition 2.2 holds. By Remark 2.4, this is the same as
checking that the four 3 × 3 principal minors of the Gram matrix in (1) are nonnegative. To do
so, we numerically compute the four minors using quad-double precision (65 digits precision), and
declare each one to be nonnegative if its computed value is greater than −10−50; the following
lemma shows that this test is rigorous.

Lemma 8.3. For a solution (m12,m34,m13,m24,m14,m23) of (1) with 0 < mij < N ≤ 420, if
some 3× 3 principal minor of the Gram matrix is nonzero, then its absolute value is greater than
10−50.

Proof. Without loss of generality, consider the top left 3× 3 minor; it is 1 + 2 cos θ12 cos θ13 cos θ23−
cos2 θ12 − cos2 θ13 − cos2 θ23, which equals

4 sin
θ12 + θ13 + θ23

2
sin

θ12 + θ13 − θ23

2
sin

θ12 − θ13 + θ23

2
sin
−θ12 + θ13 + θ23

2
. (8)

One can verify this identity using trigonometric identities, or by writing cos(t) as (z + 1/z)/2 with
z = exp(it) and factoring the corresponding Laurent polynomial, but it is suggested by noticing
that the above expression vanishes when any of the inequalities in Remark 2.5 are equalities. For
N ≤ 420, each factor, if nonzero, has absolute value at least sin(π/(2N)) ≥ 0.0074799 · · · . This
yields the desired bound by a wide margin (even 10−10 would suffice). �

Remark 8.4. Equation (8) also gives the square of the volume of a parallelepiped formed by three
unit vectors in terms of the angles between them.

By Proposition 2.2, any solution whose Gram matrix has nonnegative 3× 3 principal minors is
realized by 4 vectors in R3. We then sort solutions according to whether the underlying 4 vectors
are:
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(i) all lying on one plane;
(ii) 3 vectors lying on a plane and one vector perpendicular to that plane;

(iii) 3 vectors lying on a plane with the origin in their convex hull, and the fourth vector neither
on nor perpendicular to the plane;

(iv) outward normals to the faces of a tetrahedron;
(v) none of the above.

To test for condition (i), we check whether all four 3×3 principal minors are zero (implying that any
three of the vectors are coplanar). Using Lemma 8.3 again, we can test this rigorously by computing
in quad-double precision and verifying that their absolute values are less than 10−50.

To test for conditions (ii) and (iii), we first verify that exactly one of the four 3 × 3 principal
minors is zero (and the other three positive), again using Lemma 8.3; if so, then we must have
3 vectors lying on a plane and the fourth not lying on the plane. We then test for (ii) and (iii)
respectively by checking whether the values of mij corresponding to angles including (respectively,
not including) the fourth vector are all equal to N/2 (respectively, sum up to N).

To test for condition (iv), we first verify that all four 3× 3 principal minors are positive, again
using Lemma 8.3, to ensure that the 4 vectors are in linear general position. In this case, condition
(iv) asserts that the unique (up to scalar combination) vanishing linear combination of the 4 vectors
has coefficients all of the same sign; using Cramer’s rule, we check this by computing the signs of the
3× 3 nonprincipal minors. For this, we need an analogue of Lemma 8.3 to reduce to a computation
in quad doubles.

Lemma 8.5. For a solution (m12,m34,m13,m24,m14,m23) of (1) with 0 < mij < N ≤ 420, if all
diagonal cofactors of the Gram matrix are positive, then every off-diagonal cofactor has absolute
value greater than 10−50.

Proof. Consider four unit vectors in R3 given by Proposition 2.2, and form a 3× 4 matrix B with
these as column vectors. Let Bj denote the 3× 3 matrix obtained from B by removing column j.
Then the 3×3 submatrix of the Gram matrix obtained by removing row i and column j equals BT

i Bj ,
so the corresponding cofactor equals (−1)i+j det(Bi) det(Bj). Up to sign, this is the geometric
mean of two diagonal cofactors of the Gram matrix; we may thus deduce the claim directly from
Lemma 8.3. �

With this classification in hand, we discard solutions of type (i) and (ii) as trivial cases. We
further filter solutions of type (iii) and (iv) for solutions in a known parametric family. (We ignore
solutions of type (v); any such solution arises from a solution of type (iii) or (iv) by negating one
or more vectors.) The remaining solutions are all accounted for by Theorem 1.2, so the proof of
Proposition 8.1 is complete.

Remark 8.6. Since it did not take much extra effort, we ran our code for all N ≤ 280 and N = 420.
The extra values of N provide a sanity check for the correctness of the implementation. As an
additional sanity check, we use the unfiltered solutions of types (iii) and (iv) to experimentally
find two-parameter solutions, and then one-parameter solutions not contained in a two-parameter
solution. These agree with the solutions computed algebraically as described in Section 9. We do
this by by looping over all triples of solutions to (1) found across several stretches of N (such as
N < 100). Any such triple determines a plane in R6. We then select 5 random points on each plane
and test whether equation (1) holds for all five points, to within 10−11. If it does, we declare the
three points to be part of a two-parameter family of solutions, and then confirm that the family
matches one of the two-parameter families found algebraically (conversely, every two-parameter
family found algebraically was confirmed in this fashion). Using exact rational arithmetic, we
remove all solutions from our list that are on that plane. After exhausting all triples, we repeat the
process with all remaining pairs of solutions to experimentally determine the one-parameter families
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of solutions, and verify that they match those found in Section 9. The remaining solutions are thus
the sporadic solutions. The sporadic solutions of type (iv) are listed in Table 3.

9. The 4-line configurations

In this section, we prove the following result in the direction of Theorem 1.2, then use this to
deduce Theorem 1.9.

Theorem 9.1. Every rational-angle 4-line configuration, up to equivalence, is contained in one of
the configurations indicated in Theorem 1.2.

Our approach is to combine the computational results of Section 8 with a partial classification
of solutions of (1), initially done modulo the symmetries identified in Sections 3 and 4. While in
principle it is not necessary to rely on the exhaustive computations, doing so makes the computations
far more efficient and the results less vulnerable to programming errors.

Definition 9.2. Let Λ∗ be the kernel of the homomorphism τ ◦ exp: R6 ∼= M4(R)sym
0 → T (C)

from (3); this is a lattice containing (2πZ)6 with index 8. Let G be the group of affine-linear
transformations of M4(R)sym

0 generated by

• the translation action of Λ∗;
• the action of {±1}6 by multiplication on coordinates; and
• the action of S4.

Let G′ be the group generated by G and R; note that G′ acts on H. A calculation shows that there
is a short exact sequence 1→ Λ∗ → G′ →W (D6)→ 1.

Lemma 9.3. Let Θ ∈ P ∩ H ∩ (Qπ)6 be a matrix corresponding to a configuration of four lines,
exactly three of which are coplanar. Then at least one of the following conditions holds:

• Θ is G′-equivalent to a matrix corresponding to a perpendicular 4-line configuration (a
configuration with one line perpendicular to the other three);
• Θ is G′-equivalent to a matrix of one of the forms

(x, x, 2π/3, π − 2x, π/2, x), (x, 2x, 2π/3, π − 3x, 2π/3, x), (π/3, 2x, π/2, π − 3x, π + x, x) (9)

for some x ∈ Qπ;
• Θ has entries in Zπ/N for some N ∈ {90, 120, 132, 168, 280, 420}.

Proof. We first compute G-orbit representatives for the set of matrices Θ as above. Each G-orbit
contains a matrix of the form∠∠∠(v1,v2,v3,v4) where v2,v3,v4 are coplanar with 0 in their convex
hull, so that

θ23 + θ24 + θ34 ≡ 0 (mod 2π); (10)

it is thus equivalent to compute G1-orbits of such matrices, where G1 is the subgroup of G that
preserves (10). Substituting z23 = z−1

24 z
−1
34 into (2) yields a square; taking a square root leads to

cos(π2 + θ12 − θ34) + cos(π2 + θ13 − θ24) + cos(π2 + θ14 − θ23)

+ cos(π2 − θ12 − θ34) + cos(π2 − θ13 − θ24) + cos(π2 − θ14 − θ23) = 0.
(11)

Theorem 5.1 implies that any solution of (11) is a specialization of a combination of indecomposable
relations of one of the following forms in the notation of Table 2, up to the transformations in
Theorem 5.1:

6, 5 + 1, (12)

2∗ + 2∗ + 2∗, 3∗ + 3∗, 3∗ + 2∗ + 1, 6∗, 5∗ + 1, 4 + 2∗, 3∗ + 3, 3 + 2∗ + 1; (13)

here (12) lists the possibilities with no free parameters. We omit forms including 1 + 1 because such
a pair is a specialization of a relation of type 2∗. Similarly, we omit 3 + 3.
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Table 2 shows that any solution of (11) of a form in (12) has values in Zπ/N for some N ∈
{132, 168, 280, 420}. Thus it remains to identify solutions of the equations (10) and (11) corresponding
to forms listed in (13), modulo the action of G1. The solutions will fall into finitely many families,
each represented as the set of solutions to a system of congruences AΘ = 2πb (mod 2π) for some
integer matrix A and rational vector b. To put a collection of augmented matrices (A|b) into a
standard form, we perform the following operations until they have no further effect.

• Perform row reduction on each (A|b) to put A into Hermite normal form, omitting zero
rows.
• If a row (a1 · · · a6|b) of some (A|b) has d := gcd(a1, . . . , a6) > 1, replace (A|b) with the d

matrices obtained by replacing this row in turn by (a1d · · ·
a6
d |

b+i
d ) for i = 0, . . . , d− 1.

• Reduce the coordinates of each b modulo 1 to put them in [0, 1).

To intersect two families (A1|b1) and (A2|b2), perform the first operation on

(
A1 b1

A2 b2

)
. To test

whether one family is contained in another, compare it to their intersection.
For each form in (13) and cosine relation of that form, each possible matching of this relation to

the six angles
π
2 ± θ12 − θ34,

π
2 ± θ14 − θ23,

π
2 ± θ14 − θ23,

defines an augmented matrix (A|b) as above. We put these matrices into standard form, eliminate
any family contained in another family, and eliminate any family contained in one of the degenerate
families

θjk ≡ 0, π (mod 2π)

θ1j ± θ1k ± θjk ≡ 0 (mod 2π);

the latter corresponds to v1,vj ,vk being coplanar in addition to v2,v3,v4, making all four coplanar.
These computations take about 2 hours in SageMath on a virtual 2.3GHz Intel Xeon CPU.

For each matrix (A|b) in the result of the computation, we may solve the equation Av = b to
obtain an affine subspace of H. Inspecting the output, we find the following.

• We obtain no subspaces of dimension three or more.
• We obtain 3 two-dimensional subspaces, which belong to a single G′-orbit. This orbit

contains a subspace consisting entirely of perpendicular 4-line configurations.
• We obtain 13 one-dimensional subspaces, which belong to 3 distinct G′-orbits. These orbits

are represented by the three subspaces listed in (9).
• The remaining subspaces are isolated points with coordinates in Zπ/N for some N ∈
{84, 90, 120}. Any Θ that is G-equivalent to one of these also has coordinates in Zπ/N . �

Remark 9.4. The equations (10) and (11) constitute the same system as the one solved in [PR98,
Theorem 4.4] to classify concurrent diagonals of regular polygons, except for some positivity
conditions in the latter statement. Unfortunately, these conditions prevent us from deriving
Lemma 9.3 directly from results in [PR98].

Lemma 9.5. Let Θ ∈ P ∩H ∩ (Qπ)6 be a matrix corresponding to a configuration of four lines, no
three of which are coplanar. Then at least one of the following conditions holds:

• Θ is G′-equivalent to a matrix of the form

(π/2, π/2, π − 2x, π/3, x, x) (14)

for some x ∈ Qπ;
• Θ has entries in Zπ/N for some N ∈ {48, 120, 132, 168, 280, 420}.
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Proof. Multiplying the matrix in (1) by 2 and reducing modulo 2Z[µ] yields the congruence

2 cos(2θ12 + 2θ34) + 2 cos(2θ13 + 2θ24) + 2 cos(2θ14 + 2θ24)

+ 2 cos(2θ12 − 2θ34) + 2 cos(2θ13 − 2θ24) + 2 cos(2θ14 − 2θ24) ≡ 0 (mod 2Z[µ]).
(15)

Theorem 6.10 classifies solutions to (15) in terms of the indecomposable mod 2 relations listed in
Table 2, which include a length 1 relation which we call 1a, and the additional length 1 relation
2 cos 0 ≡ 0 in Theorem 6.10, which we call 1b; let 1 denote a relation of type 1a or 1b. Explicitly, any
solution is a specialization of a sum of relations of the following forms, up to the transformations in
Theorem 6.10:

6, 5 + 1, 4 + 1a+ 1b; (16)

2∗ + 2∗ + 2∗, 3∗ + 3∗, 3∗ + 2∗ + 1, 2∗ + 2∗ + 1a+ 1b, 6∗, 5∗ + 1, 4 + 2∗, 3∗ + 3, 3 + 2∗ + 1; (17)

here (16) lists the possibilities with no free parameters. We omit forms including 1a+ 1a or 1b+ 1b
because such pairs are specializations of a relation of type 2∗. Similarly, we omit 3 + 3.

Table 2 shows that any solution of (15) of a type in (16) has values in Zπ/N for some N ∈
{120, 132, 168, 280, 420}. It thus remains to identify solutions of (1) arising from solutions of (15) of
forms listed in (17). For each such form, each mod 2 cosine relation of that form, and each possible
matching of this relation to the six angles

2θ12 ± 2θ34, 2θ13 ± 2θ24, 2θ14 ± 2θ23,

we obtain an ideal in the Laurent polynomial ring Q[z±ij ] via the substitution zjk = eiθjk . At this

point we have the option to replace this set of ideals with a set of G′-orbit representatives; this
turns out to be worthwhile for forms containing two or more free parameters. We then impose the
condition (1) by adding the generator (2) to each ideal.

Using the implementation in Remark 7.8, we compute the torsion closures of the corresponding
varieties. Once this is done, we eliminate solutions which are degenerate because one of the angles
equals 0 or π (corresponding to two of the lines coinciding) or because one of the 3× 3 minors of the
Gram matrix vanishes (corresponding to the four lines not being in linear general position). These
computations take about 2 hours in SageMath on a virtual 2.3GHz Intel Xeon CPU.

Each irreducible component of each torsion closure in the output corresponds to a subset of H
consisting of the (2πZ)6-translates of some affine subspace of H. Inspecting the output, we find the
following.

• We obtain no subspaces of dimension two or more.
• The one-dimensional subspaces belong to the G′-orbit of the subspace listed in (14).
• The remaining subspaces are isolated points with coordinates in Zπ/N for N ∈ {21, 24, 60}.

Any element of the G′-orbit of one of these points has coordinates in Zπ/(2N). �

For each Θ in Lemmas 9.3 and 9.5, we now determine which elements in its G′-orbit lie in P.

Lemma 9.6. The G′-orbit of each subspace in (9) or (14) yields a single R±-orbit of one-parameter
families of R3-realizable 4× 4 rational-angle matrices. Each orbit is represented by a family yielding
a 4-line subconfiguration of a 6-line configuration in Example 10.6 or 10.5, respectively.

Proof. We have G′ = R± · (2πZ)6 · {±1}6; for example, the translation in Λ∗ sending θ1j to π + θ1j

for j = 2, 3, 4 is the composition of an element of {±1}6 with the element of R± sending θ1j to
π − θ1j for j = 2, 3, 4. Also, R± preserves P. Therefore it suffices to determine, for each subspace
V in the {±1}6-orbit of a subspace in (9) or (14), which a ∈ (2πZ)6 are such that a + V intersects
P. Each V has a parametrization θ(t) = tv + w with v ∈ Z6; then θ(t+ 2π) ≡ θ(t) (mod (2πZ)6),
so it suffices to consider the finitely many a such that a + θ([−π, π]) intersects [0, π]6 ⊃ P . We keep
each such a + V for which (a + V )∩P 6= ∅. Finally, we compute the R±-orbit representatives. This
computation takes about 25 minutes in SageMath on a 2.3GHz Intel Core i5 CPU. �
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Proof of Theorem 9.1. Let F be a two-parameter family of matrices associated to the perpendicular
4-line configurations. By Lemmas 9.3 and 9.5, any family of realizable 4× 4 rational-angle matrices
with two or more parameters is in the R±-orbit of F . Operating by coset representatives of S±4 ⊆ R±

shows that this R±-orbit is a union of three S±4 -orbits; one is that of the (nonmaximal) family F ,
and the other two are the maximal two-parameter families in Theorem 1.2. By Lemmas 9.3 and 9.5
combined with Lemma 9.6, every one-parameter family is in the R±-orbit of one of four families;
again we split each R±-orbit into S±4 -orbits and find that they are as described in Theorem 1.2.
Finally, by Lemmas 9.3 and 9.5 combined with Proposition 8.1, the isolated configurations are as
described by Theorem 1.2. �

Proof of Theorem 1.9. For this, we do not need the configurations described in Lemma 9.3. We
need only the R±-orbit in Lemma 9.6 from (14) and the isolated configurations of Proposition 8.1.
We compute representatives for the S4-orbits and filter by the “test for condition (iv)” in the
paragraph before Lemma 8.5 (for the one-parameter families, it turns out that the parameter range
corresponding to configurations with no three lines coplanar is an open interval, so it suffices to
check one interior sample point, by continuity of the signs of the minors). The result is that the
R±-orbit from (14) yields the two infinite families in Theorem 1.9, and the isolated configurations
outside those yield the list in Table 3. �

10. From 4-line configurations to n-line configurations

We now complete the proof of Theorem 1.2, by assembling rational-angle n-line configurations
from the classification of 4-line configurations given by Theorem 9.1. This requires some care to
make the computation feasible.

Proposition 10.1. Let n ≥ 4. Let L be an n-line configuration in R3. Then L is contained in
a perpendicular configuration if and only if each 4-line subconfiguration of L is contained in a
perpendicular configuration.

Proof. Suppose that each 4-line subconfiguration is contained in a perpendicular configuration.
Then for every four lines in L, there is a unique plane containing at least three of them, and the
fourth is either in the plane or perpendicular to it. Fix L1, L2, L3 ∈ L lying in a plane P . Then the
unique plane for {L1, L2, L3, Li} for any other Li ∈ L must be P , and Li is either in P or is the
line perpendicular to P . Thus L is contained in a perpendicular configuration. �

For each n ≥ 4, let Mn be the set of R3-realizable n× n rational-angle matrices.

Proposition 10.2. For each n ≥ 4, there exists a finite set An of affine Q-subspaces of Mn(Qπ)sym
0

such that Mn =
⋃
A∈An

(A ∩ Pn).

Proof. The calculations described in the preceding sections construct such a set An when n = 4.

Now suppose that n > 4. Let
(

[n]
4

)
be the set of 4-element subsets of {1, . . . , n}. For I ∈

(
[n]
4

)
,

let pI : Mn(Q)sym
0 → M4(Q)sym

0 be the projection giving the principal submatrix indexed by I. By
Corollary 2.3, for each n > 4, a matrix Θ ∈ Mn(R) is in Mn if and only if its 4 × 4 principal
submatrices are in M4. Thus we may take An to be the set of nonempty intersections of the form⋂
I p
−1
I (AI) where each AI ranges over A4 independently. �

We may assume that each A ∈ An equals the affine span of A ∩ Pn. We may also assume that
An is irredundant in the sense that if A,A′ ∈ An satisfy A ⊂ A′, then A = A′. These conditions
specify An uniquely.

Let A ′n be the set of A ∈ An such that A ∩ Pn contains a matrix with no off-diagonal entries
equal to 0 or π. Let A ′′n be the set of A ∈ A ′n such that A ∩ Pn contains a matrix corresponding
to a line configuration not contained in a perpendicular configuration (for each n, this condition
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removes exactly n+ 1 elements: the one parametrizing planar configurations, and, for each i, the
one parametrizing configurations with the ith vector perpendicular to all the others). The group
S±n acts on An, A ′n, and A ′′n . To prove Theorem 1.2, we need to compute the set R′′n of S±n -orbit
representatives in A ′′n for n up to 16 and verify that R′′16 = ∅ (we need 16, and not just 15, to rule
out adding a 16th line to the icosidodecahedral configuration). By Proposition 10.1, we need only
consider angle matrices whose upper left 4× 4 submatrix is in R′′4 .

What complicates our task is that #A ′4 = 84696. It is not practical to loop over all 84696(n4)

tuples (AI) as suggested by the proof of Proposition 10.2, even for n = 5, let alone n = 16.
One could imagine computing a set R′′n by induction, using projections onto (n− 1)× (n− 1)

principal submatrices instead of 4×4 principal submatrices. Suppose that R′′n−1 is known. The action

of S±n−1 ⊂ S±n shows that each S±n -orbit in A ′′n has a representative with upper left (n− 1)× (n− 1)
submatrix in R′′n−1, but we do not have the freedom to assume simultaneously that the other
(n − 1) × (n − 1) principal submatrices are in R′′n−1; all we can assume is that they are in A ′n−1.
This is a problem, since A ′n−1 for some of the larger values of n is much larger even than A ′4 because

even a single S±n−1-orbit can be huge.
Therefore instead we employ the following “early abort” inductive strategy. Start with the

list R′′n−1 of affine subspaces giving possibilities for the upper left (n − 1) × (n − 1) submatrix.

In the first stage, fix I ∈
(

[n]
4

)
−
(

[n−1]
4

)
and try to reconcile each possibility for the upper left

(n− 1)× (n− 1) submatrix with each possibility in A ′4 for the I × I principal submatrix — this
amounts to intersecting preimages of affine subspaces, as in the proof of Proposition 10.2. Most of
these preimage intersections will be empty or will correspond to a family whose general member
has an off-diagonal entry equal to 0 or π, so they need not be considered further; later on in the
process we will also have intersections that are reduced to a point, and we can discard those too if
the point happens not to satisfy the inequalities defining Pn. In the second stage, choose a different

I ′ ∈
(

[n]
4

)
−
(

[n−1]
4

)
and try to reconcile the undiscarded possibilities with the possibilities for the

I ′ × I ′ principal submatrix by computing preimage intersections again. There are 84696 branches at
each stage, but most of the branches abort immediately, and it turns out that the list of possibilities

remains under control. After completing a stage for every subset in
(

[n]
4

)
−
(

[n−1]
4

)
, we have a list of

affine subspaces whose S±n -orbits include all the subspaces in A ′′n . We then compute a distinguished
representative of the S±n -orbit of each subspace and eliminate redundancies, to obtain R′′n.

Remark 10.3. To save more time, one can totally order the set of S±4 -orbits in A ′4 , with the ones
represented by elements of R′′4 coming first. This induces a pre-order on A ′4 itself. Then, by acting
by S±n , we may assume that for each subspace in R′′n, obtained as the intersection of preimages of

AI , the subspace AI for I = {1, 2, 3, 4} is less than or equal to the AJ for every other J ∈
(

[n]
4

)
.

Thus when seeding the inductive process with a particular A{1,2,3,4}, we need only consider AJ that
are greater than equal to that one in each stage. By choosing the total ordering judiciously, starting
with affine subspaces corresponding to line configurations that are unlikely to extend much, we
greatly reduce the number of branches in stages for larger n. In fact, for simplicity we use a total
pre-order instead of a total order; in other words, we group the orbits into clumps, and totally order
the clumps. These improvements reduce the running time of all the calculations in this section to a
total of 14 hours in Magma on a 3.5GHz Intel Xeon CPU E5-1620 v3.

Example 10.4. Each of the five 8-line configurations consists of seven of the central diagonals of a
60-gon centered at 0 together with one line neither in its plane nor perpendicular to it. Each of the
five configurations has a different angle set, though in each case the angles are among the multiples
of π/30.
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Example 10.5. One of the one-parameter families of 6-line configurations is obtained by taking

the lines spanned by (1, 0, 0) and
(

0,− 2√
3

cos θ,
√

1− 4
3 cos2 θ

)
and their rotations by ±2π/3 about

the z-axis, for each parameter value θ ∈ Qπ ∩ (π/6, π/2). The angles formed are π/2, 2π/3, θ, π− θ,
and π − 2θ.

Example 10.6. Three more one-parameter families of 6-line configurations can be obtained by

taking the lines spanned by (cos rθ, sin rθ, 0) for r ∈ {−2,−1, 0, 1, 2} and
(

0, 1
2 csc θ,

√
1− 1

4 csc2 θ
)

,

for θ ∈ Qπ in one of the parameter ranges (π/6, π/4), (π/4, π/3), or (π/3, π/2). The angles formed
are π/3, π/2, 2π/3, θ, 2θ, 3θ, and 4θ (apply x 7→ 2π − x if they exceed π).

11. Tables

We tabulate our results in a somewhat compressed form. A more verbose description can be
found in the GitHub repository mentioned near the end of Section 1.

11.1. Sporadic tetrahedra. Table 3 lists the 59 similarity classes of tetrahedra with rational
dihedral angles not belonging to one of the two parametric families described in Theorem 1.9.
Each entry in the table lists the dihedral angles (α12, α34, α13, α24, α14, α23) measured in units
of π/N for the integer N listed in the left column. The horizontal lines indicate groupings into
orbits for the group R generated by Regge symmetries (see Section 4). For those tetrahedra
listed in [Bol78, pp. 170–173], we have included the labels used therein; all of these correspond to
rational-angle 4-line configurations contained in either the 9-line or the 15-line maximal configuration.
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N (α12, α34, α13, α24, α14, α23) as multiples of π/N

12 (3, 4, 3, 4, 6, 8) = H2(π/4)

24 (5, 9, 6, 8, 13, 15)

12 (3, 6, 4, 6, 4, 6) = T0

24 (7, 11, 7, 13, 8, 12)

15 (3, 3, 3, 5, 10, 10) = T18, (2, 4, 4, 4, 10, 10), (3, 3, 4, 4, 9, 11)

15 (3, 3, 5, 5, 9, 9) = T7

15 (5, 5, 5, 9, 6, 6) = T23, (3, 7, 6, 6, 7, 7), (4, 8, 5, 5, 7, 7)

21 (3, 9, 7, 7, 12, 12), (4, 10, 6, 6, 12, 12), (6, 6, 7, 7, 9, 15)

30 (6, 12, 10, 15, 10, 20) = T17, (4, 14, 10, 15, 12, 18)

60 (8, 28, 19, 31, 25, 35), (12, 24, 15, 35, 25, 35),

(13, 23, 15, 35, 24, 36), (13, 23, 19, 31, 20, 40)

30 (6, 18, 10, 10, 15, 15) = T13, (4, 16, 12, 12, 15, 15), (9, 21, 10, 10, 12, 12)

30 (6, 6, 10, 12, 15, 20) = T16, (5, 7, 11, 11, 15, 20)

60 (7, 17, 20, 24, 35, 35), (7, 17, 22, 22, 33, 37),

(10, 14, 17, 27, 35, 35), (12, 12, 17, 27, 33, 37)

30 (6, 10, 10, 15, 12, 18) = T21, (5, 11, 10, 15, 13, 17)

60 (10, 22, 21, 29, 25, 35), (11, 21, 19, 31, 26, 34),

(11, 21, 21, 29, 24, 36), (12, 20, 19, 31, 25, 35)

30 (6, 10, 6, 10, 15, 24) = T6

60 (7, 25, 12, 20, 35, 43)

30 (6, 12, 6, 12, 15, 20) = T2

60 (12, 24, 13, 23, 29, 41)

30 (6, 12, 10, 10, 15, 18) = T3, (7, 13, 9, 9, 15, 18)

60 (12, 24, 17, 23, 33, 33), (14, 26, 15, 21, 33, 33),

(15, 21, 20, 20, 27, 39), (17, 23, 18, 18, 27, 39)

30 (6, 15, 6, 18, 10, 20) = T4, (6, 15, 7, 17, 9, 21)

60 (9, 33, 14, 34, 21, 39), (9, 33, 15, 33, 20, 40),

(11, 31, 12, 36, 21, 39), (11, 31, 15, 33, 18, 42)

30 (6, 15, 10, 15, 12, 15) = T1, (6, 15, 11, 14, 11, 16), (8, 13, 8, 17, 12, 15),

(8, 13, 9, 18, 11, 14), (8, 17, 9, 12, 11, 16), (9, 12, 9, 18, 10, 15)

30 (10, 12, 10, 12, 15, 12) = T5

60 (19, 25, 20, 24, 29, 25)

Table 3. The 59 sporadic rational tetrahedra.

11.2. Maximal rational-angle n-line configurations for 5 ≤ n ≤ 15. Each entry in the
following list is a representative of an S±n -orbit of R3-realizable n× n rational-angle matrices for
some n ≥ 5, with each angle measured in units of π. The list is complete except that we omit
families whose general member is contained in such an N ×N matrix for some N > n.

22





0 1/5 1/5 1/5 1/5 1/3 1/3 1/3 1/3 2/5 2/5 2/5 2/5 1/2 1/2

1/5 0 1/5 1/3 2/5 1/5 1/3 2/5 1/2 1/5 1/3 1/2 3/5 1/3 2/5

1/5 1/5 0 2/5 1/3 2/5 1/2 1/5 1/3 1/3 1/5 3/5 1/2 1/3 3/5

1/5 1/3 2/5 0 1/5 1/3 1/5 1/2 2/5 1/2 3/5 1/5 1/3 2/3 2/5

1/5 2/5 1/3 1/5 0 1/2 2/5 1/3 1/5 3/5 1/2 1/3 1/5 2/3 3/5

1/3 1/5 2/5 1/3 1/2 0 1/5 3/5 2/3 1/5 1/2 2/5 2/3 2/5 1/5

1/3 1/3 1/2 1/5 2/5 1/5 0 2/3 3/5 2/5 2/3 1/5 1/2 3/5 1/5

1/3 2/5 1/5 1/2 1/3 3/5 2/3 0 1/5 1/2 1/5 2/3 2/5 2/5 4/5

1/3 1/2 1/3 2/5 1/5 2/3 3/5 1/5 0 2/3 2/5 1/2 1/5 3/5 4/5

2/5 1/5 1/3 1/2 3/5 1/5 2/5 1/2 2/3 0 1/3 3/5 4/5 1/5 1/3

2/5 1/3 1/5 3/5 1/2 1/2 2/3 1/5 2/5 1/3 0 4/5 3/5 1/5 2/3

2/5 1/2 3/5 1/5 1/3 2/5 1/5 2/3 1/2 3/5 4/5 0 1/3 4/5 1/3

2/5 3/5 1/2 1/3 1/5 2/3 1/2 2/5 1/5 4/5 3/5 1/3 0 4/5 2/3

1/2 1/3 1/3 2/3 2/3 2/5 3/5 2/5 3/5 1/5 1/5 4/5 4/5 0 1/2

1/2 2/5 3/5 2/5 3/5 1/5 1/5 4/5 4/5 1/3 2/3 1/3 2/3 1/2 0





0 1/4 1/4 1/4 1/4 1/2 1/2 1/2 1/2

1/4 0 1/3 1/3 1/2 1/4 1/3 1/3 1/2

1/4 1/3 0 1/2 1/3 1/2 1/3 2/3 1/4

1/4 1/3 1/2 0 1/3 1/2 2/3 1/3 3/4

1/4 1/2 1/3 1/3 0 3/4 2/3 2/3 1/2

1/2 1/4 1/2 1/2 3/4 0 1/4 1/4 1/2

1/2 1/3 1/3 2/3 2/3 1/4 0 1/2 1/4

1/2 1/3 2/3 1/3 2/3 1/4 1/2 0 3/4

1/2 1/2 1/4 3/4 1/2 1/2 1/4 3/4 0





0 1/10 1/6 4/15 3/10 2/5 13/30 7/15

1/10 0 4/15 1/6 2/5 13/30 1/3 17/30

1/6 4/15 0 13/30 2/15 11/30 3/5 3/10

4/15 1/6 13/30 0 17/30 1/2 1/6 11/15

3/10 2/5 2/15 17/30 0 11/30 11/15 1/6

2/5 13/30 11/30 1/2 11/30 0 17/30 2/5

13/30 1/3 3/5 1/6 11/15 17/30 0 9/10

7/15 17/30 3/10 11/15 1/6 2/5 9/10 0




0 1/15 1/15 3/10 3/10 7/15 7/15 1/2

1/15 0 2/15 7/30 11/30 2/5 8/15 7/15

1/15 2/15 0 11/30 7/30 8/15 2/5 8/15

3/10 7/30 11/30 0 3/5 1/6 23/30 11/30

3/10 11/30 7/30 3/5 0 23/30 1/6 19/30

7/15 2/5 8/15 1/6 23/30 0 14/15 1/3

7/15 8/15 2/5 23/30 1/6 14/15 0 2/3

1/2 7/15 8/15 11/30 19/30 1/3 2/3 0


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

0 1/15 1/5 4/15 4/15 11/30 13/30 7/15

1/15 0 4/15 1/5 4/15 13/30 11/30 8/15

1/5 4/15 0 7/15 1/3 1/6 19/30 4/15

4/15 1/5 7/15 0 1/3 19/30 1/6 11/15

4/15 4/15 1/3 1/3 0 13/30 13/30 1/2

11/30 13/30 1/6 19/30 13/30 0 4/5 1/10

13/30 11/30 19/30 1/6 13/30 4/5 0 9/10

7/15 8/15 4/15 11/15 1/2 1/10 9/10 0




0 1/15 1/10 1/6 1/5 3/10 11/30 7/15

1/15 0 1/6 1/10 1/5 11/30 3/10 8/15

1/10 1/6 0 4/15 7/30 1/5 7/15 11/30

1/6 1/10 4/15 0 7/30 7/15 1/5 19/30

1/5 1/5 7/30 7/30 0 11/30 11/30 1/2

3/10 11/30 1/5 7/15 11/30 0 2/3 1/6

11/30 3/10 7/15 1/5 11/30 2/3 0 5/6

7/15 8/15 11/30 19/30 1/2 1/6 5/6 0




0 1/10 2/15 3/10 3/10 1/3 2/5 7/15

1/10 0 7/30 1/5 2/5 3/10 3/10 17/30

2/15 7/30 0 13/30 1/6 2/5 8/15 1/3

3/10 1/5 13/30 0 3/5 3/10 1/10 23/30

3/10 2/5 1/6 3/5 0 1/2 7/10 1/6

1/3 3/10 2/5 3/10 1/2 0 1/3 3/5

2/5 3/10 8/15 1/10 7/10 1/3 0 13/15

7/15 17/30 1/3 23/30 1/6 3/5 13/15 0





0 3/4 + x 4x 1/4 + 3x 1/2 + 2x 3/4 + x

3/4 + x 0 3/4 + x 2/3 1/2 1/3

4x 3/4 + x 0 1/4− x 1/2− 2x 3/4− 3x

1/4 + 3x 2/3 1/4− x 0 1/4− x 1/2− 2x

1/2 + 2x 1/2 1/2− 2x 1/4− x 0 1/4− x
3/4 + x 1/3 3/4− 3x 1/2− 2x 1/4− x 0


for 0 ≤ x ≤ 1/12



0 2/3 + x 2x 1/2 + 2x 1/3 + x 1/2 + x

2/3 + x 0 2/3− x 1/2− x 1/3 1/6

2x 2/3− x 0 1/2 + 2x 1/3− x 1/2− x
1/2 + 2x 1/2− x 1/2 + 2x 0 1/2 + x 1/2

1/3 + x 1/3 1/3− x 1/2 + x 0 1/6

1/2 + x 1/6 1/2− x 1/2 1/6 0


for 0 ≤ x ≤ 1/6



0 1/2 + x 2x 2x 1/2 + x 1/2

1/2 + x 0 1/2 1/2− x 1/3 1/3

2x 1/2 0 2x 1/2− x 1/2 + x

2x 1/2− x 2x 0 1/2 1/2− x
1/2 + x 1/3 1/2− x 1/2 0 2/3

1/2 1/3 1/2 + x 1/2− x 2/3 0


for 0 ≤ x ≤ 1/3
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

0 1/2 + x 4x 1/2 + 3x 2x 1/2 + x

1/2 + x 0 1/2− x 1/3 1/2 1/3

4x 1/2− x 0 1/2− x 2x 1/2− 3x

1/2 + 3x 1/3 1/2− x 0 1/2 + x 2x

2x 1/2 2x 1/2 + x 0 1/2− x
1/2 + x 1/3 1/2− 3x 2x 1/2− x 0


for 0 ≤ x ≤ 1/6



0 2/3 + x 2/3 + 4x 3x 1/3 + 2x 2/3 + x

2/3 + x 0 3x 2/3− 2x 1/3− x 1/3

2/3 + 4x 3x 0 2/3 + x 1/3 + 2x 1/3− x
3x 2/3− 2x 2/3 + x 0 1/3− x 2/3

1/3 + 2x 1/3− x 1/3 + 2x 1/3− x 0 1/2

2/3 + x 1/3 1/3− x 2/3 1/2 0


for 0 ≤ x ≤ 1/12



0 1/21 5/42 1/6 2/7 10/21

1/21 0 1/6 5/42 2/7 11/21

5/42 1/6 0 2/7 13/42 5/14

1/6 5/42 2/7 0 13/42 9/14

2/7 2/7 13/42 13/42 0 1/2

10/21 11/21 5/14 9/14 1/2 0


,



0 1/14 1/14 8/21 8/21 1/2

1/14 0 1/7 13/42 19/42 19/42

1/14 1/7 0 19/42 13/42 23/42

8/21 13/42 19/42 0 16/21 2/7

8/21 19/42 13/42 16/21 0 5/7

1/2 19/42 23/42 2/7 5/7 0




0 2/15 2/15 3/10 3/10 1/2

2/15 0 4/15 1/6 13/30 7/15

2/15 4/15 0 13/30 1/6 8/15

3/10 1/6 13/30 0 3/5 13/30

3/10 13/30 1/6 3/5 0 17/30

1/2 7/15 8/15 13/30 17/30 0


,



0 1/21 1/7 11/42 13/42 10/21

1/21 0 1/7 13/42 11/42 11/21

1/7 1/7 0 13/42 13/42 1/2

11/42 13/42 13/42 0 4/7 3/14

13/42 11/42 13/42 4/7 0 11/14

10/21 11/21 1/2 3/14 11/14 0




0 1/10 1/10 11/30 11/30 1/2

1/10 0 1/5 4/15 7/15 7/15

1/10 1/5 0 7/15 4/15 8/15

11/30 4/15 7/15 0 11/15 2/5

11/30 7/15 4/15 11/15 0 3/5

1/2 7/15 8/15 2/5 3/5 0


,



0 1/14 2/21 2/7 5/14 8/21

1/14 0 1/6 11/42 2/7 19/42

2/21 1/6 0 1/3 19/42 2/7

2/7 11/42 1/3 0 13/42 11/21

5/14 2/7 19/42 13/42 0 31/42

8/21 19/42 2/7 11/21 31/42 0




0 1/15 7/60 11/60 7/20 7/15

1/15 0 11/60 7/60 7/20 8/15

7/60 11/60 0 3/10 11/30 7/20

11/60 7/60 3/10 0 11/30 13/20

7/20 7/20 11/30 11/30 0 1/2

7/15 8/15 7/20 13/20 1/2 0


,



0 2/15 2/15 13/30 13/30 1/2

2/15 0 4/15 3/10 17/30 2/5

2/15 4/15 0 17/30 3/10 3/5

13/30 3/10 17/30 0 13/15 7/30

13/30 17/30 3/10 13/15 0 23/30

1/2 2/5 3/5 7/30 23/30 0




0 1/6 3/14 17/42 3/7 19/42

1/6 0 8/21 5/21 25/42 3/7

3/14 8/21 0 13/21 3/14 1/2

17/42 5/21 13/21 0 5/6 3/7

3/7 25/42 3/14 5/6 0 23/42

19/42 3/7 1/2 3/7 23/42 0


,



0 2/15 1/6 4/15 1/3 13/30

2/15 0 1/6 1/3 4/15 17/30

1/6 1/6 0 13/30 13/30 1/2

4/15 1/3 13/30 0 4/15 11/30

1/3 4/15 13/30 4/15 0 19/30

13/30 17/30 1/2 11/30 19/30 0


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

0 7/60 1/6 17/60 2/5 5/12

7/60 0 17/60 2/5 5/12 3/10

1/6 17/60 0 7/60 2/5 7/12

17/60 2/5 7/60 0 5/12 7/10

2/5 5/12 2/5 5/12 0 1/2

5/12 3/10 7/12 7/10 1/2 0


,



0 1/15 1/15 9/20 9/20 1/2

1/15 0 2/15 23/60 31/60 9/20

1/15 2/15 0 31/60 23/60 11/20

9/20 23/60 31/60 0 9/10 7/30

9/20 31/60 23/60 9/10 0 23/30

1/2 9/20 11/20 7/30 23/30 0




0 1/6 1/6 11/30 11/30 1/2

1/6 0 4/15 1/3 8/15 11/30

1/6 4/15 0 8/15 1/3 19/30

11/30 1/3 8/15 0 8/15 7/30

11/30 8/15 1/3 8/15 0 23/30

1/2 11/30 19/30 7/30 23/30 0


,



0 2/15 2/15 1/5 4/15 13/30

2/15 0 4/15 1/5 2/15 17/30

2/15 4/15 0 4/15 2/5 3/10

1/5 1/5 4/15 0 4/15 1/2

4/15 2/15 2/5 4/15 0 7/10

13/30 17/30 3/10 1/2 7/10 0




0 2/21 3/14 5/14 3/7 10/21

2/21 0 13/42 11/42 8/21 4/7

3/14 13/42 0 4/7 23/42 11/42

5/14 11/42 4/7 0 13/42 5/6

3/7 8/21 23/42 13/42 0 2/3

10/21 4/7 11/42 5/6 2/3 0


,



0 1/15 3/20 19/60 23/60 7/15

1/15 0 3/20 23/60 19/60 8/15

3/20 3/20 0 11/30 11/30 1/2

19/60 23/60 11/30 0 7/10 3/20

23/60 19/60 11/30 7/10 0 17/20

7/15 8/15 1/2 3/20 17/20 0




0 1/10 11/60 17/60 13/30 9/20

1/10 0 17/60 11/60 13/30 11/20

11/60 17/60 0 7/15 9/20 4/15

17/60 11/60 7/15 0 9/20 11/15

13/30 13/30 9/20 9/20 0 1/2

9/20 11/20 4/15 11/15 1/2 0


,



0 2/21 2/21 5/14 5/14 1/2

2/21 0 4/21 11/42 19/42 3/7

2/21 4/21 0 19/42 11/42 4/7

5/14 11/42 19/42 0 5/7 11/42

5/14 19/42 11/42 5/7 0 31/42

1/2 3/7 4/7 11/42 31/42 0




0 1/10 1/10 5/12 5/12 1/2

1/10 0 1/5 19/60 31/60 5/12

1/10 1/5 0 31/60 19/60 7/12

5/12 19/60 31/60 0 5/6 1/5

5/12 31/60 19/60 5/6 0 4/5

1/2 5/12 7/12 1/5 4/5 0


,



0 1/15 7/30 3/10 2/5 7/15

1/15 0 3/10 7/30 2/5 8/15

7/30 3/10 0 8/15 13/30 7/30

3/10 7/30 8/15 0 13/30 23/30

2/5 2/5 13/30 13/30 0 1/2

7/15 8/15 7/30 23/30 1/2 0




0 5/42 5/21 17/42 3/7 10/21

5/42 0 5/14 2/7 17/42 25/42

5/21 5/14 0 9/14 1/2 5/21

17/42 2/7 9/14 0 17/42 37/42

3/7 17/42 1/2 17/42 0 4/7

10/21 25/42 5/21 37/42 4/7 0


,



0 1/15 2/15 1/6 7/30 7/15

1/15 0 2/15 7/30 1/6 8/15

2/15 2/15 0 7/30 7/30 1/2

1/6 7/30 7/30 0 2/5 3/10

7/30 1/6 7/30 2/5 0 7/10

7/15 8/15 1/2 3/10 7/10 0




0 2/3 + x 1/6 + 2x 1/3 + 2x 1/2 + 2x

2/3 + x 0 5/6− x 1/3− x 1/6 + x

1/6 + 2x 5/6− x 0 1/2 + 2x 2/3− 2x

1/3 + 2x 1/3− x 1/2 + 2x 0 1/6 + 2x

1/2 + 2x 1/6 + x 2/3− 2x 1/6 + 2x 0

 for 0 ≤ x ≤ 1/6
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
0 2/3 + x 1/6 + 3x 1/6 + 2x 1/2 + x

2/3 + x 0 5/6− 2x 1/2− x 1/6

1/6 + 3x 5/6− 2x 0 1/3 + 3x 2/3

1/6 + 2x 1/2− x 1/3 + 3x 0 1/3− x
1/2 + x 1/6 2/3 1/3− x 0

 for 0 ≤ x ≤ 1/6


0 7/60 13/60 7/30 7/20

7/60 0 7/30 7/20 7/15

13/60 7/30 0 19/60 2/5

7/30 7/20 19/60 0 7/60

7/20 7/15 2/5 7/60 0

,


0 4/21 2/7 17/42 3/7

4/21 0 3/7 25/42 2/7

2/7 3/7 0 11/42 10/21

17/42 25/42 11/42 0 31/42

3/7 2/7 10/21 31/42 0




0 1/10 1/3 7/20 9/20

1/10 0 2/5 9/20 7/20

1/3 2/5 0 1/4 13/20

7/20 9/20 1/4 0 4/5

9/20 7/20 13/20 4/5 0

,


0 1/7 4/21 5/21 19/42

1/7 0 5/21 8/21 25/42

4/21 5/21 0 2/7 19/42

5/21 8/21 2/7 0 3/14

19/42 25/42 19/42 3/14 0




0 1/5 2/5 2/5 7/15

1/5 0 8/15 3/5 3/5

2/5 8/15 0 4/15 8/15

2/5 3/5 4/15 0 4/15

7/15 3/5 8/15 4/15 0

,


0 1/7 1/3 3/7 3/7

1/7 0 3/7 1/3 4/7

1/3 3/7 0 3/7 2/7

3/7 1/3 3/7 0 5/7

3/7 4/7 2/7 5/7 0




0 1/14 5/21 3/7 10/21

1/14 0 13/42 17/42 17/42

5/21 13/42 0 11/21 5/7

3/7 17/42 11/21 0 8/21

10/21 17/42 5/7 8/21 0

,


0 1/6 11/60 11/60 7/20

1/6 0 17/60 7/20 11/60

11/60 17/60 0 1/5 13/30

11/60 7/20 1/5 0 8/15

7/20 11/60 13/30 8/15 0




0 2/15 2/15 1/5 1/5

2/15 0 4/15 1/5 4/15

2/15 4/15 0 4/15 1/5

1/5 1/5 4/15 0 2/5

1/5 4/15 1/5 2/5 0

,


0 2/15 3/10 1/3 2/5

2/15 0 13/30 2/5 1/2

3/10 13/30 0 3/10 7/30

1/3 2/5 3/10 0 8/15

2/5 1/2 7/30 8/15 0




0 11/60 1/5 4/15 9/20

11/60 0 13/60 9/20 19/30

1/5 13/60 0 11/30 31/60

4/15 9/20 11/30 0 11/60

9/20 19/30 31/60 11/60 0

,


0 1/10 19/60 11/30 5/12

1/10 0 5/12 13/30 19/60

19/60 5/12 0 1/4 11/15

11/30 13/30 1/4 0 13/20

5/12 19/60 11/15 13/20 0




0 3/20 3/20 7/20 7/20

3/20 0 3/10 1/3 2/5

3/20 3/10 0 2/5 1/3

7/20 1/3 2/5 0 7/10

7/20 2/5 1/3 7/10 0

,


0 3/20 11/60 7/30 23/60

3/20 0 7/30 23/60 8/15

11/60 7/30 0 17/60 2/5

7/30 23/60 17/60 0 3/20

23/60 8/15 2/5 3/20 0




0 1/10 1/6 4/15 11/30

1/10 0 4/15 7/30 4/15

1/6 4/15 0 11/30 8/15

4/15 7/30 11/30 0 3/10

11/30 4/15 8/15 3/10 0

,


0 2/15 1/6 1/6 7/15

2/15 0 7/30 3/10 3/5

1/6 7/30 0 1/5 13/30

1/6 3/10 1/5 0 3/10

7/15 3/5 13/30 3/10 0


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
0 2/15 3/20 17/60 2/5

2/15 0 17/60 3/20 13/30

3/20 17/60 0 13/30 23/60

17/60 3/20 13/30 0 29/60

2/5 13/30 23/60 29/60 0

,


0 1/15 11/30 23/60 9/20

1/15 0 2/5 9/20 23/60

11/30 2/5 0 19/60 37/60

23/60 9/20 19/60 0 5/6

9/20 23/60 37/60 5/6 0




0 1/18 1/9 1/6 5/18

1/18 0 5/18 1/9 2/9

1/9 5/18 0 1/2 13/18

1/6 1/9 1/2 0 1/9

5/18 2/9 13/18 1/9 0

,


0 7/60 7/30 3/10 5/12

7/60 0 1/4 5/12 8/15

7/30 1/4 0 11/30 9/20

3/10 5/12 11/30 0 7/60

5/12 8/15 9/20 7/60 0




0 2/15 1/5 7/20 29/60

2/15 0 7/30 29/60 7/20

1/5 7/30 0 23/60 29/60

7/20 29/60 23/60 0 5/6

29/60 7/20 29/60 5/6 0

,


0 2/15 7/30 3/10 1/2

2/15 0 7/30 13/30 7/15

7/30 7/30 0 2/5 7/10

3/10 13/30 2/5 0 17/30

1/2 7/15 7/10 17/30 0




0 3/20 1/5 3/10 9/20

3/20 0 1/4 9/20 3/5

1/5 1/4 0 1/3 9/20

3/10 9/20 1/3 0 3/20

9/20 3/5 9/20 3/20 0

,


0 1/7 1/7 2/7 2/7

1/7 0 2/7 2/7 1/3

1/7 2/7 0 1/3 2/7

2/7 2/7 1/3 0 4/7

2/7 1/3 2/7 4/7 0




0 3/20 1/6 13/60 19/60

3/20 0 19/60 1/5 7/15

1/6 19/60 0 19/60 3/20

13/60 1/5 19/60 0 13/30

19/60 7/15 3/20 13/30 0

,


0 2/15 2/5 13/30 1/2

2/15 0 1/2 17/30 2/5

2/5 1/2 0 7/30 8/15

13/30 17/30 7/30 0 23/30

1/2 2/5 8/15 23/30 0




0 1/15 7/20 2/5 5/12

1/15 0 5/12 13/30 7/20

7/20 5/12 0 19/60 23/30

2/5 13/30 19/60 0 37/60

5/12 7/20 23/30 37/60 0

,


0 2/15 1/6 1/6 7/15

2/15 0 7/30 3/10 1/2

1/6 7/30 0 1/5 3/10

1/6 3/10 1/5 0 13/30

7/15 1/2 3/10 13/30 0




0 3/20 13/60 5/12 13/30

3/20 0 7/30 4/15 7/12

13/60 7/30 0 2/5 29/60

5/12 4/15 2/5 0 17/20

13/30 7/12 29/60 17/20 0


11.3. Regge orbits of rational-angle 4-line configurations. Here we list representatives of
the R±-orbits of R3-realizable 4× 4 rational-angle matrices, with each angle measured in units of π.
We exclude any orbit containing a representative obtained from a matrix in Section 11.2 or from
a perpendicular configuration. In each orbit, we choose the representative for which the sum of
the denominators of the matrix entries is smallest, and among those, we choose the one that is
lexicographically smallest.

0 1/20 11/60 11/30

1/20 0 1/5 5/12

11/60 1/5 0 7/20

11/30 5/12 7/20 0

,


0 1/14 13/84 25/84

1/14 0 19/84 9/28

13/84 19/84 0 2/7

25/84 9/28 2/7 0

,


0 11/90 4/15 22/45

11/90 0 7/18 17/30

4/15 7/18 0 1/3

22/45 17/30 1/3 0


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
0 3/20 19/120 5/24

3/20 0 37/120 13/40

19/120 37/120 0 3/20

5/24 13/40 3/20 0

,


0 1/15 5/18 1/3

1/15 0 31/90 17/45

5/18 31/90 0 7/30

1/3 17/45 7/30 0




0 2/15 3/14 44/105

2/15 0 73/210 3/7

3/14 73/210 0 13/30

44/105 3/7 13/30 0

,


0 2/35 2/7 3/10

2/35 0 1/3 5/14

2/7 1/3 0 11/70

3/10 5/14 11/70 0




0 7/120 3/10 43/120

7/120 0 43/120 2/5

3/10 43/120 0 9/40

43/120 2/5 9/40 0

,


0 1/18 1/3 7/15

1/18 0 11/30 37/90

1/3 11/30 0 29/45

7/15 37/90 29/45 0




0 1/10 3/14 27/70

1/10 0 11/35 3/7

3/14 11/35 0 1/3

27/70 3/7 1/3 0

,


0 5/84 1/4 5/14

5/84 0 2/7 5/12

1/4 2/7 0 23/84

5/14 5/12 23/84 0




0 3/14 3/10 29/70

3/14 0 18/35 1/3

3/10 18/35 0 4/7

29/70 1/3 4/7 0

,


0 8/45 3/10 1/3

8/45 0 43/90 2/5

3/10 43/90 0 31/90

1/3 2/5 31/90 0
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[Hin06] Marc Hindry, La géométrie diophantienne, selon Serge Lang, Gaz. Math. 108 (2006), 17–32 (French, with
English summary). MR2223493 ↑11

[Lan83] Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR715605 ↑11
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