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Abstract. This expository note describes a method for computing densities of subsets of
Zn described by infinitely many local conditions.

1. Introduction

The aim of this note is to present a general method for studying questions such as the
following.

Fix g ≥ 1. What is the ‘probability’ that a curve of the form

(1) y2 = f(x) = a2g+2x
2g+2 + a2g+1x

2g+1 + · · ·+ a2x
2 + a1x+ a0

with aj ∈ Z has genus g and has Qv–rational points for all completions Qv of Q?

To make sense of this quesion, we have to make precise what we mean by ‘probability.’ We
choose the coefficients aj randomly from the integers of absolute value at most N and ask
for the probability that the resulting curve has the property in question; then we take the
limit of this as N →∞ and call the result a density.

Definition. For v = (v1, v2, . . . , vd) ∈ Zd, define |v| := maxi |vi|. If S ⊆ Zd, then the density
of S is defined to be

ρ(S) := lim
N→∞

#{v ∈ S : |v| ≤ N}
(2N + 1)d

,

if the limit exists. Define the upper density ρ(S) and lower density ρ(S) similarly, except
with the limit replaced by a lim sup or lim inf, respectively.

Note that in our question, the condition that (1) has genus g is equivalent to the non-
vanishing of the discriminant ∆(a0, a1, . . . , a2g+2) of f . We have chosen to exclude such
curves for our density calculation, but this is of no consequence since the entire zero locus
of ∆ in Z2g+3 has density zero.

What makes our question difficult is that we are imposing conditions at infinitely many
primes. If we wanted only an estimate for the density of curves (1) that had points over R,
Q2, and Q17, say, but required neither the existence nor the lack of points over the other
Qp, then the question could easily be reduced to the computation of corresponding local
probabilities, by invoking weak approximation to prove the ‘independence’ of the conditions
being imposed.

We will show that our original question also can be reduced to the computation of local
probabilities. Most of the proofs will be left out for reasons of space; they can be found
in [PSt]. In that paper, the method is applied to prove results on the density of hyperelliptic
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curves whose Jacobians have a Shafarevich-Tate group of non-square order (if finite). But
the method undoubtedly has many other interesting applications.

First we need some more notation. If S is a set, then 2S denotes its power set. If K is a
number field, let MK denote the set of places of K. For example, MQ = {∞}∪{p : p prime}.
Finally, we let µ∞ denote the standard Lebesgue measure on Rd, and let µp denote the Haar
measure on Zd

p normalized to have total mass 1.

2. The results

We formalize the method for obtaining density results in the following lemma.

Lemma 1. Suppose that U∞ is a subset of Rd such that R+ · U∞ = U∞ and µ∞(∂U∞) = 0.
Let U1

∞ = U∞ ∩ [−1, 1]d, and let s∞ = 2−dµ∞(U1
∞).1 Suppose that for each finite prime p,

Up is a subset of Zd
p such that µp(∂Up) = 0. Let sp = µp(Up). Finally, suppose that

(2) lim
M→∞

ρ
({
a ∈ Zd : a ∈ Up for some finite prime p greater than M

})
= 0.

Define a map P : Zd −→ 2MQ as follows: if a ∈ Zd, let P (a) be the set of places v such that
a ∈ Uv. Then

(1)
∑

v sv converges.
(2) For S ⊆ 2MQ, ν(S) := ρ(P−1(S)) exists, and ν defines a measure on 2MQ.
(3) The measure ν is concentrated at the finite subsets of MQ: for each finite subset S

of MQ,

(3) ν({S}) =
∏
v∈S

sv
∏
v 6∈S

(1− sv),

and if S ⊂ 2MQ consists of infinite subsets of MQ, then ν(S) = 0.

Proof. See [PSt, Lemma 20]. �

For our original question, we will eventually take d = 2g + 3 and let Up (resp. U∞) be the
set of (a0, a1, . . . , a2g+2) with ai ∈ Zp (resp. ai ∈ R) such that the curve (1) has genus g and
has no Qp-rational point (resp. no real point). Finally we will use (3) with S = ∅.

The main point of Lemma 1 is to isolate (2) as the non-trivial condition that must be
checked in order to obtain density results with infinitely many local conditions. The following
result can be used to show that (2) is satisfied in many interesting cases.

Lemma 2. Suppose f and g are relatively prime polynomials in Z[x1, x2, . . . , xd]. Let
SM(f, g) be the set of a ∈ Zd for which there exists a finite prime p > M dividing both
f(a) and g(a). Then limM→∞ ρ(SM(f, g)) = 0.

Proof. See Section 3. �

Remark. Once one has Lemma 2, it is easy to apply Lemma 1 to obtain a formula for the
density of a ∈ Zd such that f(a) and g(a) are relatively prime, in terms of the number
of solutions to f(a) ≡ g(a) ≡ 0 in Fd

p for each p. The same can of course be done for

{a ∈ Zd : gcd(f1(a), . . . , fn(a)) = 1}, provided that the polynomials fi ∈ Z[x1, . . . , xd] define
a subvariety of codimension at least 2 in Ad

C. This generalizes a result of Hafner, Sarnak,
and McCurley [HSM].

1Since U1
∞ is the union of the open set (U1

∞)0 (its interior) and a subset of a measure zero set, U1
∞ is

automatically measurable.
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For example, regarding the question we asked at the beginning, we obtain the following.

Lemma 3. Fix g ≥ 1. Let RM be the set of a = (a0, a1, . . . , a2g+2) ∈ Z2g+3 for which (1) is
a curve X of genus g that fails to admit a Qp-rational point at some finite prime p greater
than M . Then limM→∞ ρ(RM) = 0.

Proof. An easy lemma [PSt, Lemma 15] shows that for p large compared to g, a necessary
condition for the curve given by (1) to have no Qp–rational point is that the reduction of f
mod p be a (non-square) constant times the square of some polynomial. If g ≥ 1, then the
Zariski closure2 V of the image of the squaring map Polg+1 −→ Pol2g+2 (where Poln denotes
the affine space of polynomials of degree ≤ n) is of codimension at least 2 in Pol2g+2 = A2g+3,
so we can find two relatively prime polynomials f, g ∈ Z[a0, . . . , a2g+2] that vanish on V . For
all but finitely many primes p, it is true that if a ∈ Z2g+3 and f(x) mod p is a square in
Fp[x] then p divides f(a) and g(a). By Lemma 2, the claim follows. �

Lemma 3 supplies us with the condition (2) needed for the application of Lemma 1. We
obtain the following answer to our question. Let ρg denote the density we asked for, and let
sg,v be the sv in Lemma 1 for the Uv (or U∞) chosen in the paragraph after Lemma 1, so
that sg,v is the ‘probability’ that the curve (1) with coefficients in Zp (or [−1, 1] for ∞) has
no Qp-rational point (resp. no real point). Then

ρg =
∏

v∈MQ

(1− sg,v) ,

and the product converges. Furthermore it is easy to show that 0 < sg,v < 1 for all g ≥ 1
and for all v, so 0 < ρg < 1.

Using Lemma 1, we could prove also that for any finite set S of places of Q, and for
any g ≥ 1, there exists a genus g curve X over Q of the form (1) such that {v ∈ MQ :
X(Qv) = ∅} = S (and in fact, we would prove that such curves have positive density). A
straightforward generalization of the method could be used to show that if K is any number
field, S is any finite set of non-complex places of K, and g ≥ 1, then there exists a genus g
curve X over K of the form (1) such that {v ∈MK : X(Kv) = ∅} = S.

These last results fail for g = 0: it is well known that in addition #S must be even in
order for there to exist X as above. The reason our method (luckily!) does not prove a false
result for g = 0 is that (2) breaks down. More precisely, the proof of Lemma 3 fails for g = 0,
since the image of the squaring map Pol1 → Pol2 no longer has codimension at least 2.

3. Notes added in revision

We recently learned that T. Ekedahl developed in [Ek] very similar methods for computing
densities when infinitely many local conditions are imposed. For instance, our Lemma 2 is
a corollary of his Theorem 1.2, applied to the subscheme of Ad

Z defined by the equations
f = g = 0. Ekedahl gives applications of the method that are different from ours.
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