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1. Introduction

Let k be a number field. Let A be a semiabelian variety over k; i.e., an extension

0→ T → A→ A0 → 0,

where T is a torus, and A0 is an abelian variety. Let h : A(k) → R be a canonical height1.
For ε > 0, let Bε = { z ∈ A(k) | h(z) < ε }. Let Γ be a finitely generated subgroup of A(k).
The division group Γ′ is defined as

Γ′ := {x ∈ A(k) | there exists n ≥ 1 such that nx ∈ Γ }.
Define

Γ′ε := Γ′ +Bε = { γ + z | γ ∈ Γ′, h(z) < ε }.
We may visualize Γ′ε as a fattening of Γ′, a “slab” in the height topology on A(k).

Let X be a geometrically integral closed subvariety of A. Let Xk denote X ×k k, and so
on. Define a semiabelian subvariety of a semiabelian variety A to be a subvariety B ⊆ A
such that the group structure on A restricts to give B the structure of a semiabelian variety.
Then we make the following conjecture:

Conjecture 1 (Mordell-Lang + Bogomolov). If Xk is not a translate of a semiabelian
subvariety of Ak by a point in Γ′, then for some ε > 0, X(k)∩ Γ′ε is not Zariski dense in X.

Applying Conjecture 1 recursively to the components of the Zariski closure of X(k) ∩ Γ′ε
shows that the apparently stronger Conjecture 2 below is in fact equivalent.

Conjecture 2. There exists ε > 0 such that X(k) ∩ Γ′ε is contained in a finite union
⋃
Zj

where each Zj is a translate of a semiabelian subvariety of Ak by a point in Γ′ and Zj ⊆ Xk.

The main achievement of this paper is a proof of these conjectures in the case that A
is almost split, i.e., isogenous to the product of an abelian variety and a torus. Note that
these conjectures contain the “Mordell-Lang conjecture” (which is completely proven) and
the “generalized Bogomolov conjecture,” (which has been proved when A is almost split).
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1We will give a precise definition in Section 3. For now, let us remark that if A is abelian, then h may be
taken as a Néron-Tate canonical height associated to a symmetric ample line bundle, and if A ∼= Gn

m is a
split torus, then h may taken as the sum of the naive heights of the coordinates.
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Our proof does not yield new proofs of either of these, however, because it uses both, as well
as an equidistribution theorem. (We will discuss these major ingredients and their history in
Sections 2 and 5.) On the other hand, we do not need the full strength of the Mordell-Lang
conjecture: we use only the “Mordellic” (finitely generated) part. Hence our proof gives a
new reduction of the full Mordell-Lang conjecture to the Mordellic part, at least for almost
split semiabelian varieties.

We need the almost split hypothesis only because it is under this hypothesis that the
Bogomolov conjecture and an equidistribution theorem have been proved so far [CL2]. In
fact, if we assume the Bogomolov conjecture and an equidistribution theorem for general
semiabelian varieties, then we can prove our conjecture entirely.

Remarks.

(1) After seeing an earlier version of this paper in which a result only for X ∩ (Γ + Bε)
was proved instead of for X ∩ (Γ′+Bε) (the latter being only conjectured), Shou-Wu
Zhang has independently discovered a proof of the division group case [Zh4], again
under the almost split hypothesis. He proves first a theorem about “equidistribution
of almost division points,” and then derives the result from this.

(2) Moriwaki [Mo] has proved a generalization of the Bogomolov and equidistribution
theorems in which the number field k is replaced by an arbitrary finitely generated
field extension of Q. His result is not the function field analogue of the number field
result: instead he chooses a base variety having the finitely generated field as function
field, and defines his height function as a combination of the geometric height (from
the generic fiber) and contributions from the other fibers. It would be interesting
to investigate whether the Mordell-Lang and Bogomolov conjectures can be merged
over finitely generated fields.

2. The Mordell-Lang conjecture

By the “Mordell-Lang conjecture” we mean the theorem below, which in this form was
conjectured by Lang [La] and proved by McQuillan [McQ], following work by Faltings, Vojta,
Hindry, Raynaud, and many others.

Theorem 3 (Mordell-Lang conjecture). Let A be a semiabelian variety over a number field
k. Let Γ be a finitely generated subgroup of A(k), and let Γ′ be the division group. Let X be a
geometrically integral closed subvariety of A that is not equal to the translate of a semiabelian
subvariety (over k). Then X(k) ∩ Γ′ is not Zariski dense in X.

Remarks.

(1) We obtain an equivalent statement if “translate of a semiabelian subvariety” is re-
placed by “translate of a semiabelian subvariety by a point in Γ′.”

(2) We obtain an equivalent statement if “not Zariski dense in X” is replaced by “con-
tained in a finite union

⋃
Zj where each Zj is a translate of semiabelian subvariety

of Ak, and Zj ⊆ Xk.”
(3) The theorem is true for any field k of characteristic 0: specialization arguments let

one reduce to the number field case.
(4) There are function field analogues: see [Hr] for example.
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We will need only the weaker statement obtained by replacing Γ′ by Γ in Theorem 3. This is
sometimes called the “Mordellic part,” because the special case where X ⊂ A is a curve of
genus ≥ 2 in its Jacobian is equivalent to Mordell’s conjecture about the finiteness of X(k).

3. Canonical heights on semiabelian varieties

For the rest of this paper, k denotes a number field. Let A be a semiabelian variety over
k, fitting in an exact sequence

0→ T → A
ρ→ A0 → 0,

where T is a torus, and A0 is an abelian variety. Enlarge k to assume that T ∼= Gr
m over k.

To define canonical heights on A, we first compactify, as in [Vo]. (See also [CL1].) Ac-
cording to [Vo], there exist M1, . . . ,Mr in Pic0(A0) such that

A ∼= P′(OA0 ⊕M1)×A0 · · · ×A0 P
′(OA0 ⊕Mr),

where P′(L ⊕M) means the open subset of P(L ⊕M) obtained by deleting the sections
corresponding to the canonical projections to L and M. Then

A := P(OA0 ⊕M1)×A0 · · · ×A0 P(OA0 ⊕Mr)

is a suitable compactification of A. Let L0 denote the line bundle on A associated to the
divisor A \ A. Let L1 = ρ∗M where M is a symmetric ample line bundle on A0. For
n ∈ Z, the multiplication-by-n map on A extends to a morphism [n] : A → A. We have

[n]∗L0
∼= L⊗|n|0 (the n ≥ 1 case is on p. 140 of [Vo]) and [n]∗L1

∼= L⊗n
2

1 . Therefore for
x ∈ A(k), we define nonnegative functions

(1) h0(x) := lim
n→∞

hL0([n]x)

|n|
, h1(x) := lim

n→∞

hL1([n]x)

n2
, and h(x) := h0(x) + h1(x).

We record some properties of h:

Lemma 4. Suppose n ∈ Z, σ ∈ Gk, and x ∈ A(k).

(1) Up to O(1), h(x) equals a Weil height associated to the line bundle L := L0 ⊗L1 on
A, which is ample.

(2) h0([n]x) = |n|h0(x).
(3) h1([n]x) = n2h1(x).
(4) |n|h(x) ≤ h([n]x) ≤ n2h(x).
(5) h(σx) = h(x).
(6) If a ∈ A(k) is torsion, then h(x+ a) = h(x).

Proof. For the ampleness of L, see Lemma 3.1 of [Vo]. Parts (1) through (5) are now trivial,
and part (6) follows from (2) and (3). �

In the case where A is almost split, we can circumvent the need for a compactification
by choosing a surjective homomorphism φ : A → Gr

m and defining h0(x) by the sum of the
naive heights of the r coordinates of φ(x). Note that h1(x) can be defined as the Néron-Tate
height with respect toM of the image of x in A0; no compactification is needed for this. The
definition of h depends onM (and also on φ in the almost split definition), but the content
of the conjectures we are considering is independent of the choices made, as we point out in
the next section.
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4. Sequences of small points

A sequence of points xi ∈ A(k) is said to be a sequence of small points if h(xi) → 0.
Hrushovski pointed out to the author that in formulating the Bogomolov conjecture, equidis-
tribution conjecture, or Conjecture 1, all that matters is the notion of sequence of small
points, and that this notion can be defined without using canonical heights. Using his idea,
which we develop in the rest of this section, we see that the notion is very robust, depending
only on A, even though there were many choices in Section 3 for a canonical height function.

We temporarily consider a more general situation. Let U be a geometrically integral quasi-
projective variety over a number field k, equipped with a morphism f : U → U . For integers
r ≥ 1, let f r : U → U denote the r-th iterate of f . We assume the following condition on
(U, f):

(∗) There exist a Weil height h : U(k) → R associated to some embedding U ↪→ Pn,
an integer r ≥ 1, and real numbers M > 0 and c > 1 such that h(z) > M implies
h(f r(z)) > ch(z).

If z ∈ U(k), let N(z) be the smallest integer N ≥ 1 such that h(fN(z)) > M , or ∞ if no
such N exists. Northcott’s finiteness theorem about the number of points of bounded height
and degree implies that N(z) = ∞ if and only if z is preperiodic for f (i.e., has finite orbit
under the iterates of f). For i ≥ 1, let zi ∈ U(k). We say that {zi}i≥1 is a sequence of small
points if N(zi)→∞ in P1(R).

Proposition 5. Suppose (U, f) satisfies (∗), with h, r, M , and c.

1) If h′ is another Weil height, corresponding to another projective embedding, then there
exist r′, M ′, and c′ as in (∗) for h′.

2) For any such choices, the notion of sequence of small points obtained is the same.
3) If (U, g) also satisfies (∗), and fg = gf , then the notion obtained using g is the same

as that using f .
4) If (U ′, f ′) also satisfies (∗), and ψ : U → U ′ satisfies ψf = f ′ψ, then ψ maps

sequences of small points to sequences of small points.

Proof. This follows from elementary properties of heights, such as the fact that Weil heights
corresponding to two different embeddings are bounded by linear functions in each other. �

Remarks.

(1) Condition (∗) is satisfied for (U, f) if there exists an integral projective variety V
containing U as an open dense subset, and an ample line bundle L on V such that
f extends to a morphism f : V → V and a height associated to N := f

∗L⊗L⊗−q in
(PicV )⊗Q is bounded below for some 1 < q ∈ Q. The condition on N is satisfied,
for instance, if N is the pullback of an ample sheaf under some morphism of varieties.

(2) Our situation is only slightly more general than that considered in [CS] and the
introduction of [Zh1], which consider projective varieties X equipped with f : X → X
and L in PicV or (PicV )⊗R satisfying f ∗L = L⊗d for some d > 1. With our weaker
assumptions, we have apparently lost the ability to define a “canonical height” using
f , but the notion of “sequence of small points” is still definable.

When U = A is a semiabelian variety as in Section 3 (with split torus), we may take
V = A, L = L0 ⊗ L1, and f = [m] for any integer m ≥ 2. Remark 1 above with q = m and

N = L⊗(m
2−m)

1 , shows that (A, [m]) satisfies (∗) for m ≥ 2. Proposition 5 shows that the



MORDELL-LANG PLUS BOGOMOLOV 5

resulting notion of sequence of small points depends only on A. Moreover it is easy to see
that this notion agrees with the earlier ones defined using canonical heights.

5. The Bogomolov and equidistribution conjectures

We fix a canonical height h on each semiabelian variety A as in Section 3. For ε > 0,
define Bε = { z ∈ A(k) | h(z) < ε }. The conjectures below are well known.

Conjecture 6 (Bogomolov conjecture for semiabelian varieties). Let A be a semiabelian
variety over a number field k. Let X be a geometrically integral closed subvariety of A, such
that Xk is not the translate of a semiabelian subvariety of Ak by a torsion point. Then there
exists ε > 0 such that X(k) ∩Bε is not Zariski dense in X.

Bogomolov’s original conjecture was for a curve of genus ≥ 2 in its Jacobian. This case was
proved by Ullmo [Ul], using the equidistribution results of [SUZ]. For A an abelian variety,
Conjecture 6 was proved by Zhang in [Zh3], and another proof (not entirely independent)
was given shortly thereafter by David and Philippon [DP]. Zhang proved also the case where
A is a torus [Zh2]. Recently, a proof for the case where A is almost split was announced by
Chambert-Loir [CL2].

If X is a geometrically integral variety, then a sequence of points zi is said to be generic in
X if zi ∈ X(k) for all i, and the zi converge to the generic point of Xk. The latter condition
means that each closed subvariety Y of Xk other than Xk itself contains at most finitely
many points of the sequence.

Recall that if µi for i ≥ 1 and µ are probability measures on a metric space X, then
one says that the µi converge weakly to µ if for every bounded continuous function f on X,
limi→∞

∫
fµi =

∫
fµ. For the following, we fix an embedding σ : k ↪→ C, and let Aσ denote

the semiabelian variety over C obtained by base extension by σ. Let Gk = Gal(k/k). For
z ∈ A(k), define Gk(z) := { gz : g ∈ Gk }.

Conjecture 7 (Equidistribution conjecture). Let A be a semiabelian variety over a number
field k. Let {zi} be a sequence in A(k), generic in A, with h(zi)→ 0. Let µi be the uniform
probability measure on the finite set σ(Gk(zi)) ⊂ Aσ(C). Then the µi converge weakly to the
normalized Haar measure µ on the maximal compact subgroup A0 of Aσ(C).

Remarks.

(1) The subgroup A0 also equals the closure of Aσ(C)tors in the complex topology. It is
all of A(C) if A is abelian, and it is a “polydisc” if A is a torus.

(2) Some authors, when they speak of the equidistribution conjecture, replace the word
“generic” by the weaker hypothesis “strict,” which means that each translate of a
semiabelian subvariety by a torsion point contains at most finitely many terms of the
sequence. The resulting statement hence combines the Bogomolov conjecture with
what we are calling the equidistribution conjecture.

The cases where A is an abelian variety or a torus are proved in [SUZ] and [Bi], respectively.
A proof for the case where A is an almost split semiabelian variety has been announced
by Chambert-Loir [CL2]. Bilu suggested in [Bi] that for any semiabelian variety A, Haar
measure on A0 should be the limit measure, but the result is not yet proved.

We recommend [Ul] and the survey by Abbès [Ab] for the history of the Bogomolov and
equidistribution conjectures.
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6. Statement of the result

Let S(A) be the set of semiabelian varieties over number fields that can be obtained from a
semiabelian variety A by taking algebraic subgroups, quotients, and products, and changing
the field of definition.

Theorem 8. Let A be a semiabelian variety over a number field k. Assume that Conjec-
tures 6 and 7 hold for all B ∈ S(A). Then Conjectures 1 and 2 hold for subvarieties X in
A.

Corollary 9. Conjectures 1 and 2 hold when A is almost split.

Proof. One checks that all B ∈ S(A) are almost split. Chambert-Loir [CL2] proved Conjec-
tures 6 and 7 for almost split semiabelian varieties. �

7. Properties of small points

In preparation for the proof of Theorem 8, we derive a few more properties of sequences of
small points. Throughout this section, A denotes a semiabelian variety over a number field
k. Let βn : An → An−1 be the map sending (x1, . . . , xn) to (x2 − x1, x3 − x1, . . . , xn − x1).
Up to an automorphism of An−1, this is the same as the map αn used in [Zh3].

Let Diffn(x) be the (arbitrarily ordered) list of [k(x) : k]n elements of An−1 obtained by
applying βn to the elements of Gk(x)n. Given any sequence x1, x2, . . . of points in A(k), let
Dn = Dn({xi}) denote the sequence obtained by concatenating Diffn(x1), Diffn(x2), . . . .

Lemma 10. Let A and B be semiabelian varieties over a number field k. Let {xi} be a
sequence of small points in A, and let {yi} be a sequence of small points in B.

(1) The sequence {(xi, yi)} is a sequence of small points in A×B.
(2) If f : A→ B is a homomorphism, then {f(xi)} is a sequence of small points in B.
(3) If A = B, then {xi + yi} and {xi − yi} are sequences of small points in A.
(4) For any n ≥ 2, Dn = Dn({xi}) is a sequence of small points in An−1.
(5) If [k(xi) : k] is bounded, then there is a finite subset T ⊂ A(k)tors containing all but

finitely many of the xi.

Proof. Property 1 is immediate from the definition in Section 4, and (2) follows from part 4)
of Proposition 5. Property (3) follows from (1) and (2), and (4) follows from (1) and (3) and
part (5) of Lemma 4.

Finally we prove (5). By Northcott’s theorem, the sequence involves only finitely many
points. Since h(xi)→ 0, there is a finite set T of points of zero height such that xi ∈ T for
i� 0. Northcott implies that points of zero height are torsion. �

Next we have a sequence of lemmas leading up to Lemma 14, which is the only other result
from this section that will be used later.

Lemma 11. Given a ∈ A(k), there exists Ma > 0 such that if x ∈ A(k) and h(x) > Ma,
then h([2]x+ a) > (3/2)h(x).

Proof. Translation-by-a extends to a morphism τa : A→ A, and τ ∗aL0 = L0. It follows that
h0(x + a) = h0(x) + O(1), where the O(1) depends on a. On the other hand, since h1 is a
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quadratic function, h1(x+ a) = h1(x) +O(h1(x)1/2) +O(1). Using Lemma 4 we obtain

h([2]x+ a) = h0([2]x+ a) + h1([2]x+ a)

= [2h0(x) +O(1)] +
[
4h1(x) +O(h1(x)1/2) +O(1)

]
= 2h(x) +

[
2h1(x) +O(h1(x)1/2) +O(1)

]
≥ 2h(x) +O(1).

�

Lemma 12. Let Γ be a finitely generated subgroup of A(k), and let {xi} be a sequence in
Γ′. If the image of {xi} in Γ′ ⊗R = Γ⊗R converges to zero in the usual real vector space
topology, then {xi} is a sequence of small points.

Proof. Let S := {γ1, γ2, . . . , γn} ⊂ Γ be a Z-basis for Γ/Γtors. Let U = {
∑
εiγi : εi ∈

{−1, 0, 1} }. Let f1, f2, . . . , fu be the maps A → A of the form x 7→ [2]x + a for a ∈ U .
Applying Lemma 11 to all a ∈ U yields M > 0 such that h(x) > M implies h(fi(x)) >
(3/2)h(x) for all i.

Let B be the subset of elements of Γ′ whose image in Γ⊗R have coordinates (with respect
to the basis S) bounded by 1 in absolute value. For every b0 ∈ B, there exists i such that
b1 := fi(b0) ∈ B, and then there exists j such that b2 := fj(b1) ∈ B, and so on. The
intersection I of B with the finitely generated subgroup generated by b0 and S is finite, and
bi ∈ I for all i. But if h(b0) > M , then h(bm+1) > (3/2)h(bm) for all m, and in particular,
the bi would be all distinct. This contradicts the finiteness of I, so h(b0) ≤M for all b0 ∈ B.
The lemma now follows from part (4) of Lemma 4. �

Remark. The converse to Lemma 12 is true, but we do not need it.

Lemma 13. Let Γ be a finitely generated subgroup of A(k). Then A(k) ∩ Γ′ is a finitely
generated group.

Proof. It suffices to show that there is a neighborhood U of 0 in Γ⊗R in the real topology
such that the set of elements of A(k)∩Γ′ that map into U is finite. If no such U exists, then
we have an infinite sequence of distinct points xi ∈ A(k)∩Γ′ whose images in Γ⊗R tend to
0 in the real topology. By Lemma 12, h(xi)→ 0. This contradicts Northcott’s theorem. �

Lemma 14. Let Γ be a finitely generated subgroup of A(k). Suppose {xi} is a sequence in
A(k), and xi = γi + zi where γi ∈ Γ′, and zi ∈ A(k) with h(zi)→ 0. Then there is a finitely
generated subgroup of Γ′ containing all but finitely many of the xi.

Proof. We may enlarge k to assume Γ ⊂ A(k). By part (4) of Lemma 4 we can choose
integers ni ≥ 1 tending to infinity slowly enough that if 1 ≤ mi ≤ ni, then h(mizi) → 0.
By elementary diophantine approximation (the pigeonhole principle), there exist integers mi

with 1 ≤ mi ≤ ni, and νi ∈ Γ such that the images of miγi − νi in Γ ⊗ R approach zero
as i → ∞. Then h(miγi − νi) → 0 by Lemma 12, but h(mizi) → 0 also, so by part (3)
of Lemma 10, h(mixi − νi) → 0. On the other hand, mixi − νi ∈ A(k), so by part (5) of
Lemma 10, mixi − νi is torsion and xi ∈ Γ′ for all but finitely many i. Finally, Lemma 13
implies that there is a finitely generated subgroup of Γ′ containing all but finitely many
xi. �
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8. Measure-theoretic lemmas

Lemma 15. Let V be a projective variety over C. Let S be a connected quasi-projective
variety over C. Let Y → V × S be a closed immersion of S-varieties, where Y → S is flat
with d-dimensional fibers. For i ≥ 1, let si ∈ S(C) and let Yi ⊂ V be the fiber of Y → S
above si. Let µi be a probability measure supported on Yi(C). If the µi converge weakly to a
probability measure µ on V (C), then the support of µ is contained in a d-dimensional Zariski
closed subvariety of V .

Proof. We may assume that V = Pn and that Y → Pn
S is the universal family over a Hilbert

scheme S. Since S is projective over C, we may pass to a subsequence to assume that the
si converge in the complex topology to s ∈ S(C). By compactness of Y(C), µ must be
supported on the fiber Ys ⊂ V . �

Remark. The hypotheses can be weakened. It is enough to assume that the Yi form a “limited
family” of closed subvarieties of V of dimension ≤ d, because then there are finitely many
possibilities for their Hilbert polynomials [Gr, Théorème 2.1]. The limited family condition
holds, for instance, if the Yi are reduced and equidimensional of dimension d, and deg Yi
(with respect to some fixed embedding V ↪→ Pn) is bounded [Gr, Lemme 2.4].

Lemma 16. Let V and S be quasi-projective varieties over C, with S integral. Let Y be a
subvariety of V × S. Let s1, s2, . . . be a sequence in S(C), Zariski dense in S. Let µi be a
probability measure with support contained in the fiber of π : Y → S above si, considered as
subvariety of V . Suppose the µi converge weakly to a probability measure µ on V (C). Then
the support of µ is contained in a subvariety of V of dimension dimY − dimS.

Proof. Choose an embedding V ↪→ Pm. Without loss of generality, we may replace V and
Y by their closures in Pm and Pm × S, respectively. Replacing S by a dense open subset U
and Y by π−1(U), and passing to a subsequence, we may assume that Y → S is flat. The
result now follows from Lemma 15. �

Lemma 17. Retain the assumptions of the previous lemma, but assume in addition that V
is a semiabelian variety over C, and that Y is not Zariski dense in V × S. Then µ does not
equal the normalized Haar measure on the maximal compact subgroup V 0 of V (C).

Proof. We have dimY − dimS < dimV , so by the previous lemma, µ is supported on a
subvariety of V of positive codimension. But V 0 is Zariski dense in V , since its Zariski
closure is an algebraic subgroup of V containing all its torsion. �

9. Proof of Theorem 8

The reduction of Conjecture 2 to Conjecture 1 mentioned in the introduction applies,
since we are assuming Conjectures 6 and 7 for all B ∈ S(A); therefore we need prove only

Conjecture 1. The proof will proceed through various reductions; to aid the reader, we box
cumulative assumptions and other partial results to be used later in proof.

Let G be the group of translations preserving X; i.e., the largest algebraic subgroup of A

such thatX+G = X. We may assume dimG = 0 , since otherwise we considerX/G ↪→ A/G

and use part (2) of Lemma 10. We may also enlarge k to assume that Γ ⊂ A(k) .

If Conjecture 1 is false, then there exists a sequence xi = γi + zi ∈ X(k), generic in X,
with γi ∈ Γ′, zi ∈ A(k), and h(zi)→ 0. For σ, τ ∈ Gk,

σxi − τxi = (σγi − τγi) + (σzi − τzi).
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Some multiple of γi is in Γ ⊂ A(k), so σγi − τγi is torsion. Part (4) of Lemma 10 implies
that D2({zi}) is a sequence of small points, so by part (6) of Lemma 4, D2 := D2({xi}) also
is a sequence of small points. Then by part (1) of Lemma 10, Dn is a sequence of small

points for each n ≥ 2. Fix n > dimA .
By repeated application of Conjecture 6, we may discard finitely many of the xi in order

to assume that the Zariski closure Dn of Dn in An−1
k

is a finite union
⋃s
j=1(Bj + tj) where

Bj is a semiabelian subvariety of An−1
k

, and tj ∈ An−1(k) is a torsion point. If we replace
X by the image of X under multiplication by a positive integer N , and replace each xi by
Nxi, then

⋃s
j=1Bj is unchanged. If we pass to a subsequence of the xi or enlarge k, then

the new
⋃s
j=1Bj can only be smaller. Since An−1

k
is noetherian, we may assume without loss

of generality that these operations are done so as to make
⋃s
j=1Bj minimal. Moreover, by

multiplying by a further integer N we may assume that tj = 0 for all j. Now, any further
operations of the types above will leave Dn unchanged, equal to

⋃s
j=1Bj. Enlarging k, we

may assume that each Bj is defined over k.
Repeating the same procedure with 2 instead of n, we may minimize D2 =

⋃u
j=1Cj,

and assume that each Cj is a semiabelian subvariety of A. We now show that there is
only one Cj. By the pigeonhole principle, there is some Cj, say C := C1, such that for
infinitely many i, at least a fraction 1/u of the elements of Gk(xi)

2 are mapped by β2 into
C. Passing to a subsequence of the xi, we may suppose that this holds for all i. Let
π : A → A/C be the projection, and let yi = π(xi). If ` is a finite Galois extension of k
containing k(xi), then it follows that σyi − τyi = 0 for at least a fraction 1/u of the pairs
(σ, τ) ∈ Gal(`/k)2. Thus the subgroup of Gal(`/k) stabilizing yi must have index at most
u. Hence degk(yi) = #Gk(yi) ≤ u. Then D2({yi}) consists of points of degree bounded by
u2. On the other hand, D2({yi}) is a sequence of small points in A/C, by parts (2) and (4)
of Lemma 10. By part (5) of Lemma 10, there is a finite subset T of torsion points of A/C
such that Diff2(yi) ⊆ T for all sufficiently large i. Passing to a subsequence of the xi, and
multiplying everything by an integer N to kill T , we may assume that Diff2(yi) = {0} for

all i. Then Diff2(xi) ⊆ C, so D2 ⊆ C, and hence D2 = C by definition of C.

We next show that there is only one Bj, and that it equals Cn−1. By definition of D2

and Dn, we have Bj ⊆ Cn−1 for each j. By the pigeonhole principle, there is some Bj, say
B := B1, such that for infinitely many i, at least a fraction 1/s of the elements of Gk(xi)

n

are mapped by βn into B. Passing to a subsequence, we may suppose that this holds for all
i. For 1 ≤ q ≤ n−1, define the “coordinate axis” C(q) = 0×· · ·×0×C×0×· · ·×0, with C
in the q-th place. Let B(q) = B ∩C(q). By the pigeonhole principle again, given i, there exist
w1, w2, . . . , wq, wq+2, . . . , wn ∈ Gk(xi) such that βn(w1, w2, . . . , wq, ζ, wq+2, . . . , wn) ∈ B for at
least a fraction 1/s of the elements ζ of Gk(xi). Subtracting, we find that βn(0, 0, . . . , 0, ζ −
ζ ′, 0, . . . , 0) ∈ B(q) for at least a fraction 1/s2 of the pairs of elements ζ, ζ ′ of Gk(xi). As
before, this implies (after passing to a subsequence and multiplying by a positive integer
again) that the image yi of xi in C/B(q) satisfies Diff2(yi) = {0}. Then D2 ⊆ B(q) ⊆ C, so

B(q) = C. This holds for all q, so Dn = B = Cn−1 .

If C = {0}, then D2 = {0}, and then by definition of D2, xi ∈ X(k) for all i. Lemma 14
implies that all but finitely many xi are contained in a finitely generated subgroup Γ̃ of Γ′.
The Mordellic part of Theorem 3 applied to Γ̃ implies that Xk is a translate of a semiabelian
subvariety. Moreover, it is a translate by a point in Γ′, since X(k) ∩ Γ′ contains points,
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namely most of the xi. This contradicts the assumption on X. Therefore we may assume

dimC ≥ 1 .

Let S = π(X) ⊆ A/C. Note that S is integral. Consider the fibered power Xn
S :=

X ×S X ×S · · · ×S X as a subvariety of Xn.

Let m = dimC . Note that 1 ≤ m ≤ dimA < n. Let dim(X/S) denote the relative

dimension; i.e., the dimension of the generic fiber of X → S. Then dim(X/S) < m , since

otherwise X (being closed) would equal the entire inverse image of S under A→ A/C, and
then C ⊆ G, contradicting dimG = 0. Hence

(2) dim(Xn
S/S) = n dim(X/S) ≤ n(m− 1) < m(n− 1) = dim(Cn−1 × S/S).

The homomorphism βn restricts to a morphism Xn
S → Cn−1. We also have the obvious

morphism Xn
S → S. Let Y denote the image of the product morphism Xn

S → Cn−1 × S.
Then dimY < dimCn−1 × S, by (2).

Since σxi − τxi ∈ C(k) for all σ, τ ∈ Gk and all i ≥ 1, concatenating the finite subsets
βn(Gk(xi)

n) × {π(xi)} of Cn−1 × S yields a sequence of points yj = (cj, sj) in Y . The c-
sequence is simply Dn, and each sj equals π(xi) for some i. Since Dn is dense in Cn−1, we
may pass to a subsequence of the yj to assume that the cj are generic in Cn−1. Now fix an

embedding σ : k ↪→ C, and let µj be the uniform probability measure on the finite subset
σ(Gk(cj)) ⊂ Cn−1

σ (C). Conjecture 7 implies that the µj converge to the normalized Haar
measure µ on the maximal compact subgroup of Cn−1

σ (C).
On the other hand, µj is supported on σβn(Gk(xi)

n), which is contained in the fiber of
Y → S above sj, when we consider the fiber as a subvariety of V := Cn−1

σ . Lemma 17 implies
that the µj cannot converge to µ. This contradiction completes the proof of Theorem 8.
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