ELLIPTIC CURVES
BJORN POONEN

ABSTRACT. This is a introduction to some aspects of the arithmetic of elliptic curves,
intended for readers with little or no background in number theory and algebraic geometry.
In keeping with the rest of this volume, the presentation has an algorithmic slant. We also
touch lightly on curves of higher genus. Readers desiring a more systematic development
should consult one of the references for further reading suggested at the end.

1. PLANE CURVES

Let k be a field. For instance, k could be the field Q of rational numbers, the field R of
real numbers, the field C of complex numbers, the field Q, of p-adic numbers (see [Kob] for
an introduction), or the finite field F, of ¢ elements (see Chapter I of [Serl]). Let k be an
algebraic closure of k.

A plane curve' X over k is defined by an equation f(z,y) = 0 where f(z,y) = > a;;z'y’ €
k[x,y] is irreducible over k. One defines the degree of X and of f by

deg X = deg f = max{i +j : a;; # 0}.

A k-rational point (or simply k-point) on X is a point (a,b) with coordinates in k such that
f(a,b) = 0. The set of all k-rational points on X is denoted X (k).

Example: The equation %y — 6y — 11 = 0 defines a plane curve X over Q of degree 3,
and (5,1/2) € X(Q).

Already at this point we can state an open problem, one which over the centuries has
served as motivation for the development of a huge amount of mathematics.

Question. Is there an algorithm, that given a plane curve X over Q, determines X (Q), or
at least decides whether X (Q) is nonempty?

Although X (Q) need not be finite, we will see later that it always admits a finite description,
so this problem of determining X (Q) can be formulated precisely using the notion of Turing
machine: see [HU] for a definition. For the relationship of this question to Hilbert’s 10th
Problem, see the survey [Po2].
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ITechnically, these are geometrically integral, affine plane curves.
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The current status is that there exist computational methods that often answer the ques-
tion for a particular X, although it has never been proved that these methods work in
general. Even the following are unknown:

(1) Is there an algorithm that given a degree 4 polynomial f(z) € Q[z], determines
whether y? = f(x) has a rational point?

(2) Is there an algorithm that given a polynomial f(z,y) € Q[z, y] of degree 3, determines
whether f(z,y) = 0 has a rational point?

In fact, problems (1) and (2) are equivalent, although this is by no means obvious!?

2. PROJECTIVE GEOMETRY

2.1. The projective plane. The affine plane A? is the usual plane, with A?(k) = {(a,b) :
a,b € k} for any field k. One “compactifies” A? by adjoining some points “at infinity”
to produce the projective plane P2. One of the main reasons for doing this is to make
intersection theory work better: see Bézout’s Theorem in Section 2.3.

The set of k-points on the projective plane P? can be defined directly as P?(k) := (k® —
0)/k*. In other words, a k-rational point on P? is an equivalence class of triples (a, b, ¢) with
a,b,c € k not all zero, under the equivalence relation ~, where (a, b, ¢) ~ (Aa, Ab, Ac¢) for any
A € k*. The equivalence class of (a,b,c) is denoted (a : b : ¢). One can also identify P?(k)
with the set of lines through 0 in (z,y, z)-space.

The injection A%(k) < P?(k) mapping (a,b) to (a : b: 1) is almost a bijection: the points
of P?(k) not in the image, namely those of the form (a : b : 0), form a projective line P*(k)
of “points at infinity.” Viewing P?(k) as lines through 0 in (z,y, 2)-space, A?(k) is the set
of such lines passing through (a, b, 1) for some a,b € k, and the complement P*(k) is the set
of (horizontal) lines through 0 in the (z,y)-plane.

Also, P? can be covered by three copies of A% namely {(x :y:2) |2 # 0}, {(z:y:2) |

y# 0}, and {(z:y:2)|z+#0}.

2.2. Projective closure of curves. The homogenization of a polynomial f(z,y) of degree d

is F(X,Y,Z) = Zf (%, %) In other words, one changes z to X, y to Y, and then appends
enough factors of Z to each monomial to bring the total degree of each monomial to d. One
can recover f as f(x,y) = F(z,y,1).

If f(x,y) = 01is a plane curve C in A?, its projective closure is the curve C in P? defined
by the homogenized equation F'(X,Y,Z) = 0. The curve C equals C' plus some points “at

infinity.”
Example: If f(z,y) = y* — 23 + 2 — 7, then
F(X,)Y,Z)=Y?*Z - X3+ XZ7* - 173

2For the experts: Both (1) and (2) are equivalent to
(3) Is there an algorithm to compute the rank of an elliptic curve over Q7

If the answer to (1) is yes, then one can compute the rank of any elliptic curve over Q, by 2-descent.
Conversely, if the answer to (3) is yes, the answer to (1) is also yes, since the only difficult case of (1) is when
y? = f(x) is a locally trivial principal homogeneous space of an elliptic curve E over Q, hence represented
by an element of the 2-Selmer group of F, and knowledge of the rank of F(Q) lets one decide whether its
image in III(E) is nontrivial. Similarly (2) and (3) are equivalent, via 3-descent.
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and
(Q) = %
— {zeros of F(X,Y,1)} U {zeros of F(X,Y,0)} —0
) 9 Q*
=C(Q)u{r},

where P is the point (0:1:0) “at infinity.”

2.3. Bézout’s Theorem. As mentioned earlier, one of the primary reasons for working
in the projective plane is to obtain a good intersection theory. Let F(X,Y,Z) = 0 and
G(X,Y,Z) = 0 be curves in P? over k, of degree m and n, respectively. Bézout’s Theorem
states that they intersect in exactly mn points of P2, provided that

(1) F and G have no nontrivial common factor?

(2) one works over an algebraically closed field, and

(3) one counts intersection points with multiplicity (in case of singularities, or points of
tangency).

3. DETERMINING X (Q): SUBDIVISION BY DEGREE

We return to the problem of determining the set of rational points X (Q) where X is an
affine plane curve f(x,y) = 0 over Q or its projective closure. Let d = deg f. We'll look at
the problem for increasing values of d.

3.1. d = 1: lines. We know how to parameterize the rational points on azx + by 4+ ¢ = 0!

3.2. d = 2: conmics. Legendre proved that conics satisfy the Hasse Principle. This means:
X has a Q-point if and only if X has an R-point and a Q,-point for each prime p. Since a
projective conic is described by a quadratic form in three variables, Legendre’s result can be
viewed as a special case of the Hasse-Minkowski Theorem [Serl, Chapter IV, §3.2], which
states that a quadratic form in n variables over Q represents 0 (in other words, takes the
value 0 on some arguments in Q not all zero) if and only if it represents 0 over R and Q, for
all p.

Legendre’s Theorem leads to an algorithm to determine the existence of a Q-point on a
conic X. Here is one such algorithm: complete the square, multiply by a constant, and
absorb squares into the variables, to reduce to the case of aX? +bY? 4 ¢cZ? = 0 in P?, where
a, b, c are nonzero, squarefree, pairwise relatively prime integers. Then one can show that
there exists a Q-point if and only if a, b, ¢ are not all of the same sign and

ar’*+b=0 (mod c)
by’ +c=0 (mod a)
cz*+a=0 (modb)

are solvable in integers. Moreover, in this case, aX?+bY?+cZ? = 0 has a nontrivial solution
in integers X, Y, Z satisfying | X| < |bc|'/2, |Y] < |ac|'/?, and |Z| < |ab|'/2. See [Mo2).

In the case where the conic X has a Q-point F,, there remains the problem of describing
the set of all Q-points. For this there is a famous trick: for each P € X(Q) draw the line

3Barlier we assumed that plane curves were defined by irreducible polynomials, but Bézout’s Theorem
does not require this assumption.
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through Py and P, and let t be its slope, which will be in Q (or maybe co). Conversely, given
t € Q, Bézout’s Theorem guarantees that the line through F, with slope ¢ will intersect the
conic in one other point (provided that this line is not tangent to the conic at P,), and this
will be a rational point.

For example, if X is the circle 22 + 9% = 1 and Py = (—1,0), then

11—t 2t
)
14+¢2714¢2

L (2,y)

z+1
define birational maps from A' to X and back: this means that, ignoring finitely many
subsets of smaller dimension (a few points), they are maps given by rational functions of the
variables that induce a bijection between the Q-points on each side. These birational maps
are defined over QQ; that is, the coefficients of the rational functions are in Q, so they also
induce a bijection between Q-points (ignoring the same subsets as before). In particular, the
complete set of rational solutions to 2% + 3% = 1 is

3.3. d = 3: plane cubics. Lind [Lin] and Reichardt [Rei] discovered that the Hasse Princi-
ple can fail for plane curves of degree 3. Here is a counterexample due to Selmer [Sel]: the
curve 3X3 +4Y?3 + 573 = 0 in P? has an R-point (((—4/3)'/3:1:0) is one) and a Q,-point
for each prime p, but it has no Q-point. (For p > 5, the existence of Q,-points can be proved
by combining Hensel’s Lemma [Kob, Theorem 3] with a counting argument to prove the
existence of solutions modulo p. For p = 2,3,5, a more general form of Hensel’s Lemma
can be used [Kob, Chapter I, Exercise 6]. The nonexistence of Q-points is more difficult to
establish.)

As mentioned at the beginning of this article, deciding whether a plane cubic curve has a
rational point is currently an unsolved problem. For the time being, we will restrict attention
to those plane cubic curves that do have a rational point. These are called elliptic curves,
and are birational to curves defined by a equation of a simple form. This leads to the first
of the official definitions of elliptic curves that we present in the next section.

4. ELLIPTIC CURVES
4.1. Equivalent definitions. Let k& be a perfect field. An elliptic curve over k can be
defined as any one of the following:
(1) The projective closure of a nonsingular curve defined by a “Weierstrass equation”

V2 + a1xy + asy = 20 + axx? + agx + ag

with a1, a9, as,a4,a6 € k. If the characteristic of k is not 2 or 3, one may restrict
attention to projective closures of curves

y? =23+ Az + B.

One can show that this is nonsingular if and only if 2® + Az + B has distinct roots in

k, and that this holds if and only if the quantity A := —16(4A% + 275?) is nonzero.
(2) A nonsingular projective genus 1 curve over k equipped with a k-rational point O.
(3) A one-dimensional projective group variety over k.
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We need to define several of the terms occurring here. (Even then it will not be obvious that
the definitions above are equivalent.)

4.2. Singularities. If (0,0) is a point on the affine curve f(z,y) = 0 over k, then (0,0) is
a singular point if Jf/0x and 0f /0y both vanish at (0,0). Equivalently, (0,0) is singular if
f=fo+ fs+ -+ fa where each f; € k[z,y] is a homogeneous polynomial of degree i. For
instance (0,0) is singular on y?> = 2* and on y* = 2% + 22, but not on y* = 23 — x. More
generally, (a, b) is singular on f(x,y) = 0 if and only if (0, 0) is singular on f(X+a,Y +b) = 0.

An affine curve is nonsingular if it has no singular points. A projective curve F(X,Y, Z) =
0 is nonsingular if its “affine pieces” F(z,y,1) = 0, F(z,1,2) = 0, F(l,y,z) = 0 are
nonsingular. (One can generalize these notions to curves in higher dimensional affine or
projective spaces. This is important because although every plane curve X, singular or not,
is birational to some nonsingular projective curve Y, sometimes such a Y cannot be found
in the plane.)

Smooth is a synonym for nonsingular, at least for curves over a perfect field &.

4.3. Genus. Let X be a nonsingular projective curve over a perfect field k. The genus of X
is a nonnegative integer g that measures the geometric complexity of X. It has the following
equivalent definitions:

(A) g = dimy Q where 2 is the vector space of regular differentials on X. (Regular means
“no poles.” If k = C, then regular is equivalent to holomorphic.)
(B) g is the topological genus (number of handles) of the compact Riemann surface X (C).

(This definition makes sense only if k& can be embedded in C.)
d—1)(d—2
(C) g= (d-1d=2) (terms for singularities) where Y is a (possibly singular) plane
curve of degree d birational to X. For example, a nonsingular plane cubic curve has
genus 1.

We will not prove the equivalence of these definitions.

4.4. Group law: definition. To say that an elliptic curve E over k is a group variety
means roughly that there is an “addition” map E x £ — E given by rational functions, that
induces a group structure on F(L) for any field extension L of k. We now explain what the
group law on E(k) is, for an elliptic curve E presented as a plane cubic curve in Weierstrass
form.
The group law is characterized by the following two rules:
(1) The point O = (0:1:0) at infinity is the identity of the group.
(2) If a line L intersects F in three k-points P,Q, R € E(k) (taking multiplicities into
account), then P 4+ @ + R = O in the group law.

From these one deduces:
a) Given P € E(k), P # O, the vertical line through P intersects E in P, O, and a
third point which is —P.
b) Given P,Q € E(k) not equal to O, the line through P and @) (take the tangent to £

at P if P = @) intersects £ at P, @, and a third point R € E(k). If R = O, then
P+ @Q = O; otherwise P + (Q = —R, where —R can be constructed as in a).

Note that E(k) is an abelian group.
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4.5. Group law: formulas. It is easy to see that, at least generically, the coordinates
of P+ () can be expressed as rational functions in the coordinates of P and (). Here we
present explicit formulas that give an algorithm for computing P+ (). The existence of these
formulas will be important in Section 7.5 as we develop the elliptic curve factoring method.
To compute the sum R of points P,Q € E(k) on y* = 2® + Az + B over k:

1. If P=0, put R = (@ and stop.

2. If Q = O, put R = P and stop.

3. Otherwise let P = (21 :y; : 1) and @ = (29 : yo : 1). If 21 # 25, put

A= (1 — yo) (21 —22) 7",
x5 =N — 21 — 1o,
Y3 = Ax1 — 13) — Y1,
R=(z3:y3:1).

and stop.

4. If 1 = x5 and y; = —y9, put R = O and stop.
5. If x1 = x5 and y; # —ys (so P = @), put

A= (3a] + Ay + )7
5532)\2—561—%27
Y3 = AMx1 — x3) — Y1,
R=(z3:y3:1).

and stop.

This requires O(1) field operations in k. Using projective coordinates renders division un-
necessary.

4.6. Group law: examples. Let E be the elliptic curve y?> = 23 — 252. (From now on,
when we give a nonhomogeneous equation for an elliptic curve F, it is understood that
we really mean for E to be defined as the projective closure of this affine curve.) Since
x® — 25z has distinct roots, £ is nonsingular, so F really is an elliptic curve. The line L
through P := (—4,6) and @ := (0,0) has the equation y = (—3/2)x. We compute L N E by
substitution:

((=3/2)x)* = 2* — 25x
0= (x+4)z(x—25/4)

and find LN E = {P,Q, R} where R := (25/4,—75/8). Thus P+ @ + R = O in the group
law, and P+ @Q = —R = (25/4,75/8).

The intersection of the line X = 0 in P? with £ : Y2Z = X3 - 25X27%is X =0 =Y?Z,
which gives (0:1:0) =0 and (0:0: 1) = @, the latter with multiplicity 2. (Geometrically,
this corresponds to the vertical line x = 0 being tangent to £ at ().) Thus Q +Q + O = O,
and 2Q) = O; i.e., @) is a point of order 2, a 2-torsion point. (In general, the nonzero 2-torsion
points on y? = 3+ Ax+ B are («a, 0) where « is a root of 3 + Az + B: they form a subgroup

of E(k) isomorphic to Z/2 x 7Z/2.)
5. STRUCTURE OF FE(k) FOR VARIOUS FIELDS k
What kind of group is E(k)?
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5.1. Elliptic curves over the complex numbers. On one hand E(C) is a complex mani-
fold, but on the other hand it is a group, and the coordinates of P+4() are rational functions in
the coordinates of P and @), so the group law is holomorphic. Hence F(C) is a 1-dimensional
Lie group over C. Moreover, F(C) is closed in P?(C), which is compact, so E(C) is com-
pact. It turns out that it is also connected. By the classification of compact connected
1-dimensional Lie groups over C, we must have F(C) ~ C/A as Lie groups over C, for some
lattice A = Zwq + Zws, where wq,wy are an R-basis of C. The w; are called periods, because
there is a meromorphic function p(z) on C defined below such that p(z + w) = @(z) for
all w € A. The lattice A is not uniquely determined by FE; scaling it by a nonzero complex
number does not affect the isomorphism type of C/A. But a particular A can be singled out
if a nonzero holomorphic differential on £ is also given (to be identified with dz on C/A).

Suppose conversely that we start with a discrete rank 2 lattice A in C. In other words,
N = Zwy, + Zwy for an R-basis wi,wy of C. We will show how to reverse the previous
paragraph to find a corresponding elliptic curve E over C. Set ¢go = 60 Z;e Aw™t and
g3 = 140" _, w™ where the ' means “omit the w = 0 term.” Let

/
pz) =272+ ((z—w) P —w™?).
weA
Then one can prove the following: ¢(z) is meromorphic on C with poles in A, p(z4w) = p(2)
for all w € A, and z — (p(2), ©'(2)) defines an analytic isomorphism C/A — E(C) where E
is the elliptic curve
y* =42’ — gox — g3
over C. (The poles of p(z) correspond under the isomorphism to the point O € E(C)

at infinity.) The differential dz/y on E pulls back to dz on C/A; hence the inverse map
E(C) — C/A is given by

(a,b) a
O R
O Yy oo \/41'3 — g2 — g3

(with suitable choice of path and branch).
More generally, Riemann proved that any compact Riemann surface is isomorphic as
complex manifold to X (C) for some nonsingular projective curve X over C.

5.2. Elliptic curves over the real numbers. Let E be an elliptic curve 3? = f(z) over R,
where f(z) = 2® + Az + B € R[z] is squarefree. This time E(R) is a 1-dimensional compact
commutative Lie group over R. Considering the regions where f is nonnegative, we find that
E(R) has one or two connected components, according as f has one real root, or three real
roots. Since the circle group

R/Z ~ {ze€C:|z|=1}
is the only connected 1-dimensional compact commutative Lie group over R, it follows that

E(R) ~ R/Z, if f has 1 real root,
~ |R/Z x Z/2, if f has 3 real roots.
The group F(R) can also be viewed as the subgroup of F(C) fixed by complex conjugation.

If F is defined over R, one can choose A of the previous section to be stable under complex
conjugation, and the coordinatewise action of complex conjugation on E(C) corresponds
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to the natural action on C/A. If a nonzero regular differential on E (defined over R) is
fixed, then A is determined, and in this situation one defines the real period as the positive
generator of the infinite cyclic group A NR.

5.3. Elliptic curves over finite fields. Let E be an elliptic curve over the finite field I, of
q elements. Since E(F,) is a subset of P?(F,), E(F,) is a finite abelian group. Hasse proved

#E[F,)=q+1-a

where |a| < 2,/q. This is a special case of the “Weil conjectures” (now proven). Moreover,

an algorithm of Schoof [Sch] computes #E(F,) in time (log¢)°®) as follows: an algorithm
we will not explain determines #E(FF,) mod ¢ for each prime ¢ up to about log ¢, and then
the Chinese Remainder Theorem recovers #E(F,).
Example 1. Let E be the elliptic curve y? = 23
1 <#E(F;3) < 7. In fact,
E(F?)) = {(07 1)’ (07 2)7 (17 1)7 (1’ 2)7 (27 1)7 (27 2)a O})

and E(F3) ~ Z/7. Here is an exercise for the reader, an instance of what is called the elliptic
discrete logarithm problem: which multiple of (0, 1) equals (1,1)?

— x + 1 over [F3. Hasse’s Theorem implies

3 — 2 over F5. Then

Example 2. Let E be the elliptic curve y? = «
E(F?)) = {(07 0)7 (L O)a (27 0)7 O},

and E(F3) ~7Z/2 x 7/2.

6. ELLIPTIC CURVES OVER THE RATIONAL NUMBERS
6.1. Mordell’s Theorem. Let E be an elliptic curve over Q. Mordell proved that E(Q) is

a finitely generated abelian group:
EQ) ~7Z"xT

where r € Zsq is called the rank, and T' = E(Q)ios is a finite abelian group called the
torsion subgroup. (This is sometimes called the Mordell-Weil theorem, because Weil proved
a generalization for abelian varieties over number fields. Abelian varieties are projective
group varieties of arbitrary dimension.)

Although T can be computed in polynomial time, it is not known whether r is computable.
We will say a little more about the latter at the end of Section 6.7.

Example 1. Let E be the elliptic curve 3% = 2® — 252 over Q. With work, one can show
E(Q)~7Z x Z/2 x )2,
where F(Q)/E(Q)tos is generated by (—4,6).

Example 2. Let E be the elliptic curve y?> +y = 2° — 22 over Q, also known as “the
modular curve X;(11).” Then

E(@) = {(070)7 (0’ _1)a (1’0)7 (17 _1)70} = Z/5

Example 3. Let E be the elliptic curve 1063y*> = z® — x. (This is not in Weierstrass
form, but it is isomorphic to y* = 23 — 1063%x.) Using “Heegner points on modular curves,”
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Elkies [Elk] computed that F(Q) ~Z x Z/2 x Z/2, where E(Q)/E(Q)iors is generated by a

point with z-coordinate ¢*/1063, where

11091863741829769675047021635712281767382339667434645
317342657544772180735207977320900012522807936777887

q:

Example 4. Let E be the elliptic curve y* + zy + vy = 2® + ax + b where

a = —120039822036992245303534619191166796374, and
b = 504224992484910670010801799168082726759443756222911415116.

Martin and McMillen [MM] showed that E(Q) ~ Z", where r > 24.

It is a folklore conjecture that as E varies over all elliptic curves over Q, the rank r can
be arbitrarily large.

6.2. One-dimensional affine group varieties over k. One way to begin studying an
elliptic curve over Q or another number field is to reduce its coefficients modulo a prime
and to study the resulting curve over a finite field. Unfortunately, the result can be singular
even if the original curve was nonsingular. It turns out that upon deleting the singularity,
we obtain a one-dimensional group variety, but it is no longer an elliptic curve: it is affine
instead of projective due to the deletion.

The one-dimensional affine group varieties GG over k can be classified. For simplicity, we
assume that k is a perfect field of characteristic not 2. The table below lists all possibilities.

’ G H variety ‘ group law ‘ G(k) ‘
G, Al X1, To > T1 + Ty k, under +
G vy =1 (71, 91), (T2, 92) = (2172, Y192) k*, under -

G%) z? — ay2 = 1| (z1,91), (T2, y2) = (122 + ay1y2, T1y2 + 22y1) | ker (/{;(\/5)* = k*>

The first column gives the group variety G, which is either the additive group G,, or the

multiplicative group G, or one of its twists G for some a € k*. The isomorphism type of

G as a group variety is determined by the image of a in k* /k*?, and if a € k*2, then G
is isomorphic to G,,.

The second column describes G as a variety; in each case, G is either Al or a plane curve
in A?. The third column expresses the group law morphism G x G — G in coordinates. The
final column describes the group of rational points G(k).

6.3. Singular Weierstrass cubics. If E is a singular curve defined as the projective closure
of
y* =2° +ax® +br +c

then there is at most one singularity. (Otherwise the formula for the genus would produce a
negative integer.) Let Py be the singularity. By a change of variables, we may assume that
Py = (0,0). The equation then has the form (y* — az?) — 2® = 0. The tangent line(s) to
the branches at (0,0) are y = ++/ax. The singularity is called a node or a cusp according as
a#0ora=0.
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In either case, E,s .= E — { Py} becomes a one-dimensional affine group variety using the
same geometric construction as in the nonsingular case. (A line L through two nonsingular
points cannot pass through Fj, because the intersection multiplicity at Fy would be at least
2, and Bézout’s Theorem would be violated.) In fact,

G, if a =0 (cusp),
Eons~ ¢ G,,, ifaek* (node),
GY if a is a nonsquare (node).

Example: If E is the projective closure of y*> = 2%, which has a cusp at (0,0), then the
isomorphism is given by

E.+— G,

(r,y) — z/y
(t:1:8%) = (@t2t3) 1t

The isomorphism respects the group structures: one can check for example that (¢ : 1 : %),
(w:1:u3), and (v:1:03) are collinear in P* whenever ¢ +u + v = 0.

6.4. Reduction mod p. For any u € Q*, the elliptic curve E : y?> = 23 + Az + B over Q is
isomorphic to Y? = X3 + u*AX +u®B. (Multiply the equation by u®, and set Y = u3y and
X = u?z.) Therefore, we may assume that A, B € Z. Then one can reduce the equation
modulo a prime p to get a cubic curve E over F,. But E might be singular. This happens
if and only if p divides A.

One says that E has good reduction at p if there is some Weierstrass equation for E
(obtained by change of coordinates) whose reduction modulo p is nonsingular. Similarly
if there is a Weierstrass equation for £ whose reduction modulo p is a cubic curve with a
node, one says that E has multiplicative reduction at p; in this case one says that E has
split multiplicative reduction or nonsplit multiplicative reduction according as E,g is G,, or
a nontrivial twist. Otherwise, if F has neither good nor multiplicative reduction, then all
Weierstrass equations for F reduce modulo p to a cubic curve with a cusp, and one says that
E has additive reduction. Some of this is summarized in the following table.

singularity H B terminology
none E good reduction
cusp G, additive reduction
node G,, or Ggff) multiplicative reduction

6.5. Finiteness of T':= F(Q)iors. Suppose that an elliptic curve E over Q has good reduc-
tion at p. By scaling, any point in F(Q) can be written as (a : b : ¢) with a,b,¢ € Z such
that ged(a,b,c) = 1, and then a, b, ¢ can be reduced modulo p to obtain a point on E(F,).
This defines a homomorphism E(Q) — E(TF,).

Theorem: If E has good reduction at a prime p > 2, then the torsion subgroup 7' of £ (Q)
injects into E(F,).

Corollary: T is finite.
Example: Let F be the elliptic curve y? = 2® — 42 + 4 over Q. Then
A= —16(4(—4)% +27-4%) = —2° - 11,



ELLIPTIC CURVES 11

so £ has good reduction at p at least when p # 2,11. We compute #E(F3) = 7 and
#E(F5) = 9. The only group that can inject into groups of order 7 and 9 is the trivial
group, so 7' = {O}. In particular, (0,2) € F(Q) is of infinite order, and F(Q) has positive
rank.

6.6. Other theorems about the torsion subgroup 7'.

Lutz, Nagell: Let A, B € Z be such that F : y?> = 2® + Az + B is an elliptic curve. If
P €T and P # O, then P = (g, yo) where g, yo € Z and y2 | 44% + 27B2.

This gives a slow algorithm to determine T'. (It requires factoring the integer 4A4% + 27B2.)

Mazur: If E is an elliptic curve over Q, then either 7'~ Z/N for some N < 12, N # 11,
or T ~7/2 x Z/2NZ for some N < 4. In particular, #7 < 16.

For each m > 1, one can use the group law to compute the polynomial ¢,,(x) € Qlx]
whose roots are the z-coordinates of the points of order m in F(Q). Determining the points
of order m in E(Q) is then a matter of finding the rational roots of ¢,, and checking which
of these give a rational y-coordinate. By Mazur’s Theorem, only finitely many m need be
considered, so this gives a polynomial time algorithm for computing 7.

6.7. Height functions. We next describe some of the ingredients which go into the proof
of Mordell’s Theorem. If P = (a : b: ¢) € P?(Q), we may scale to assume a,b,c € Z and
ged(a, b, ¢) = 1. Then define

H(P) := max(|al,|b],|c]), and h(P) :=logH(P).

One calls h(P) the (logarithmic) height of P. Roughly, h(P) is the width of a sheet of paper
needed to write down P.
It is easy to see that for any B > 0,

#{P € PX(Q): H(P) < B} < (2B + 1)°
(1) (P ePXQ): h(P) < B} is finite.

The latter is a special case of Northcott’s Theorem [Ser2, §2.4]. If E C P? is an elliptic curve
over Q, then one can show that for P,Q € E(Q),

(2) h(P+ Q)+ h(P — Q) = 2h(P) + 2h(Q) + O(1)

where the O(1) depends on E but not on P or Q.

Define the canonical height or Néron-Tate height of P € E(Q) as h(P) := lim,_,o h(2"P) /4™,
The following are formal consequences of (1) and (2): for P,Q € F(Q) and n € Z,

(a) h(2P) = 4h(P) + O(1).
(b) The limit defining h(P) exists.

)
(c) h(P) = h(P)+ O(1). A
(d) h(P+ Q)+ h(P Q) = 2h(P) + 2h(Q).
(¢) h(nP) = n?h(P)
(f) h(P) > 0, with equality if and only if P € E(Q)ors-
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In particular, h is a quadratic form on E(Q)/E(Q)ers.

Moreover, (1) and (2) with the “Weak Mordell-Weil Theorem,” which asserts the finiteness
of E(Q)/2E(Q), imply that E(Q) is finitely generated. If generators of E(Q)/2E(Q) could be
found effectively, then the rank of E(Q) and generators of E(Q) could be found effectively.
Unfortunately, the only known method for calculating E(Q)/2E(Q), descent, requires a
prime p such that the p-primary part of a certain torsion group III(E) associated to F is
finite. The group III(E), called the Shafarevich-Tate group, is conjectured to be finite for all
E, but this has been proved only in certain cases.

7. THE ELLIPTIC CURVE FACTORING METHOD

7.1. An interpretation of factoring. Suppose p and ¢ are unknown large primes, and
N = pq is given. One way to factor N is to compute somehow an integer m that is zero
modulo p but nonzero mod ¢. Then ged(m, N), which can be computed quickly, yields p.

7.2. Some factoring methods. We outline various well-known factoring methods from the
point of view of the previous section. (We use Z/N as an abbreviation for the quotient ring

Z/NZ.)
Trial division: try m =2, m=3, m =25, ...
Pollard p: let f be a function Z/N — Z/N, compute a sequence x1, Ta, T3, ... of elements

of Z/N satistying z;11 = f(z;), and try m = z; — x; for various 1, j.

Quadratic sieve, number field sieve: find a nontrivial solution to #? = y* (mod n), and
try m =z +y.

Pollard p — 1: choose random @ mod N, take K = k! for some k > 1 and try m = a® — 1.

ECM (Lenstra’s elliptic curve method): instead of a® for a € (Z/N)*, consider K - P for
some P € E(Z/N), for some elliptic curve E. Here K - P means P+ P + - -+ 4+ P, the sum
of K copies of P in an abelian group E(Z/N) to be defined.

7.3. The Pollard p — 1 method. The elliptic curve method can be viewed as an analogue
of the Pollard p — 1 method. As a warmup for the elliptic curve method, we describe the
p — 1 method here more fully, but still ignoring details and practical improvements.

To factor N:

Choose an integer K > 1 with a lot of factors, for instance, K = k! for some k£ > 1.
Choose an arbitrary integer a satisfying 1 < a < N — 1.

If ged(a, N) > 1, then we're done! Otherwise continue.

Use the binary expansion of K to compute a’* mod N.

Compute g = ged(a® — 1, N). If 1 < g < N, then we're done, since g is a nontrivial
factor of N. If g = N, try again with a different a, or with K replaced by a divisor.
If g =1, try again with a larger K (or if you're tired, give up).

CUk W

If K is a multiple of p— 1 for some prime p dividing N, then in Step 4, (a®* mod p) is a power
of (a?~! mod p), which is (1 mod p) by Fermat’s Little Theorem. Then in Step 5, a® — 1 is
divisible by p, so g = p, (unless by chance a® — 1 is divisible also by another factor of N).

The problem with this method is that it is not easy to arrange for K to be divisible by
p — 1, since we do not know what p is! The best we can do is choose a K with many factors,
and hope that p—1 will be among the factors. If we choose K = k!, we are essentially hoping
that p — 1 will be smooth, that is, equal to a product of small primes. Thus the Pollard p — 1
method is effective only for finding factors p of NV such that p — 1 is smooth.
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7.4. Variants of the p — 1 method. If instead of Fermat’s Little Theorem in F}, one uses
the fact that every element of F, /Ty has order dividing p + 1, one can develop a p + 1
method by working in A*/(Z/N)*, where A = (Z/N)[t]/(t*> —b) for some b € Z/N. This will
be effective for finding factors p of N such that p + 1 is smooth.

Similarly one can use subgroups of [y, for other small r to develop methods that work
well when p? + p + 1 is smooth, when p* + 1 is smooth, ..., when ®,(p) is smooth, where
®,(z) is the r-th cyclotomic polynomial. These rapidly become useless, because p? + p + 1
and so on are much larger than p — 1, and hence are much less likely to be smooth.

Lenstra’s idea was instead to replace 7 by the group £ (F,) where E is an elliptic curve!
There are many different E to try, of varying orders close to p.

7.5. Elliptic curves over Z/N. The elliptic curve method requires working with elliptic
curves over rings that are not fields. The theory of elliptic curves over rings is best expressed
in the language of schemes, but this would take too many pages to develop. Fortunately,
for the factoring application, we can make do with a more concrete development based on
explicit formulas for the group law.

Let N be a positive integer. To simplify the exposition, we assume that ged(NV,6) = 1.
Define
{a:b:¢)|a,bceZ/N, ged(a,b,e, N) =1}

(Z/N)* '
An elliptic curve E over Z/N is given by an homogeneous equation
Y?Z = X34+ AXZ* + BZ?

where A, B € Z/N are such that the quantity A := —16(4A3 + 27B?) is in (Z/N)*. Then
E(Z/N) denotes the subset of points (a : b : ¢) € P*(Z/N) satisfying the cubic equation. For
any prime p dividing N, E(Z/p) denotes the set of points in P*(Z/p) satisfying the equation
reduced modulo p.

For simplicity, suppose that N = pg where p and ¢ are distinct primes greater than 3. The
Chinese Remainder Theorem implies

P%(Z/N) :=

= ~ %x% (as rings)
N - p q g?

G = <) o
P? (%) x [P? (%) (as sets), and
E (%) < E (%) (as groups).

Hence the set E(Z/N) inherits the structure of an abelian group. Most pairs of points in
E(Z/N) can be added using the formulas of Section 4.5. (Use the extended GCD algorithm
to compute inverses modulo N.) In fact, the formulas fail only if some calculated quantity
in Z/N is zero mod p and nonzero mod ¢ or vice versa, in which case N is factored!

& w
N VRN
2| N =N
N—— N——

12 2
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7.6. The elliptic curve method. Assume that the integer N to be factored satisfies
ged(N,6) = 1 and that N # n” for any integers n,r > 2. (The latter can be tested
very quickly, in (log N)'*°) time [Ber].) To search for factors of N of size less than about
P:

1. Fix a “smoothness bound” y much smaller than P, and let K be the LCM of all
y-smooth integers less than or equal to P.

2. Choose random integers A, x1,y; € [1, N].

3. Let B=y? — 23— Az; € Z/N and let E be y* = 23+ Az + B, so P, := (z1,y1) €
E(ZJN). If ged(4A% + 27B% N) # 1, go back to step 2.

4. Use the binary expansion of the factors of K to attempt to compute K - P, € E(Z/N)
using the group law formula.

5. If at some point the formula fails (that is, we try to use the extended GCD to invert
a nonzero non-unit in Z/N), then we have found a factor of N. Otherwise, go back
to Step 2 and try a different elliptic curve.

Note that in Steps 2 and 3 we choose the point first and then find an elliptic curve through
it. This is because it is algorithmically difficult to find a “random” point on a given elliptic
curve over Z/N: doing this in the naive way, by choosing the z-coordinate first, would
require taking a square root of an element of Z/N, which is a problem known to be random
polynomial time equivalent to factoring V!

7.7. Partial analysis of the elliptic curve method. If #F(Z/p) divides K, then K - P,
will reduce mod p to O. In this case, it is probable that K - P; is not also O modulo N, or
at least that at some point of the computation of K - P;, one reaches a subproduct K’ of
K such that K" - P; is O mod p but not O mod N. (This can be made precise.) Hence it
is essentially true that factoring N requires only being lucky enough to choose E such that
#E(Z/p) divides K.

Suppose that N has a prime factor p such that p+1+2,/p < P. Let s be the probability
that for a random E constructed by the algorithm, the order of E(Z/p) is y-smooth. If
#E(Z/p) is y-smooth, then #FE(Z/p)| K, by definition of K and by Hasse’s Theorem (Sec-
tion 5.3) that #E(Z/p) < p+ 1+ 2,/p. Hence the number of elliptic curves that need to
be tried during the algorithm is O(1/s). Each trial involves O(log K) group law operations,
each requiring (log N)°™) bit operations, making the total running time

R = O(s ' (log K)(log N)°W),

Let L(x) = exp(y/(log z)(loglog z)), so logz < L(z) < z as x — oo. Take y = L(P)* for
some a > 0 to be optimized later. In order to express the running time R in terms of the
parameters of the algorithm, namely N, P, and a, we first bound K:

K < HgtlogzPJ < Hp < pv,

1<y <y

log K < ylog P = L(P)*°W,

Next we need an estimate of the smoothness probability s. A theorem of Canfield, Erdos,
and Pomerance [CEP] states that the probability that a random integer in [1,x] is L(z)%-
smooth is L(x)1/29+°() a5 2 — co. Using a formula of Deuring for the number of elliptic
curves of given order over Z/p, one can show that #E(Z/p) is close to uniformly distributed
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over most of the Hasse range

p+1—-2p,p+1+2/p]

To proceed, we assume the conjecture that the Canfield-Erdos-Pomerance result holds for
random integers in this much smaller range. Then s = L(P)~1/(a)+e(1),
Under this assumption, the total running time for the elliptic curve method is

R = L(P>a+1/(2a)+o(1) (log N)O(l)
This is optimized at @ = 1/4/2, which makes y = L(P)l/‘/ﬁ and
R = L(P)V*M(log N)°

To factor N completely, we would take P = v/N, which yields a running time of L(N)He®),
But one advantage of the elliptic curve method over most other factoring methods is that
its running time depends on the size of the factor to be found: it is capable of finding small
factors more quickly.

In practice, since the optimal choices of y and hence K depend on P, it is reasonable to
run the elliptic curve method with P small at first (to search for small factors) and then if no
factor is found, try again and again, with an increasing sequence of values of P. Eventually,
if no small factors are found, one should switch to the number field sieve, which is faster
asymptotically if the factors are large.

7.8. Elliptic curve method records. The largest factor found by the elliptic curve method
so far is the 54-digit prime factor

484061254276878368125726870789180231995964870094916937
of (6% —1)*2 + 1 (Lygeros & Mizony, Dec. 26, 1999).
Richard Brent [Br, §3.4] extrapolated that the elliptic curve method record will be a D-

digit factor in year Y (D) := 9.3v/D + 1932.3. For instance, Y (54) = 2000.6 and Y (60) =
2004.3.

8. CURVES OF GENUS GREATER THAN ONE

8.1. Divisors. Divisors can be used to produce higher dimensional analogues of elliptic
curves, attached to higher genus curves. They also give a natural proof of the associativity
for the group law of elliptic curves.

Let X be a nonsingular projective curve over a perfect field k. The group of k-divisors
Div(X7y) is the set of formal sums of points in X (E) The subgroup of k-rational divisors
Div(X) is the subgroup of Gal(k/k)-stable divisors. The degree of a divisor D = n,(P,) +

-+ 4+ n,.(P,) is the integer ny + - -+ 4+ n,. Then DiVO(XE) denotes the group of k-divisors of
degree zero. Similarly define Div®(X).

Example: Let E be the elliptic curve y? = 2® + 17 over Q. The points
= (14 V=7, -2+ v=7)
R=(-1,4)

lie in £(Q). The divisor D := 2(P) +2(Q) — 7(R) is stable under Gal(Q/Q) even though P
and @ individually are not fixed, so D € Div(E). The degree of D is 242 — 7 = —3.
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8.2. Principal divisors and the Picard group. If f is a nonzero rational function on X
(i.e. a “function” given as a ratio of polynomials in the coordinates), and P € X (k), let
ordp(f) denote the “order of vanishing” of f at P (positive if f(P) = 0, negative if f has a

pole at P). Then the divisor of f is
(£)=">_ odp(f)- P €Div’(Xp),

PcX (k)

and if the coefficients of f are in k, then (f) € Div’(X). The set of such (f) form the subgroup
Princ(X) of principal divisors. If D, D' € Div(X), one writes D ~ D" if D — D’ € Princ(X).
Define the Picard group or divisor class group of X as Pic(X) := Div(X)/ Princ(X). Also
define Pic’(X) := Div’(X)/ Princ(X).

Example: If F, P, @), R are as in the example of the previous section and f =y — x + 3,
one has (f) = (P) + (Q) + (R) — 3(0), so (P) + (Q) + (R) ~ 3(0) in Pic(E).

Theorem: If E is an elliptic curve over k, the map F(k) — Pic’(E) sending P to the class
of (P) — (O) is a bijection.

The group structure on Pic’(E) thus induces a group structure on E(k), which is the same
as the one we defined earlier.

8.3. Analogies. It is helpful to keep in mind the following analogies when studying algebraic
number fields or the geometry of curves (especially if they are over finite fields).

Number field object Function field analogue
7 k[t]
Q k(t)
Q, k(1)
number field F finite extension of k(t)
(rational functions on curve X)
Spec Op (where Op is the ring of integers of F) smooth affine curve X
finite extension F’ of F’ covering X' — X
fractional ideal divisor
principal ideal principal divisor
class group Pic(X)
functional equation of ((s), Riemann Hypothesis, Weil conjectures
and Generalized Riemann Hypothesis (all proven!)

8.4. Rational points on curves. We now turn briefly to the study of rational points on
curves of arbitrary genus. (Recall that elliptic curves were curves of genus 1 equipped with
a rational point.) A curve over Q of any genus can have X(Q) = (): for example, if X is
birational to y* = — (2% + 1), then X has genus ¢g and has no rational points. In the table
below, assume X is a plane curve over Q with X (Q) # (), and define

Nx(B) := #{P € X(Q) : h(P) < B}.

The qualitative behavior of X (Q), and in particular the rate of growth of the function Nx (B),
are roughly determined by the genus.
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Genus || X(Q) ‘ Nx(B
0 infinite (c1 +0o(1))e=P
1 finitely generated abelian group | (c3 + o(1)) B

> 2 finite O(1)

In the third column, ¢y, co,c3 > 0, ¢4 > 0 are constants depending on X, and the estimates
hold as B — oc.

The fact that X (Q) is finite when the genus is > 2 was conjectured by Mordell [Mol].
Proofs were given by Faltings [Fa] and Vojta [Vo|, and a simplified version of Vojta’s proof
was given by Bombieri [Bo|. All known proofs are ineffective: it is not known whether there
exists an algorithm to determine X (Q), although there probably is one.

8.5. Jacobians: one tool for studying higher genus curves. Recall that for elliptic
curves F, we have a group isomorphism E(k) ~ Pic’(k). But if X is a nonsingular projective
curve of genus g > 1 over a field k, then there is no natural bijection between X (k) and
Pic’(X), and in fact one can show that X cannot be made into a group variety. (Here is one
way to show this: if X is a group variety, then one can create a global section of the tangent
bundle of X by choosing a nonzero tangent vector at the origin and moving it around by
translations. But on a curve of genus g > 1, any nonzero meromorphic section of the tangent
bundle has degree 2 — 2g < 0, so it cannot be regular everywhere.)

Define an abelian variety to be a projective group variety, so that an elliptic curve is a
one-dimensional abelian variety. Then for any X of genus g as above, there is an abelian
variety J of dimension g called the Jacobian of X, with the property that J(k) ~ Pic’(X),
(at least under the technical assumption that X (k) # (). It is only when X is an elliptic
curve that J coincides with X.

If Py € X(k), then there is an embedding of varieties X — J mapping each point P on X
to the class of the divisor (P) — (P,) in Pic’(X).

Example: Here we do a few computations in a Jacobian of a Fermat curve. Let X be the
projective closure of '3 + y'3 = 1 over Q. The genus of X is g = (13 — 1)(13 — 2)/2 = 66.
Let P = (1,0) and Q = (0,1), which are in X(Q). Let J be the Jacobian of X, so J
is a 66-dimensional abelian variety. The divisor of the function (y — 1)/(z — 1) on X is
13(Q) — 13(P), so the class of 13(Q) — 13(P) in Pic’(X) = J(Q) is trivial. Thus the class
of (Q) — (P) is a 13-torsion point (a point of order 13) in J(Q). (One can use the fact that
X has positive genus to show that no function on X has divisor (@) — (P), so this point of
J(Q) is nonzero.)

Suppose that X is a nonsingular projective curve over Q of genus g > 2 with X (Q) #
(). By the Mordell-Weil theorem, J(Q) is a finitely generated abelian group. Moreover,
J(Q)/J(Q)4ors can be equipped with a quadratic canonical height function h. Vojta’s proof
of the finiteness of X (Q) (following earlier ideas of Mumford) studies how points of X (Q)
can sit inside this lattice by applying diophantine approximation techniques.

Unfortunately the diophantine approximation techniques are ineffective. They give bounds
on the number of rational points, but not bounds on their height. (Height bounds would
reduce the problem of listing the points of X(Q) to a finite computation.)

Nevertheless there exist techniques that often succeed in determining X (Q) for particular
curves X; some of these are discussed in [Pol] and [Po2]. Also, there are many other
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conjectural approaches towards a proof that X (Q) can be determined explicitly for all curves
X over Q. (See Section F.4.2 of [HS] for a survey of some of these.) But none have yet been
successful. We need some new ideas!

9. FURTHER READING

For the reader who wants more, we suggest a few other books and survey articles. Within
each topic, references assuming less background are listed first. Of course, there are many
other books on these topics; those listed here were chosen partly because they are the ones
the author is most familiar with.

9.1. Elliptic curves. The book [ST] by Silverman and Tate is an introduction to elliptic
curves at the advanced undergraduate level; among other things, it contains a treatment
of the elliptic curve factoring method. The graduate level textbook [Sil] by Silverman uses
more algebraic number theory and algebraic geometry, but most definitions and theorems
are recalled as they are used, so that the book is readable even by those with minimal
background. Cremona’s book [Cr] contains extensive tables of elliptic curves over Q, and
discusses many elliptic curve algorithms in detail.

9.2. Algebraic geometry. Fulton’s text [Ful] requires only a knowledge of abstract algebra
at the undergraduate level; it develops the commutative algebra as it goes along. Shafare-
vich’s text, now in two volumes [Shall,[Sha2|, is a extensive survey of the main ideas of
algebraic geometry and its connections to other areas of mathematics. It is intended for
mathematicians outside algebraic geometry, but the topics covered are so diverse that even
specialists are likely to find a few things that are new to them. Finally, Hartshorne’s gradu-
ate text [Hal, although more demanding, contains a thorough development of the language
of schemes and sheaf cohomology, as well as applications to the theory of curves of surfaces,
mainly over algebraically closed fields.

9.3. Surveys on arithmetic geometry. Mazur’s article [Maz] is intended for a general
mathematical audience: it begins with a discussion of various diophantine problems, and
works its way up to a sketch of Faltings’ proof of the Mordell conjecture. Lang’s book [Lal
is a detailed survey of the tools and results of arithmetic geometry, mostly without proofs
(but it too sketches Faltings’ proof).
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