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Abstract. Let R be a discrete valuation ring, with valuation v : R � Z∪ {∞} and residue
field k. Let H be a hypersurface ProjR[x0, . . . , xn]/(f). Let Hk be the special fiber, and
let (Hk)sing be its singular subscheme. Let ∆(f) be the discriminant of f . We use Zariski’s
main theorem and degeneration arguments to prove that v(∆(f)) = 1 if and only if H is
regular and (Hk)sing consists of a nondegenerate double point over k. We also give lower
bounds on v(∆(f)) when Hk has multiple singularities or a positive-dimensional singularity.

1. Introduction

Throughout the paper, R denotes a discrete valuation ring, with valuation v : R � Z∪{∞},
maximal ideal m = (π), and residue field k (except in a few places where k is an arbitrary
field).

Let E ⊂ P2
R be defined by a Weierstrass equation, with generic fiber an elliptic curve. If

the discriminant of the equation has valuation 1, then E is regular and the singular locus of
its special fiber consists of a node; this follows from Tate’s algorithm [Tat75], for example;
see also [Sil94, Lemma IV.9.5(a)]. Our main theorem (Theorem 1.1) generalizes this to
hypersurfaces of arbitrary degree and dimension (terminology will be explained later).

Theorem 1.1. Let f ∈ R[x0, . . . , xn] be a homogeneous polynomial. Let ∆(f) be its discrim-
inant. Let H = ProjR[x0, . . . , xn]/(f). Then the following are equivalent:
(i) v(∆(f)) = 1;
(ii) H is regular, and (Hk)sing consists of a nondegenerate double point in H(k).

We also prove that if (Hk)sing consists of r isolated closed points, then v(∆(f)) ≥ r
(Theorem 6.2). If dim (Hk)sing ≥ 1, we show that Hk is a limit of hypersurfaces whose singular
subscheme is finite but with many points, and we combine this and an argument using the
Greenberg functor to deduce that v(∆(f)) ≥ max(b(deg f − 1)/2c, 2) (Theorem 8.4).

2. Discriminant

Fix n ≥ 1 and d ≥ 2. Let xi range over the degree d monomials in Z[x0, . . . , xn], and let ai
be independent indeterminates, so that F :=

∑
i aix

i is the generic degree d homogeneous
polynomial in x0, . . . , xn. Then the affine space AN := SpecZ[{ai}] may be viewed as a moduli
space for hypersurfaces (one could also remove the origin, or projectivize as in [Sai12, §2.4]).
Let H ⊂ Pn × AN be the closed subscheme defined by F = 0, so the projection φ : H → AN

is the universal hypersurface. Let Hsing be the relative singular subscheme, the closed subscheme
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defined by F = ∂F/∂x0 = · · · = ∂F/∂xn = 0. More precisely, Hsing is the locus of points
where φ is not smooth of relative dimension n− 1.

The other projection Hsing → Pn is a rank N − n− 1 vector bundle since the equations
F = ∂F/∂x0 = · · · = ∂F/∂xn = 0 are linear in the ai and independent above each point of
Pn except for the Euler relation d · F =

∑
xi(∂F/∂xi). Thus Hsing is integral and smooth

of relative dimension N − 1 over Z. Its scheme-theoretic image under the proper morphism
φ is a closed subscheme D ⊂ AN , the locus parametrizing singular hypersurfaces. In fact,
D ⊂ AN is a divisor and the restriction Hsing → D of φ is birational (cf. [Sai12, §2.9]); this
is a Bertini-type statement saying essentially that among hypersurfaces singular at a point,
most have singular subscheme consisting of just that point. Thus D ⊂ AN is the zero locus
of some polynomial ∆ ∈ Z[{ai}] determined up to a unit, i.e., up to sign; ∆ is called the
discriminant. (See [GKZ08,Dem12,Sai12] for other descriptions of ∆.) By definition, if the
ai are specialized to elements of a field k, the resulting hypersurface in Pnk is singular (not
smooth of dimension n− 1) if and only if ∆ specializes to 0 in k.

3. Quadratic forms

Proposition 3.1. Suppose that d = 2. Let Det = det(∂2F/∂xi∂xj) ∈ Z[{ai}]. If n is odd,
then ∆ = ±Det. If n is even, then ∆ = ±Det /2.

Proof. This is well known, except perhaps the power of 2, which can be determined by
evaluating Det for a quadratic form defining a smooth quadric over Z, since ∆ = ±1 for such
a form. Use x0x1 + · · ·+ xn−1xn if n is odd, and x0x1 + · · ·+ xn−2xn−1 + x2n if n is even. �

A symmetric bilinear space over R is a pair (M,β) where M is a finite-rank projective
module R (hence free since R is a discrete valuation ring) and β : M ×M → R is a symmetric
R-bilinear pairing.

Proposition 3.2. Let R be a discrete valuation ring.
(a) Each symmetric bilinear space over R is an orthogonal direct sum of spaces of rank 1

and 2.
(b) Every quadratic form f(x0, . . . , xn) over R is equivalent to one of the form

I∑
i=1

(aix
2
i + bixiyi + ciy

2
i ) +

J∑
j=1

djz
2
j

with 2I + J = n+ 1 and ai, bi, ci, dj ∈ R.
(c) Let f be as in (b). Let H = ProjR[x0, . . . , xn]/(f). Then v(∆(f)) ≥ dim (Hk)sing + 1.

Proof.
(a) (We paraphrase an argument of Jean-Pierre Tignol adapted from the proof of [Ver19,

Proposition 4.10].) Let (M,β) be a nonzero symmetric bilinear space. We may assume
that β 6= 0. By dividing β by a nonzero element of R, we may assume that β(M,M) 6⊂ m.
We claim that there exists a free R-moduleN of rank 1 or 2 with a homomorphismN →M

such that β induces a regular pairing on N (i.e., the composition N →M
β→M∨ → N∨

is an isomorphism); then N →M is injective, and M is the orthogonal direct sum of N
and N⊥ := ker(M → N∨), so we are done by induction on rank(M).
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If there exists e ∈ M with β(e, e) ∈ R× a unit, then let N = Re. Otherwise, choose
c, d ∈M with β(c, d) ∈ R× and let N = Rc⊕Rd; the induced pairing is regular since its

matrix is invertible, being congruent mod π to
(

0 β(c, d)
β(c, d) 0

)
.

(b) Decomposing a quadratic space is equivalent to decomposing the associated symmetric
bilinear space, even if char k = 2.

(c) First suppose char k 6= 2. Then f is equivalent to
∑
aix

2
i for some ai ∈ R, and

dim (Hk)sing = #{i : v(ai) ≥ 1} − 1 ≤ v(Det(f))− 1 = v(∆(f))− 1,

by Proposition 3.1.
Now suppose char k = 2. Let I0 = #{i : v(bi) = 0} and I1 = #{i : v(bi) ≥ 1}. Let

J0 = #{j : v(dj) = 0} and J1 = #{j : v(dj) ≥ 1}. If n is odd, let J ′ := J . If n is even,
then J is odd, so let J ′ := J − 1. In both cases J ′ ≥ 0. The common zero locus in Pnk of
the polynomials ∂f/∂xi and ∂f/∂yi for i ∈ I0 is of dimension n− 2I0, and including the
condition f = 0 drops the dimension by 1 more if J0 ≥ 1. Thus dim (Hk)sing ≤ n− 2I0,
with strict inequality if J0 ≥ 1. On the other hand, v(4aici − b2i ) ≥ 2 whenever v(bi) ≥ 1,
and v(2dj) ≥ v(2) + v(dj) for all j, so Proposition 3.1 implies

v(∆(f)) ≥ 2I1 + J ′v(2) + J1

= (n− 2I0) + J ′v(2)− J0 + 1

≥ dim (Hk)sing + J ′v(2)− J0 + 1.

If J0 ≥ 1, then the inequality above is strict and J ′v(2) ≥ (J0 − 1)v(2) ≥ J0 − 1,
so v(∆(f)) ≥ dim (Hk)sing + 1. If J0 = 0, then instead use J ′v(2) ≥ 0 to again get
v(∆(f)) ≥ dim (Hk)sing + 1. �

4. Nondegenerate double points

Definition 4.1 ([SGA 7I, VI.6]). Let k be a field. Let X be a finite-type k-scheme. A
k-point Q ∈ X is called a nondegenerate double point (or nondegenerate quadratic point) if there
exist n ≥ 1 and f ∈ k[[x1, . . . , xn]] such that there is an isomorphism of complete k-algebras
ÔX,Q ' k[[x1, . . . , xn]]/(f) and an equality of ideals (∂f/∂x1, . . . , ∂f/∂xn) = (x1, . . . , xn).

Remark 4.2. The ideal equality is equivalent to saying that Q is an isolated reduced point of
the singular subscheme Xsing.

Remark 4.3. Suppose that n and f exist. Then f can be taken to be a quadratic form
[SGA 7I, VI.6.1]. If, moreover, k is algebraically closed, then

• if char k 6= 2, then one can take f := x21 + . . .+ x2n;
• if char k = 2, then n must be even and one can take f := x1x2 + x3x4 + · · ·+ xn−1xn.

Remark 4.4 ([SGA 7I, Definition VI.6.6]). There is also notion of ordinary double point, which
is the same except that when char k = 2 and n is odd, since nondegeneracy is impossible one
allows singularities analytically equivalent over an algebraic closure to the singularity defined
by the “least degenerate” quadratic form f := x1x2 + · · ·+ xn−2xn−1 + x2n.
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5. Commutative algebra

A ring extension R′ ⊃ R is called a weakly unramified extension if R′ too is a discrete
valuation ring and π is also a uniformizer of R′.

Lemma 5.1. For any field extension k′ ⊃ k, there exists a weakly unramified extension
R′ ⊃ R with residue field k′ (i.e., isomorphic to k′ as k-algebra).

Proof. If k′/k is generated by one algebraic element, say a zero of a monic irreducible
polynomial f̄ ∈ k[x], then we may take R′ := R[x]/(f) for any monic f ∈ R[x] reducing
to f̄ [Ser79, I.§6, Proposition 15]. If k′/k is generated by one transcendental element t,
then we may take the localization R′ := R[t](π) of the (regular) polynomial ring R[t] at the
codimension 1 prime (π); the residue field of R′ is Frac(R[t]/(π)) = k(t). The general case
follows from Zorn’s lemma, using direct limits. �

Lemma 5.2. Let A be a noetherian local domain. Let Â be its completion. Let B be the
integral closure of A. Then

#{minimal primes of Â} ≥ {maximal ideals of B}.

Proof. Combine [SP, Tag 0C24] and [SP, Tag 0C28(1)]. �

6. Hypersurfaces with several singularities

Let notation be as in Theorem 1.1. We use subscripts to denote base change: e.g., DA :=
D×SpecZ SpecA for any ring A. Restricting φR yields a proper morphism ϕ : (HR)sing → DR.

Proposition 6.1. The proper morphism ϕ : (HR)sing → DR is birational.

Proof. This follows from [Sai12, Proposition 2.12] applied over Frac(R). �

Theorem 6.2. If the space (Hk)sing consists of r closed points, then v(∆(f)) ≥ r.

Proof. Using Lemma 5.1, we may reduce to the case in which k is algebraically closed.
Let P ∈ DR(k) correspond to Hk, so ϕ−1(P ) = (Hk)sing. Since R is regular, the local ring

OAN
R ,P

is regular, and hence factorial [AB59, Theorem 5].
Let D′ := {d ∈ DR : dimϕ−1(d) = 0}, so P ∈ D′. By [EGA IV3, Corollaire 13.1.5], D′ is

open in DR. By Proposition 6.1, ϕ−1(D′)→ D′ is birational. It is also quasi-finite and proper,
hence finite by Zariski’s main theorem [EGA III1, Corollaire 4.4.11]. Moreover, (HR)sing is
smooth over a discrete valuation ring, hence normal. The previous three sentences imply that
ϕ−1(D′)→ D′ is the normalization of D′.

Take A := OD′,P = OD,P = OAN
R ,P

/(∆), and define Â and B as in Lemma 5.2. Then the
maximal ideals of B correspond to the points of ϕ−1(D′) above P , which are the r points
of (Hk)sing. Lemma 5.2 implies that Â has at least r minimal primes. Their inverse images
in OAN

R ,P
, correspond to prime factors of ∆ in this factorial ring, so ∆ = p1 · · · prq, for some

p1, . . . , pr, q ∈ OAN
R ,P

with each pi vanishing at P . Evaluating both sides at (the coefficient
tuple of) f shows that v(∆(f)) ≥ 1 + · · ·+ 1 + 0 = r. �
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7. Valuations of polynomial values

Lemma 7.1. Suppose that k is infinite, and ` ≥ n. Let ρ : A`
k → An

k be a projection. Let
V ⊂ A`

k be a closed subscheme. Then {a ∈ kn : ρ−1(a)(k) ⊆ V (k)} is the set of k-points of a
closed subscheme Z ⊆ An

k .

Proof. Since k is infinite, ρ−1(a)(k) ⊂ V (k) is equivalent to ρ−1(a) ⊂ V , which fails if and only
if a ∈ ρ(An

k −V ). Since ρ is flat, ρ is open, so ρ(An
k −V ) is open; let Z be its complement. �

For b ∈ R, let b̄ be its image in k. Likewise, given b ∈ Rn, define b̄ ∈ kn.
Proposition 7.2. Let δ ∈ R[x1, . . . , xn] and m ∈ Z≥0. If k is infinite and perfect, then

{a ∈ kn : v(δ(b)) ≥ m for all b ∈ Rn with b̄ = a}
is the set of k-points of a closed subscheme of An

k .

Proof. Themth Greenberg functor Grm satisfies Grm(X)(k) = X(R/mm) for any R-schemeX;
see [Gre61; Gre63; NS08, §2.2; BGA18]. Applying Grm to δ : An

R → A1
R yields a morphism

Grm(An
R) −→ Grm(A1

R);

let V be the fiber above 0. On the other hand, the reduction map R/mm → k induces a
morphism ρ : Grm(An

R) → Gr1(An
R) that is a projection Amn

k → An
k as in Lemma 7.1. For

a ∈ kn,
v(δ(b)) ≥ m for all b ∈ Rn with b̄ = a ⇐⇒ ρ−1(a)(k) ⊂ V (k),

so the result follows from Lemma 7.1. �

8. Hypersurfaces with a positive-dimensional singularity

In Lemma 8.1, Corollary 8.2, and Lemma 8.3, we assume that n ≥ 2, r ≥ 1, and P1, . . . , Pr
are distinct points in Pn(k). Let O = OPn

k
. For each P ∈ Pn(k), let mP ⊂ O be the ideal

sheaf of P .

Lemma 8.1. If d ≥ 2r − 1, then O(d) →
∏

i(O/m
2
Pi

)(d) induces a surjection on global
sections.

Proof. Let `i be a linear form vanishing at Pi but not Pj for any j 6= i. Let h be a homogeneous
polynomial of degree d− (2r− 1) not vanishing at any Pi. For each s, as g ranges over linear
forms, the image of g in (O/m2

Ps
)(1) ranges over all its sections, so the images of gh

∏
j 6=s `

2
j

in
∏

i(O/m
2
Pi

)(d) exhaust the sth factor of
∏

i(O/m
2
Pi

)(d). �

Corollary 8.2. Let N = dimk Γ(Pn,O(d)). For f ∈ Γ(Pn,O(d)), let Hf := Proj k[x0, . . . , xn]/(f).
Then the f for which (Hf )sing ⊃ {P1, . . . , Pr} form a vector space of dimension N − r(n+ 1).

Lemma 8.3. If d ≥ 3 and 1 ≤ r ≤ max((d − 1)/2, 2), then in the locus A of f for which
(Hf )sing ⊃ {P1, . . . , Pr}, the open sublocus U for which (Hf )sing is finite is dense.

Proof. Since A is defined by the vanishing of values of f and its partial derivatives at the
Pi, it is cut out by linear forms in the coefficients of f , so A is an affine space. Applying
[EGA IV3, Corollaire 13.1.5] the relative singular subscheme over A shows that U is open in
A, so it remains to show that U 6= ∅.

First suppose that r ≤ (d− 1)/2. Let
I = {(f, Pr+1) : f ∈ A, Pr+1 ∈ (Hf )sing − {P1, . . . , Pr}}.
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The fiber of I → Pnk − {P1, . . . , Pr} above Pr+1 consists of the f for which (Hf)sing ⊃
{P1, . . . , Pr+1}, so its dimension is N − (r + 1)(n+ 1) by Corollary 8.2; similarly, dimA =
N − r(n + 1). Thus dim I = n + N − (r + 1)(n + 1) = dimA− 1. Therefore I → A is not
dominant, and U contains the complement of its image.

Now suppose instead that r ≤ 2. Choose a homogeneous degree d form g(x3, . . . , xn) defining
a smooth hypersurface in Pn−3, let c1, . . . , cd−1 ∈ k be distinct (enlarge k if necessary), and
let

f = x0

d−1∏
i=1

(x1 − cix2) + g.

At a point P where f and its partial derivatives vanish,
∏d−1

i=1 (x1 − cix2) = 0, so g = 0, so g
and its derivatives vanish, so x3 = · · · = xn = 0; thus P is a singular point of the plane curve
x0
∏d−1

i=1 (x1 − cix2) = 0, i.e., an intersection point of two components. By a linear change
of variable, we may assume that the Pi (of which there are at most two!) are among these
singular points. Then f gives a k-point of U . �

Theorem 8.4. Let H = ProjR[x0, . . . , xn]/(f) for some homogeneous f of degree d. If
dim (Hk)sing ≥ 1, then v(∆(f)) ≥ max(b(d− 1)/2c, 2).

Proof. We may assume that n, d ≥ 2. Using Lemma 5.1, we may reduce to the case in
which k is algebraically closed. If d = 2, then Proposition 3.2(c) implies that v(∆(f)) ≥
dim (Hk)sing + 1 ≥ 2.

So assume d ≥ 3. Let Z be the closed subscheme of Proposition 7.2 for δ := ∆ ∈ R[{ai}]
and r := max(b(d− 1)/2c, 2). Choose distinct P1, . . . , Pr ∈ (Hk)sing(k). If j ∈ R[x0, . . . , xn]
is a degree d homogeneous polynomial, and J = ProjR[x0, . . . , xn]/(j) is such that (Jk)sing =
{P1, . . . , Pr}, then v(∆(j)) ≥ r by Theorem 6.2, so the corresponding coefficient tuple mod m
belongs to Z(k). By Lemma 8.3, any coefficient tuple mod m corresponding to a hypersurface
whose singular locus contains {P1, . . . , Pr} also belongs to Z(k). This applies in particular to
the coefficient tuple of f mod m, so v(∆(m)) ≥ r by definition of Z. �

9. When the discriminant has valuation 1

Proof of Theorem 1.1. Case 1: char k = 2 and n is odd. By [Sai12, Theorem 4.2], if the sign
of ∆ is chosen appropriately, then ∆ = A2 + 4B for some polynomials A,B, so v(∆(f)) 6= 1.
On the other hand, by Remark 4.3, Hk cannot have a nondegenerate double point. Thus (i)
and (ii) both fail.
Case 2: char k 6= 2 or n is even. The hypersurface H → SpecR is the pullback of
HR → AN

R by some R-morphism ι : SpecR→ AN
R . Let P = ι(Spec k) ∈ AN(k).

(i)⇒(ii): Suppose that v(∆(f)) = 1. By Theorem 8.4, (Hk)sing is finite. The surjection
R[{ai}] � R sending the ai to the corresponding coefficients αi of f maps ∆ to ∆(f), so the
ai − αi and ∆ are local parameters for AN

R at P . Thus DR = SpecR[{ai}]/(∆) is regular
at P , so DR is normal at P . Let U be the largest normal open subscheme of DR such that
ϕ−1U → U has finite fibers. The fiber above P is (Hk)sing, so P ∈ U . By Proposition 6.1, ϕ
is a proper birational morphism, so ϕ−1U → U has finite fibers by Zariski’s main theorem
[EGA III1, Corollaire 4.4.9]. In particular, the fiber (Hk)sing consists of a single reduced
k-point Q. By Remark 4.2, Q is a nondegenerate double point of Hk.

Choose an An
R ⊂ PnR containing Q; let f0 be the corresponding dehomogenization of f . The

point (Hk)sing is cut out in An
R by f0 and its partial derivatives; these n + 1 functions are
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therefore local parameters for PnR at Q, so the local ring OH,Q = OPn
R,Q

/(f0) is regular too.
On the other hand, H − {Q} is smooth over SpecR. Thus H is regular everywhere.

(ii)⇒(i): Now suppose that H is regular and (Hk)sing consists of a nondegenerate double
point Q ∈ H(k). Hence the underlying space of Hsing is {Q}.

Since the tangent space of (Hk)sing at Q is 0, the projection (Hk)sing → AN
k induces an

injection between the tangent spaces at Q and P . Since Q is the only point in (Hk)sing above
P , this implies that (HR)sing → DR is étale at Q. Pulling back (HR)sing → DR ↪→ AN

R by ι
shows that Hsing → Spec(R/(∆(f))) is étale. These are connected 0-dimensional schemes
with the same residue field, so Hsing ' Spec(R/(∆(f))).

Let f0 be as above, so f0 and its partial derivatives lie in the maximal ideal mPn
R,Q
⊂

OPn
R,Q

/(f0). The partial derivatives are independent in mPn
R,Q

/m2
Pn
R,Q

since they form a basis
for mPn

k ,Q
/m2

Pn
k ,Q

, since Q is a nondegenerate double point. On the other hand, the image of f0
in mPn

R,Q
/m2

Pn
R,Q

is nonzero (since OH,Q = OPn
R,Q

/(f0) is regular) and in fact independent of the
partial derivatives (since it maps to 0 in mPn

k ,Q
/m2

Pn
k ,Q

). Thus f0 and its partial derivatives form
a basis of mPn

R,Q
/m2

Pn
R,Q

, so by Nakayama’s lemma, they generate mPn
R,Q

, so Hsing ' Spec k.
The conclusions of the two previous paragraphs imply v(∆(f)) = 1. �
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