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1. Sample spaces, events and conditional probabilities.

A sample space is a finite or countable set S together with a function

P :S → [0, 1] = {y ∈ R : 0 ≤ y ≤ 1},

such that the following condition is satisfied:∑
x∈S

P (x) = 1.

One thinks of S as the set of all possible outcomes of an experiment, with P (x) equal to
the probability that the outcome is x. We call P the probability function.

In many interesting cases S is finite and P (x) = 1/#S for all x ∈ S.
Let S be a sample space, with probability function P . An event is a subset A of S,

and the probability of an event A is given by

P (A) =
∑
x∈A

P (x).

If A, B are two events, and P (B) 6= 0, then the conditional probability of A given B is
defined by

P (A|B) =
P (A ∩B)

P (B)
.

Examples of sample spaces, events and conditional probabilities, and exercises on them,
can be found in many textbooks on discrete mathematics.
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2. Independence.

Two events A, B are called independent if P (A∩B) = P (A) ·P (B). This means the same
as P (A|B) = P (A) (if P (B) 6= 0), so two events are independent if the occurrence of one
of them does not make the other more likely or less likely to occur.

Example 1. Let S = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}, the set of outcomes of rolling
two dice, with each outcome having probability 1

36 . Consider the events

A = the first die equals 3,

B = the second die equals 4,

C = the total equals 7,

D = the total equals 6,

more precisely

A = {3} × {1, 2, 3, 4, 5, 6},

B = {1, 2, 3, 4, 5, 6} × {4},

C = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)},

D = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}.

Here A and B are independent, since P (A ∩ B) = 1
36 = P (A) · P (B). Also A and C are

independent, and B and C are independent. However, A and D are not independent, since
P (A ∩D) = 1

36 , whereas P (A) · P (D) = 1
6 ·

5
36 , which is smaller than 1

36 . Likewise B and
D are not independent. Are C and D independent?

Warning. Any two of the three events A, B, C are independent, but nevertheless the
three events A, B, C cannot be considered independent, since the occurrence of any two of
them implies the occurrence of the third one. For three events A, B, C to be independent
one requires not only that any two are independent, but also that P (A∩B ∩C) = P (A) ·
P (B) · P (C). For more than three events one has to look at even more combinations, see
for example Exercise 25 (a).
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3. Random variables.

It frequently happens that one is not interested in the actual outcome of the experiment,
but in a certain function of the outcome. For example, if one throws two dice one is often
just interested in the total score; or if one tosses a coin n times, it may be that one is
just interested in the number of heads appearing, or in the longest consecutive sequence
of tails. These are examples of random variables.

Let, generally, S be a sample space, with probability function P . A random variable

is a function f :S → R. If r is a real number in the image of f , then the probability that
f assumes the value r is defined by

P (f = r) =
∑

x∈S, f(x)=r

P (x).

This is the same as the probability of the event f(x) = r. The expectation (or expected

value, or mean) of a random variable f is defined by

E(f) =
∑
x∈S

f(x)P (x).

This may be thought of as the “average” value of f if one repeats the experiment a great
number of times. An alternative formula for E(f) is

E(f) =
∑

r∈f(S)

r · P (f = r).

To prove this, notice that for each r ∈ f(S) we have∑
x∈S, f(x)=r

f(x)P (x) = r · P (f = r),

by the definition of P (f = r). Now sum this over r ∈ f(S).

Example 2. Let S = {0, 1}, with P (0) = P (1) = 1
2 , and let f :S → R be the inclusion

map (so f(0) = 0, f(1) = 1). Then E(f) = 1
2 .

Example 3. Let S = {1, 2, 3, 4, 5, 6}, with P (x) = 1
6 for each x ∈ S (throwing one die),

and let f :S → R again be the inclusion map. Then E(f) = (1+2+3+4+5+6)/6 = 3 1
2 .

If f , g are two random variables, then f + g is also a random variable; namely, (f + g)(x)
is defined to be f(x) + g(x), for all x ∈ S. One has

E(f + g) = E(f) + E(g).
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This follows directly from the definition.

Example 4. Let S, P be as in Example 1 (rolling two dice). If f is the value of the
first die (so f

(
(a, b)

)
= a), and g is the value of the second die (g

(
(a, b)

)
= b), then

E(f) = E(g) = 3 1
2 . The total is f + g, so the expectation of the total score equals

E(f + g) = E(f) + E(g) = 7.

4. Events as random variables.

Let S be a sample space, with probability function P . Let A be an event; so this is a
subset of S. It gives rise to a random variable f that is defined by

f(x) =
{ 1 if x ∈ A,

0 if x /∈ A.
This random variable assumes only the values 0 and 1; and any random variable that
assumes only the values 0 and 1 arises in this way from some event. The probability of
the event A is the same as the expectation E(f) of the corresponding random variable f .

Example 5. Let p ∈ R, 0 < p < 1, and write q = 1−p. Let S be the sample space {0, 1},
with probability function given by P (1) = p, P (0) = q. This sample space can be thought
of as the set of outcomes of tossing a coin that is not fair (unless p = 1

2 ). The probability
of the event A = {1} is the same as the expectation of the inclusion map (see Example 2),
namely p.

Example 6. Repeat the experiment from the previous example n times; so S must then
be replaced by {0, 1}n, with x ∈ S having probability pkqn−k if x contains exactly k 1’s
(any x ∈ S is a sequence of n 0’s and 1’s). For each i = 1, 2, . . . , n, let Ai be the event
that the i-th toss of the coin gives a 1, and let fi be the corresponding random variable;
so if x = (x1, x2, . . . , xn), then fi(x) = xi. Each Ai has probability p, so each fi has
expectation p.

Now let f = f1 + f2 + · · ·+ fn. Then f(x) is the total number of 1’s in x, and

E(f) = E(f1 + f2 + · · ·+ fn) = E(f1) + E(f2) + · · ·+ E(fn) = np.

So the expected number of 1’s is np. We can also verify this by a direct calculation. First
one notes that

(∗) P (f = k) =
(

n

k

)
pkqn−k,

because there are
(
n
k

)
elements x ∈ S that have exactly k 1’s, and each such x has proba-

bility pkqn−k. Now

E(f) =
n∑

k=0

k

(
n

k

)
pkqn−k = np

n∑
k=1

(
n− 1
k − 1

)
pk−1qn−k = np(p + q)n−1 = np.
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A random variable f :S → R is said to be a binomial random variable, or to have a binomial

distribution, if there exists an integer n ≥ 0 and a real number p, 0 < p < 1, such that
(∗) holds for all k, 0 ≤ k ≤ n. If we take p = 1

2 , then we see (not surprisingly) that the
average number of elements of a subset of a set of n elements equals 1

2n.

Example 7. Ten men went to a party and checked their hats when they arrived. The
hats were randomly returned to them when they departed. We want to know the expected
number of men that get their own hats back. In this example, S is the set of bijective
functions of a set M of 10 men to itself, all these functions having the same probability,
which is 1/#S = 1/10! = 1/3628800 .= 0.0000002755732. The bijective function that is the
outcome of the experiment maps i to j if i receives j’s hat. The number of men that receive
their own hats back is given by the random variable f :S → R that sends each bijective
function b:M → M to the number of elements that it fixes: f(b) = #{i ∈ M : b(i) = i}.
We want to calculate the expectation of f . As in the previous example, this expectation
can be written as the sum of the probabilities of 10 events Ai, where Ai is the event that
the i-th man gets his own hat back. It is not hard to see that #Ai = 9! for each i, so
P (Ai) = 1

10 and E(f) = 10 · 1
10 = 1: on the average, one man gets his own hat back! This

remains true for any (positive) number of men instead of 10.

Example 8. Consider the experiment of shooting at a target until there is a hit. Let p

be the probability of hitting if one shoots once, with 0 < p < 1, and write q = 1 − p for
the probability of missing. Assume that all shots are independent. What is the expected
number of shots? Here S = {h, mh, mmh, mmmh, . . .}, where the n-th element has
probability qn−1p (one factor q for each miss, and p for the hit); you may wish to check
that all these numbers add up to 1. Let f :S → R count the number of shots; so f maps
the n-th element of S to n. The expectation of f is

E(f) =
∞∑

n=1

nqn−1p.

Using the formula
∞∑

n=1

nxn−1 =
1

(1− x)2

(for |x| < 1) one finds that

E(f) =
p

(1− q)2
=

1
p
.

This answer is intuitively clear: if one needs k shots for a hit, on the average, then a hit
occurs once every k times, so p = 1/k and k = 1/p.
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One can also obtain this result by using Exercise 19 to write E(f) =
∑∞

k=1 P (Ak),
where Ak is the event that one shoots at least k times, which happens with probability
qk−1.

With p = 1
2 we see that a fair coin has to be tossed twice, on the average, before the

first head comes up.

5. Independence of random variables.

Let f , g:S → R be two random variables. We call f and g independent if for each
r1 ∈ f(S) and each r2 ∈ g(S) one has

P ({x ∈ S : f(x) = r1 and g(x) = r2}) = P (f = r1)P (g = r2).

In other words, the events f(x) = r1 and g(x) = r2 are independent, for each r1 ∈ f(S) and
each r2 ∈ g(S). It means that the value of the first random variable gives no information
about the value of the second random variable.

This notion generalizes the notion of independence of events that we saw earlier:
two events are independent if and only if the two corresponding random variables are
independent.

Example 9. Let S be as in Example 1 (rolling two dice). The first die (more precisely: the
random variable that gives the value of the first die) and the second die are independent.
The first die and the total score are not independent.

If f , g are two random variables, then f · g is also a random variable; namely, (f · g)(x) is
defined to be f(x)g(x), for all x ∈ S. If in addition f and g are independent, then one has

E(f · g) = E(f)E(g).

Proof:
E(f · g) =

∑
x∈S

f(x)g(x)P (x) =
∑
r1, r2

r1r2P (f = r1)P (g = r2)

=
(∑

r1

r1P (f = r1)
)
·
(∑

r2

r2P (g = r2)
)

= E(f)E(g).
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6. Standard deviation and variance.

Example 10. Let S = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}, with each (i, j) ∈ S having
probability 1

36 , as in Example 1. Let the random variables f , t:S → R be defined by
f
(
(i, j)

)
= 2i (twice the value of the first die) and t

(
(i, j)

)
= i + j (the total score). Both

random variables have expectation 7. However, the value of f is usually much further
removed from the expectation 7 than the value of t. To make this quantitative, one
usually considers the standard deviation.

Let, generally, S be a sample space, with probability function P . Let f :S → R be a
random variable. The standard deviation of f is defined by

σ(f) =
(∑

x∈S

(
f(x)− E(f)

)2
P (x)

)1/2

.

Equivalently, if the random variable h:S → R is defined by h(x) =
(
f(x)− E(f)

)2, then

σ(f) =
√

E(h).

So this is the square root of the expectation of the square of the deviation of f from its
expected value. At first sight this definition seems unnecessarily complicated: why not
simply take the expected value of the deviation itself? This can be done, and it yields
τ(f) =

∑
x∈S |f(x) − E(f)|P (x) (the mean deviation of f). However, it turns out that

σ(f) is far simpler to use than τ(f), because it avoids the non-differentiable function | · |.
The square of the standard deviation is called the variance of f , and denoted by V (f):

V (f) =
∑
x∈S

(
f(x)− E(f)

)2
P (x) = E(h).

This is the expectation of the squared deviation. A useful formula for the variance is:

V (f) = E(f2)− E(f)2.

Proof:
V (f) =

∑
x∈S

(
f(x)− E(f)

)2
P (x)

=
∑
x∈S

f(x)2P (x)− 2E(f)
∑
x∈S

f(x)P (x) + E(f)2
∑
x∈S

P (x)

= E(f2)− 2E(f)E(f) + E(f)2 = E(f2)− E(f)2.
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Example 10 (continued). We calculate the variance of the function f . We have

E(f2) =
1
6
(22 + 42 + 62 + 82 + 102 + 122) =

364
6

= 602
3 ,

and E(f) = 7, so

V (f) = 60 2
3 − 72 = 11 2

3 , σ(f) =
√

11 2
3

.= 3.416.

We can calculate the variance of t in a similar straightforward way, but it is easier to apply
another formula.

Let, generally, S be a sample space with probability function P , and let f , g:S → R be
two independent random variables. Then we have

V (f + g) = V (f) + V (g).

The proof uses the relation E(fg) = E(f)E(g), which we proved earlier for independent
random variables:

V (f + g) = E
(
(f + g)2

)
− E(f + g)2

= E(f2) + 2E(fg) + E(g2)− E(f)2 − 2E(f)E(g)− E(g)2

= E(f2)− E(f)2 + E(g2)− E(g)2 = V (f) + V (g).

Example 10 (continued). We use this formula to calculate the variance of t. We
write t = t1 + t2, where t1 is the value of the first die (so t1

(
(i, j)

)
= i) and t2 is the

value of the second die. From t1 = 1
2f and the calculation we did for f we see that

V (t1) = ( 1
2 )2V (f) = 35

12 . Since t1 and t2 are independent, it follows that

V (t) = V (t1) + V (t2) = 5 5
6 , σ(t) =

√
5 5

6

.= 2.415.

Example 11. Let p ∈ R, 0 < p < 1, and let S = {0, 1} be the sample space from Example
5 (so P (1) = p, P (0) = q). We saw in Example 5 that the inclusion map f :S → R has
expectation p. We have f2 = f , so

V (f) = E(f2)− E(f)2 = p− p2 = pq, σ(f) =
√

pq.

Example 12. Let S, f be as in Example 6; so P (f = k) =
(
n
k

)
pkqn−k. To calculate V (f),

we write f = f1 + f2 + · · ·+ fn. We now have the formula

V (f) = V (f1) + V (f2) + · · ·+ V (fn),
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which is generally valid provided that any two of the fi are independent (the proof is
analogous to what we did above for the sum of two independent random variables). By
Example 11, each fi has variance V (fi) = pq, so

V (f) = npq, σ(f) =
√

npq.

These formulas apply to any binomial random variable f . If we take p = 1
2 , then we see

that the standard deviation of the size of a random subset of a set of n elements equals
1
2

√
n.

7. Chebyshev’s inequality.

Chebyshev’s inequality expresses that it is not likely that a random variable assumes a
value that is far from its expected value. The precise formulation is as follows.

Let S be a sample space with probability function P , and let f :S → R be a random
variable. Then for any positive real number r we have

P (|f(x)− E(f)| ≥ r) ≤ V (f)
r2

.

Here the left hand side is the probability of the event A = {x ∈ S : |f(x)−E(f)| ≥ r}, as
usual.

Proof. Let A be as just defined. We have

V (f) =
∑
x∈S

(
f(x)− E(f)

)2
P (x)

=
∑
x∈A

(
f(x)− E(f)

)2
P (x) +

∑
x∈S−A

(
f(x)− E(f)

)2
P (x).

The second sum is obviously ≥ 0. Each term in the first is ≥ r2P (x), because of the
definition of A. Therefore

V (f) ≥
∑
x∈A

r2P (x) = r2P (A).

This implies Chebyshev’s inequality.
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8. Generating functions.

Let S be a sample space, and f :S → R a random variable with the property that the
image of f is contained in the set of non-negative integers. The generating function g of f

is defined by

g(z) =
∞∑

k=0

P (f = k)zk.

Here z is a real variable with |z| ≤ 1. From

∞∑
k=0

P (f = k) = 1

it follows that the series converges, and that g(1) = 1.
The generating function can be used to calculate the expectation E(f) and the vari-

ance V (f) of f . Namely, suppose that the radius of convergence of the power series defining
g is larger than 1. Then the derivative g′ = dg/dz is given by

g′(z) =
∞∑

k=1

kP (f = k)zk−1,

for |z| ≤ 1. Putting z = 1 we find the following formula for the expectation:

E(f) = g′(1).

Similarly, one can prove
V (f) = g′′(1) + g′(1)− (g′(1))2,

see Exercise 22.

Example 13. Let p be a real number, 0 < p < 1, and n a positive integer. We let the
sample space S = {0, 1}n be as in Example 6; so an element x ∈ S that has exactly k 1’s
has probability pkqn−k, where q = 1− p. Let the random variable f also be as in Example
6; so f(x) is the number of 1’s in x. We have

P (f = k) =
(

n

k

)
pkqn−k,

so the generating function g is given by

g(z) =
n∑

k=0

(
n

k

)
(pz)kqn−k = (pz + q)n.
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Notice that indeed g(1) = 1. We have

g′(z) = np(pz + q)n−1, g′′(z) = n(n− 1)p2(pz + q)n−2

and therefore

E(f) = g′(1) = np,

V (f) = g′′(1) + g′(1)− (g′(1))2 = n(n− 1)p2 + np− n2p2 = npq,

in agreement with what we found in Example 6 and Example 12.

Exercises.

1. Andrew, Beatrix and Charles are playing with a crown. If Andrew has the crown, he
throws it to Charles. If Beatrix has the crown, she throws it to Andrew or to Charles,
with equal probabilities. If Charles has the crown, he throws it to Andrew or to Beatrix,
with equal probabilities.

At the beginning of the game the crown is given to one of Andrew, Beatrix and
Charles, with equal probabilities. What is the probability that, after the crown is thrown
once, Andrew has it? that Beatrix has it? that Charles has it?

2. From a shuffled deck of 52 playing cards one card is drawn. Let A be the event that
an ace is drawn, B the event that a diamond is drawn, and C the event that a red card
(heart or diamond) is drawn. Which two of A, B, and C are independent? What if a joker
is added to the deck?

3. Let S be a sample space, and let A, B ⊆ S be two independent events. Let A′ = S−A

and B′ = S−B. Prove that A′ and B′ are independent events. Are A and B′ independent?
And A and A′?

4. A random number is drawn from {1, 2, 3, . . . , 899, 900}; each number has probability
1

900 . Are the events “the number is divisible by 3” and “the number is divisible by 5”
independent? What is the probability that the number has no factor in common with 15?

5. In a lottery 10,000 tickets are sold for $ 1 each. There are five prizes: $ 5,000 (once),
$ 700 (once), $ 100 (three times). What is the expected value of a ticket?

6. Four boxes contain red balls, white balls and blue balls:
the first box contains 13 red balls, 11 white balls and 6 blue balls;
the second box contains 13 blue balls, 11 red balls and 6 white balls;
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the third box contains 13 white balls, 11 blue balls and 6 red balls;

the fourth box contains 10 red balls, 10 white balls and 10 blue balls.

One performs the following experiment: first a box is drawn at random (giving equal
probability to all four boxes). Next 12 balls are drawn at random from this box.

(a) Prove that the expected number of red balls that are drawn is equal to the expected
number of white balls that are drawn.

(b) What is the expected number of blue balls that are drawn?

Hint: avoid doing any calculations.

7. Let S = {1, 2, 3, . . . , 899, 900}, and let each element of S have probability 1
900 . Define

the random variables f , g:S → R by

f(x) = remainder of x upon division by 3,

g(x) = remainder of x upon division by 4.

(a) Prove that f and g are independent.

(b) Calculate E(f + g), E(fg) and V (f + g).

8. For this exercise, you have to know that Martians come in three sexes: male, emale
and female.

A Martian triple is going to have nine children. At each birth, the probability for
each sex is 1

3 . What is the expected number of emales among the children? What is the
variance?

9. The Collected Novels of Mrs. Kip Vandegril have been published in ten volumes. Some-
one checks out five of these volumes from the local library, chosen at random, without
knowing that Mrs. Vandegril wrote only five novels, each occupying two volumes. Calcu-
late, for each i = 0, 1, 2, the probability that he can read i complete novels. What is the
expected number of complete novels he can read? And the variance?

10. Let p be a real number, 0 < p < 1, and q = 1 − p. Consider, as in Example 8, the
sample space S = {h, mh, mmh, mmmh, . . .}, where the n-th element has probability
qn−1p. Let further the random variable f :S → R map the n-th variable to n. In Example
8 we saw that E(f) = 1/p. Prove that V (f) = q/p2.

11. Let f be a binomial random variable, as in Example 6. Calculate the probability that
the value assumed by f is even, and the probability that the value assumed by f is odd.
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12. Fifty-two chocolate letters, two for each letter of the alphabet, are distributed at
random among fifty-two children, one each. Can you calculate the expected number of
children whose first name starts with the letter that they get, without knowing the names
of the children? And the variance?

13. Prove that at least 75% of all subsets of a set of 100 elements have cardinalities lying
between 41 and 59 (inclusive).

14. Let S be a sample space, and f :S → R a random variable. Define the random variable
g:S → R by g(x) = |f(x)−E(f)|. Prove that V (g) = σ(f)2−τ(f)2, and that σ(f) ≥ τ(f).
Under which conditions is σ(f) = τ(f)?

15. Can the equality sign hold in Chebyshev’s inequality?

16. Let S be a sample space, A ⊆ S an event, and f :S → R the corresponding random
variable; so f(x) = 1 for x ∈ A and f(x) = 0 for x /∈ A. Let the variance V (A) of A be
defined as the variance of f . Prove that V (A) = P (A) · P (A′), where A′ = S −A.

17. Twenty distinct numbers are arranged in a list in a random order, such that all 20!
orderings are equally likely. Going down the list, one marks every number that is larger
than all earlier numbers on the list. (In particular, the first number of the list is marked.)
Prove that, for each i = 1, 2, . . . , 20, the probability that the i-th number on the list is
marked is 1/i. What is the expectation of the number of marked numbers on the list?

18. Let the sample space be as in Example 7.

(a) What is more likely: that no man gets his own hat back, or that exactly one man gets
his own hat back? Does your answer change if the number of men is different from
10?

(b) What is the probability that exactly nine men get their own hats back?

(c) Let Aij be the event that the i-th man and the j-th man get their own hats back.
What is the probability of Aij , for i 6= j? Is the event that the i-th man gets his own
hat back independent from the event that the j-th man gets his own hat back?

(d) In Example 7 we saw that the expected number of men that get their own hats back
equals 1. Prove that the standard deviation of the number of men that get their own
hats back is also 1.

19. Let f be a random variable assuming only non-negative integer values, and denote by
Ak the event that f(x) ≥ k. Prove that E(f) =

∑∞
k=1 P (Ak).
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20. A street performer hides your coin under one of three cups. You want to get it back,
but you don’t have the faintest idea under which cup it is. The rules of the game require
that, first, you point at one of the cups; next, to help you, the performer lifts one of
the other two cups, showing that there is no coin under it; finally, you must determine
your choice: stick to the cup you chose initially, or change to the last one. What is your
strategy?

21. Klaas owes Karel an amount of x Dutch guilders, where 0 ≤ x ≤ 1; but all he has is
one Dutch guilder, and neither has change. They decide to settle the debt by playing the
following game.
(i) First they make sure that 0 ≤ x ≤ 1

2 . If this is not the case, it is achieved by letting
the coin change hands, so that the debt x is changed into 1 − x (owed by the other

person). If now x = 0 then the game is over, else they pass to (ii).
(ii) The person having the coin flips it. If Queen Beatrix comes up, he pockets the coin,

and the game is over. If the other side comes up, his debt is doubled (i. e., x is replaced
by 2x). Now the game is started all over again (at (i)).

Prove that this is a fair game, in the sense that the expected amount of money that Karel
receives is x guilders, for the initial value of x. (You may suppose that the coin is fair; this
is guaranteed by Queen Beatrix.)

Hint: write x in binary.

22. Let f be a random variable with the property that the image of f is contained in
the set of non-negative integers, with generating function g. Prove the formula V (f) =
g′′(1) + g′(1) − (g′(1))2. (You may assume that the radius of convergence of g is larger
than 1.)

23. Let p be a real number, 0 < p < 1, and q = 1 − p. Consider, as in Example 8 and
Exercise 10, the sample space S = {h, mh, mmh, mmmh, . . .}, where the n-th element
has probability qn−1p. Let the random variable f :S → R map the n-th variable to n.
What is the generating function of f? Verify the result of Example 8 that E(f) = 1/p,
and the result of Exercise 10 that V (f) = q/p2.

24. Let S be a sample space, and f1, f2:S → R two independent random variables.
Assume that the images of f1 and f2 are contained in the set of non-negative integers, and
denote by g1, g2 the generating functions of f1, f2. Let f be the random variable f1 + f2.
Prove that the generating function g of f is given by

g(z) = g1(z)g2(z).
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25. Let the sample space S be as suggested in Exercise 17 (so #S = 20!), and denote, for
1 ≤ i ≤ 20, by Ai the event that the i-th number on the list is marked.
(a) Prove that the events A1, A2, . . . , A20 are independent in the sense that

P
(⋂

i∈I

Ai

)
=

∏
i∈I

P (Ai)

for every subset I of {1, 2, . . . , 20}.
(b) Calculate the variance of the random variable that indicates how many numbers are

marked by the procedure described in Exercise 17.
(c) Prove that the generating function of the random variable from (b) is given by

1
20!

·
19∏

i=0

(z + i).

26. Each box of the cereal Flakey contains, inside the package, a small plastic letter. Only
the six letters A, E, F , K, L, Y occur, and with each purchase of a box they all have the
same probability 1

6 .
(a) Prove that the expectation of the number of boxes of Flakey that one needs to buy

until one has two distinct letters equals 1 + 6
5 .

(b) Prove that the expectation of the number of boxes that one needs to buy until one
has all six letters equals 6 · (1 + 1

2 + 1
3 + 1

4 + 1
5 + 1

6 ) = 14.7.
(c) Calculate the generating function of the random variable from (b).

27. Let the sample space Sn and the random variable fn:Sn → R be as in Example 7 and
Exercise 18, but with n men instead of 10.
(a) Let 0 ≤ k ≤ n. Prove that

P (fn = k) =
1
k!
·

n−k∑
i=0

(−1)i

i!
.

(b) Denote the generating function of fn by gn. Prove that for any two real numbers z, t

with |t| < 1 one has
∞∑

n=0

gn(z)tn =
et(z−1)

1− t
.
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