A Higgs
 Correspondence in Characteristic p

Arthur Ogus

Mainz, September 24, 2012

A Higgs Correspondence in Characteristic p

Arthur Ogus
Mainz, September 24, 2012

- Joint with V. Vologodsky, 2001--2005
- Appears in Pub. I.H.E.S., 2008
- Toy Model for Simpson's and Faltings' theories
- New work by Shing, Xin, Zuo, Gros, Le Stum, Shiho......

Outline

- Quick Review
- The Cartier Transform
- Level One
- The Fundamental Extension
- The General Case

Riemann-Hilbert

X / C smooth projective scheme

Write $\pi_{1}(X)$ for $\pi_{1}\left(X_{a n}\right)$

$$
\operatorname{Rep} \cdot\left(\pi_{1}(X)\right) \longrightarrow \text { MIC. }(X)
$$

Simpson

$$
\operatorname{Rep} \cdot\left(\pi_{1}(X)\right) \longrightarrow \text { MIC. }(X)
$$

Somewhere: Variations of Hodge structures

Faltings

X / K smooth projective scheme, where K is a p-adic field

Somewhere:

Fontaine-modules on X, representations

O-Vologodsky

X / k smooth scheme, where k has characteristic p, (with a lifting \tilde{X} of $X \bmod p^{2}$.)

Somewhere: Fontaine modules on \tilde{X}

Review

- Cartier isomorphism
- De Rham decomposition (Deligne-Illusie)

Notation and setup

S scheme in characteristic p.
\tilde{S} flat over $\mathbf{Z} / p^{2} \mathbf{Z}$, lifting S
X / S smooth morphism
S scheme in characteristic p.
\tilde{S} flat over $\mathbf{Z} / p^{2} \mathbf{Z}$, lifting S
X / S smooth morphism $X^{\prime}:=X \times{ }_{F_{S}} S$

Cartier Isomorphism

$$
C_{X / S}^{-1}: \Omega_{X^{\prime} / S}^{q} \stackrel{\mathcal{H}^{q}}{ }\left(F_{*} \Omega_{X / S}\right)
$$

If $\tilde{F}: \tilde{X} \rightarrow \tilde{X}^{\prime}$ lifts F, then $\tilde{F}^{*}: \Omega_{\tilde{X}^{\prime} / \tilde{S}}^{q} \rightarrow \Omega_{\tilde{X} / \tilde{S}}^{q}$ is divisible by p^{q}, and we get

$$
\int_{\Omega_{X^{\prime} / S^{\prime}}^{q}}^{\Omega_{X / S}^{q}} F_{\tilde{X}^{\prime} / \tilde{S}} \xrightarrow{\zeta^{q} \mathcal{H}^{q}\left(\Omega_{X / S}^{-q}\right)} F_{*} \mathcal{Z}_{X / S}^{q}
$$

Deligne-Illusie

If $\operatorname{dim}(X / S)<p$, a lifting $\tilde{X}^{\prime} / \tilde{S}$ of X^{\prime} gives an isomorphism in $D\left(X^{\prime} / S\right)$:

$$
C_{\tilde{X}^{\prime} / S}:\left(\Omega_{X^{\prime} / S}, 0\right) \sim F_{*}\left(\Omega_{X / S}, d\right)
$$

hence for every n :

$$
\bigoplus_{i+j=n} H^{i}\left(X^{\prime}, \Omega_{X^{\prime} / S}^{j}\right) \cong H_{D R}^{n}(X / S)
$$

The Cartier Transform

Theorem: A lifting $\tilde{X}^{\prime} / \tilde{S}$ of X^{\prime} / S induces an equivalence of categories:

$$
C_{\tilde{X}^{\prime} / \tilde{S}:}: M I C_{m}(X / S) \longrightarrow H I G_{m}\left(X^{\prime} / S\right)
$$

$$
\text { if } m<p \text {. }
$$

Variant: An equivalence of tensor categories:

$$
C_{\tilde{X}^{\prime} / \tilde{S}:}: M I C^{\gamma}(X / S) \longrightarrow H I G^{\gamma}\left(X^{\prime} / S\right)
$$

What does "level m " mean?

HIG. means nilpotent Higgs fields: There exists an increasing ψ-stable filtration N. with $\operatorname{Gr}^{N}(\psi)=0$.

MIC. means nilpotent connections: There exists an increasing ∇-stable filtration N. such that $\mathrm{Gr}^{N}(\nabla)$ is p-integrable.

Better: Add the filtration to the data.
"Level m " means $N_{-1} E=0, N_{m} E=E$.

The " γ " means divided powers.

p-integrability

$$
T_{X / S} \rightarrow T_{X / S}: D \mapsto D^{(p)}
$$

($p^{\text {th }}$ iterate of a derivation)

$$
(E, \nabla) \in M I C(X / S) \quad \nabla: T_{X / S} \rightarrow \text { End }_{O_{S}}(E)
$$

Def: ∇ is " p-integrable" if $\nabla_{D}^{p}=\nabla_{D(p)}$ for all D.
Thm: iff $\left(F^{*}\left(E^{\nabla}\right), d \otimes \mathrm{id}\right) \rightarrow(E, \nabla)$ is an isomorphism.

p -curvature

$$
\psi: T_{X / S} \rightarrow \operatorname{End}_{\mathcal{O}_{S}}(E): D \mapsto \nabla_{D}^{p}-\nabla_{D^{(p)}}
$$

In fact, $\left[\psi_{D_{1}}, \psi_{D_{2}}\right]=0$ and

$$
\begin{aligned}
& \psi: T_{X / S} \rightarrow F_{X *}\left(\operatorname{End}_{\mathcal{O}_{X}}(E, \nabla)\right) \\
& \psi: E \rightarrow E \otimes F^{*}\left(\Omega_{X^{\prime} / S}^{1}\right)
\end{aligned}
$$

" F-Higgs field"

Differential Operators

$D_{X / S}$ is the sheaf of PD differential operators on X / S
(generated by $T_{X / S}$ over \mathcal{O}_{X}).

$$
\begin{gathered}
D \mapsto D^{p}-D^{(p)}: T_{X / S} \rightarrow Z_{D_{X / S}} \\
c: S^{\cdot} T_{X^{\prime} / S} \cong F_{*}\left(Z_{D_{X / S}}\right)
\end{gathered}
$$

Theorem: $D_{X / S}$ is an Azumaya algebra of rank $p^{2 d}$

Level one

$$
C_{\tilde{X}^{\prime} / \tilde{S}}^{-1}: H I G_{1}\left(X^{\prime} / S\right) \rightarrow M I C_{1}(X / S)
$$

For example

$$
E X T_{H I G}^{1}\left(\mathcal{O}_{X^{\prime}}, \mathcal{O}_{X^{\prime}}\right) \stackrel{\cong}{\cong} E X T_{M I C}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)
$$

Especially:

$$
H^{0}\left(X^{\prime}, \Omega_{X^{\prime} / S}^{1}\right) \longrightarrow E X T_{M I C}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right)
$$

The Universal Extension

- "Universal" element of MIC (X / S)
- Similar to construction of universal extension in log geometry (Kato-Nakayama);

Theorem: Given $\tilde{X}^{\prime} / \tilde{S}$, there exists a natural object of $M I C_{1}(X / S)$:

$$
\Xi:=0 \rightarrow\left(\mathcal{O}_{X}, d\right) \rightarrow\left(\mathcal{E}_{\tilde{X}^{\prime} / \tilde{S}}, \nabla\right) \rightarrow\left(F^{*} \Omega_{X^{\prime} / S}^{1}, d\right) \rightarrow 0
$$

such that

- The boundary map ∂ on cohomology
$H^{0}\left(X^{\prime}, \Omega_{X^{\prime} / S}^{1}\right)=H_{D R}^{0}\left(X, F^{*} \Omega_{X^{\prime} / S}^{1}\right) \rightarrow H_{D R}^{1}(X / S)$
is the Deligne-Illusie map (up to sign).
- The boundary map ∂ on cohomology sheaves induces $-C_{X / S}^{-1}$

$$
\mathcal{H}_{D R}^{0}\left(F^{*} \Omega_{X^{\prime} / S}^{1}\right) \cong \Omega_{X^{\prime} / S}^{1} \rightarrow \mathcal{H}_{D R}^{1}\left(\mathcal{O}_{X}\right) .
$$

$$
\Xi:=0 \rightarrow\left(\mathcal{O}_{X}, d\right) \rightarrow\left(\mathcal{E}_{\tilde{X}^{\prime} / \tilde{S}}, \nabla\right) \rightarrow\left(F^{*} \Omega_{X^{\prime} / S}^{1}, d\right) \rightarrow 0
$$

- The p-curvature ψ induces the identity map $F^{*} \Omega_{X^{\prime} / S}^{1} \rightarrow F^{*} \Omega_{X^{\prime} / S}^{1}$.
- Its class in $E x t^{1}\left(F^{*} \Omega_{X^{\prime} / S}^{1}, \mathcal{O}_{X}\right) \cong H^{1}\left(F^{*} T_{X^{\prime} / S}\right)$ is the obstruction ξ to finding a lift \tilde{F} of F.

Build it:

Choose local lifts $\tilde{F}: \tilde{U} \rightarrow \tilde{U}^{\prime}, \zeta_{\tilde{F}}: \Omega_{X^{\prime} / S}^{1} \rightarrow F_{*}\left(Z_{X / S}^{1}\right)$
On U, let $\mathcal{E}_{\tilde{X}^{\prime} / \tilde{S}}:=\mathcal{O}_{X} \oplus F^{*} \Omega_{X^{\prime} / S}^{1}$
and $\nabla\left(f, \omega^{\prime}\right)=\left(d f-\zeta_{\tilde{F}}\left(\omega^{\prime}\right), 0\right)$

Adjust gluing: On $U_{1} \cap U_{2}$ have $\tilde{F}_{2}-\tilde{F}_{1}=\xi_{21} \epsilon$ $F^{*} T_{X^{\prime} / S}$. Use

$$
\exp \left(\begin{array}{cc}
0 & \xi_{21} \\
0 & 0
\end{array}\right)
$$

to glue.

OR:

Find it in Nature

Let $\mathcal{L}_{\tilde{X}^{\prime} / S}$ be the sheaf of Frobenius liftings

$$
U \mapsto\{(\tilde{U}, \tilde{F})\} / \text { isom }
$$

Naturally an $F^{*} T_{X^{\prime} / S^{\prime}}^{1}$-torsor, whose class $\xi \in$ $H^{1}\left(X, F^{*}\left(T_{X^{\prime} / S}\right)\right)$ is the obstruction to lifting \tilde{F}.
Represented by a relatively affine X-scheme

$$
\begin{gathered}
\mathrm{L}_{\tilde{X}^{\prime} / \tilde{S}}:=\operatorname{Spec}_{X}\left(\mathcal{A}_{\tilde{X}^{\prime} / \tilde{S}}\right) \\
\mathcal{E}_{\tilde{X}^{\prime} / \tilde{S}} \subseteq \mathcal{A}_{\tilde{X}^{\prime} / \tilde{S}} \text { the affine functions } \\
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{E}_{\tilde{X}^{\prime} / \tilde{S}} \rightarrow F^{*} \Omega_{X^{\prime} / S}^{1} \rightarrow 0 \\
\quad \underset{ }{\lim S^{n} \mathcal{E}_{\tilde{X}^{\prime} / \tilde{S}} \cong \mathcal{A}_{\tilde{X}^{\prime} / \tilde{S}}}
\end{gathered}
$$

Natural Crystal Stucture

For any $T \in \operatorname{Cris}(X / S)$, we have

If E^{\prime} is a sheaf on X^{\prime}, then $\left\{f_{T / S}^{*} E^{\prime}: T \in\right.$ $\operatorname{Cris}(X / S)\}$ is a crystal on X / S, corresponding to the Frobenius descent connection on $F^{*} E^{\prime}$

Let $\mathcal{L}_{\tilde{X}^{\prime} / S, T}$ be the sheaf of liftings of $f_{T / S}$

$$
U \mapsto\left\{\left(\tilde{T}, \tilde{f}_{T / S}\right)\right\} / \text { isom }
$$

Sheaf, functorial in T because $d F=0$.
Makes $\mathcal{L}_{\tilde{X}^{\prime} / \tilde{S}}, \mathcal{A}_{\tilde{X}^{\prime} / \tilde{S}}$, and $\mathcal{E}_{\tilde{X}^{\prime} / \tilde{S}}$ into crystals.
Calculate ∇ and ψ of $\mathcal{L}_{\tilde{X}^{\prime} / / \tilde{S}^{\prime}} \mathcal{E}_{\tilde{X}^{\prime} / \tilde{S}}$, and $\mathcal{A}_{\tilde{X}^{\prime} / \tilde{S}}$

Key Calculation

$$
\begin{aligned}
\nabla: \mathcal{L}_{\tilde{X}^{\prime} / \bar{S}} & \rightarrow F^{*} T_{X^{\prime} / S} \otimes \Omega_{X / S}^{1} \\
& \rightarrow \operatorname{Hom}\left(F^{*} \Omega_{X^{\prime} / S}^{1}, \Omega_{X / S}^{1}\right)
\end{aligned}
$$

Claim: $\quad \nabla(\tilde{F})=\zeta_{\tilde{F}} \in \operatorname{Hom}\left(F^{*} \Omega_{X^{\prime} / S}^{1}, \Omega_{X / S}^{1}\right)$

$$
\tilde{T}:=\tilde{U} \times \tilde{U}
$$

$$
\begin{aligned}
\nabla(\tilde{F}) & =p_{2}^{*}(\tilde{F})-p_{1}^{*}(\tilde{F}) \\
& =\tilde{F}^{*} \circ\left(p_{2}^{*}-p_{p}^{*}\right) \\
& =p^{-1} \tilde{F}^{*} \circ\left(p_{2}^{*}-p_{1}^{*}\right) \\
& =\zeta_{\tilde{F}} \circ d
\end{aligned}
$$

Get our desired properties!

Nicer formula for p -curvature:

$$
\begin{aligned}
& \mathcal{A}_{\bar{x}^{\prime} / \bar{S}} \stackrel{\psi}{\sim} \mathcal{A}_{X^{\prime} / \bar{S}} \otimes F^{*} \Omega_{X^{\prime} / \bar{S}}^{1}
\end{aligned}
$$

More:

This action of $S^{*} T_{X^{\prime} / S}$ on $\mathcal{A}_{\tilde{X}^{\prime} / \tilde{S}}$ extends to an action of $\Gamma^{\cdot} T_{X^{\prime} / S}$.

Natural filtration N., with $\Gamma^{i} T_{X^{\prime} / S} \times N_{j} \mathcal{A}_{\tilde{X}^{\prime} / \tilde{S}} \mapsto$ $N_{j-i} \mathcal{A}_{\tilde{X}^{\prime} / \tilde{S}}$.

Object of MIC? (X / S), the category of admissibly filtered $D_{X / S}^{\gamma}$-modules.

$$
D_{X / S}^{\gamma}:=\Gamma^{*} T_{X^{\prime} / S} \otimes_{S^{\prime} T_{X^{\prime} / S}} F_{*} D_{X / S} .
$$

The Cartier Transform

Theorem: A lifting $\tilde{X}^{\prime} / \tilde{S}$ induces equivalence of tensor categories:

$$
\begin{gathered}
C_{\tilde{X}^{\prime} / \tilde{s}^{5}}: M I C^{\gamma}(X / S) — H I G^{\gamma}\left(X^{\prime} / S\right) \\
(E, \nabla, N) \mapsto\left(E^{\prime}, \psi^{\prime}, N\right):=\left(E \otimes \mathcal{A}_{\left.\tilde{X}^{\prime} / \tilde{S}\right)}(\nabla, \gamma)\right. \\
E^{\prime}:=\mathrm{id} \otimes \psi_{\mathcal{A}}=\mathrm{id} \otimes d_{\mathcal{A} / X}
\end{gathered}
$$

$$
C_{\tilde{X}^{\prime} / \bar{S}}^{-1}: H I G^{\gamma}\left(X^{\prime} / S\right) \rightarrow M I C^{\gamma}(X / S)
$$

$$
\begin{aligned}
\left(E^{\prime}, \psi^{\prime}, N\right) & \mapsto(E, \nabla, N) \\
E & :=\left(E^{\prime} \otimes \mathcal{A}_{\tilde{X}^{\prime} / \tilde{S}}\right)^{\left(\psi_{\text {tot }, \gamma)}\right)} \\
\nabla & :=\mathrm{id} \otimes \nabla_{\mathcal{A}}
\end{aligned}
$$

Methods of Proof

- Solve the differential equations
- Use the Azumaya property of the ring Dx/s
- The dual of $\mathrm{Ax}_{\mathrm{x}} / \mathrm{s}$ is a splitting module

Cohomology

If $\left(E^{\prime}, \psi^{\prime}\right):=C_{\tilde{X}^{\prime} / \tilde{S}}(E, \nabla)$, there are canonical quasiisomorphisms:

$$
\begin{aligned}
& \mathcal{A}_{\tilde{X}^{\prime} / \tilde{S}}^{i, j}=\mathcal{A}_{\tilde{X}^{\prime} / \tilde{S}} \otimes F^{*} \Omega_{X^{\prime} / S}^{i} \otimes \Omega_{X / S}^{j} \\
& \left(E \otimes \Omega_{X / S}, d\right) \quad\left(E^{\prime} \otimes \Omega_{X^{\prime} / S}, \psi^{\prime}\right)
\end{aligned}
$$

if the level m of E is less than $p-d$.

$$
E^{\prime} \otimes \Omega_{X^{\prime} / S}^{2} \longrightarrow E \otimes \mathcal{A}_{n-2}^{0,2} \xrightarrow{d} E \otimes \mathcal{A}_{n-2}^{1,2} \xrightarrow{d} E \otimes \mathcal{A}_{n-2}^{2,2} \longrightarrow \cdots
$$

$$
\psi^{\prime}|\quad \mathrm{id} \otimes \psi| \begin{aligned}
& \mathrm{id} \otimes \psi \mid \\
& \mathrm{id} \otimes \psi \mid
\end{aligned}
$$

$$
E^{\prime} \otimes \Omega_{X^{\prime} / S}^{1} \longrightarrow E \otimes \mathcal{A}_{n-1}^{0,1} \xrightarrow{d} E \otimes \mathcal{A}_{n-1}^{1,1} \xrightarrow{d} E \otimes \mathcal{A}_{n-1}^{2,1} \longrightarrow \cdots
$$

$$
\psi^{\prime}\left|\begin{array}{l|l|}
\mathrm{id} \otimes \psi \mid & \mathrm{id} \otimes \psi \mid \\
d \mathrm{~d} \otimes \psi \mid \\
d
\end{array}\right|
$$

$$
E^{\prime} \longrightarrow E \otimes \mathcal{A}_{n}^{0,0} \xrightarrow{d} E \otimes \mathcal{A}_{n}^{1,0} \xrightarrow{d} E \otimes \mathcal{A}_{n}^{2,0} \longrightarrow \cdots
$$

$$
E \xrightarrow{d} E \otimes \Omega_{X / S}^{1} \xrightarrow{d} E \otimes \Omega_{X / S}^{2} \longrightarrow \cdots
$$

Summary

- Lift of X^{\prime} / S induces an equivalence betweeen $\mathrm{MIC}_{m}(X / S)$ and $\mathrm{HIG}_{m}\left(\mathrm{X}^{\prime} / \mathrm{S}\right)$, if $\mathrm{m}<\mathrm{p}$.
- This equivalence is a categorification of the Deligne-Illusie decomposition
- It is compatible with cohomology

