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Logarithmic Geometry

Emphasis
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Logarithmic Geometry

History

Founders:
Deligne, Faltings, Fontaine–Illusie, Kazuya Kato, Chikara
Nakayama, many others
Log geometry in this form was invented discovered assembled in
the 80’s by Fontaine and Illusie with hope of studying p-adic Galois
representations associated to varieties with bad reduction. Carried
out by Kato, Tsuji, Faltings, and others. (The Cst conjecture.)

I’ll emphasize geometric analogs—currently very active—today.
Related to toric and tropical geometry
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Logarithmic Geometry
Introduction

Themes and Motivations

Motivating problem 1: Compactification

Consider
S∗ j- S �i Z

j an open immersion, i its complementary closed immersion.
For example: S∗ a moduli space of “smooth” objects, inside some
space S of “stable” objects, Z the “degenerate” locus.

Log structure is “magic powder” which when added to S
“remembers S∗.”
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Logarithmic Geometry
Introduction

Themes and Motivations

Motivating problem 2: Degeneration

Study families, i.e., morphisms

X ∗ - X �
i

Y

S∗

f ∗

? j
- S

f

?
�

i
Z

g

?

Here f ∗ is smooth but f and g are only log smooth (magic
powder).
The log structure allows f and even g to somehow “remember” f ∗.
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Logarithmic Geometry
Introduction

Themes and Motivations

Benefits

I Log smooth maps can be understood locally, (but are still
much more complicated than classically smooth maps).

I Degenerations can be studied locally on the singular locus Z .
I Log geometry has natural cohomology theories:

I Betti
I De Rham
I Crystalline
I Etale
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Logarithmic Geometry
Introduction

Background and Roots

Roots and ingredients

I Toroidal embeddings and toric geometry
I Regular singular points of ODE’s, log poles and differentials
I Degenerations of Hodge structures

Remark: A key difference between local toric geometry and local
log geometry:

I toric geometry based on study of cones and monoids.
I log geometry based on study of morphisms of cones and

monoids.
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Logarithmic Geometry
Introduction

Applications

Some applications

I Compactifying moduli spaces: K3’s, abelian varieties, curves,
covering spaces

I Moduli and degenerations of Hodge structures
I Crystalline and étale cohomology in the presence of bad

reduction—Cst conjecture
I Work of Gabber and others on resolution of singularities

(uniformization)
I Work of Gross and Siebert on mirror symmetry
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Logarithmic Geometry
The Language of Log Geometry

Definitions and examples

What is Log Geometry?

What is geometry? How do we do geometry?
Locally ringed spaces: Algebra + Geometry

I Space: Topological space X (or topos): X = (X , {U ⊆ X})
I Ring: (R,+, ·, 1R) (usually commutative)
I Monoid: (M, ·, 1M) (usually commutative and cancellative)

Definition
A locally ringed space is a pair (X ,OX ), where

I X is a topological space (or topos)
I OX : {OX (U) : U ⊆ X} a sheaf of rings on X

such that for each x ∈ X , the stalk OX ,x is a local ring.
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Logarithmic Geometry
The Language of Log Geometry

Definitions and examples

Example
X a complex manifold:
For each open U ⊆ X , OX (U) is the ring of analytic functions
U → C.
OX ,x is the set of germs of functions at x ,
mX ,x := {f : f (x) = 0} is its unique maximal ideal.
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Logarithmic Geometry
The Language of Log Geometry

Definitions and examples

Example: Compactification log structures
X scheme or analytic space, Y closed algebraic or analytic subset,
X ∗ = X \ Y

X ∗ j- X �i Y
Instead of the sheaf of ideals:

IY := {a ∈ OX : i∗(a) = 0} ⊆ OX

consider the sheaf of multiplicative submonoids:

MX∗/X := {a ∈ OX : j∗(a) ∈ O∗X∗} ⊆ OX .

Log structure:

αX∗/X : MX∗/X → OX (the inclusion mapping)
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Logarithmic Geometry
The Language of Log Geometry

Definitions and examples

Notes

I This is generally useless unless codim (Y ,X ) = 1.
I MX∗/X is a sheaf of faces of OX , i.e., a sheaf F of

submonoids such that fg ∈ F implies f and g ∈ F .
I There is an exact sequence:

0→ O∗X →MX∗/X → ΓY (Div−X )→ 0.
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Logarithmic Geometry
The Language of Log Geometry

Definitions and examples

Definition of log structures
Let (X ,OX ) be a locally ringed space (e.g. a scheme or analytic
space).
A prelog structure on X is a morphism of sheaves of
(commutative) monoids

αX : MX → OX .

It is a log structure if

α−1(O∗X )→ O∗X
is an isomorphism. (In this case M∗X ∼= O∗X .)

Examples:
I MX/X = O∗X , the trivial log structure
I M∅/X = OX , the empty log structure .
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Logarithmic Geometry
The Language of Log Geometry

Definitions and examples

Logarithmic spaces
A log space is a pair (X , αX ), and a morphism of log spaces is a
triple (f , f ], f [):

f : X → Y , f ] : f −1(OY )→ OX , f [ : f −1(MY )→MX

Just write X for (X , αX ) when possible.
If X is a log space, let X be X with the trivial log structure.
There is a canonical map of log spaces:

X → X : (X ,MX → OX )→ (X ,O∗X → OX )

(id : X → X , id : OX → OX , inc : O∗X →MX )

Variant: Idealized log structures
Add KX ⊆MX , sheaf of ideals, such that
αX : (MX ,KX )→ (OX , 0).
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Logarithmic Geometry
The Language of Log Geometry

Toric varieties

Example: torus embeddings and toric varieties

Example
The log line: A1, with the compactification log structure from:

Gm
j- A1 �i 0

on points: C∗ - C � 0.

Generalization
(Gm)r ⊆ AQ

Here (Gm)r is a commutative group scheme: a (noncompact)
torus,
AQ will be a monoid scheme, coming from a toric monoid Q, with
Qgp ∼= Zr .
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Logarithmic Geometry
The Language of Log Geometry

Toric varieties

Notation Let Q be a cancellative commutative monoid.

Q∗ := the largest group contained in Q.
Qgp := the smallest group containing Q.
Q := Q/Q∗.
Spec Q is the set of prime ideals of Q, i.e, the complements of the
faces of Q.

N.B. A face of Q is a submonoid F which contains a and b
whenever it contains a + b.
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Logarithmic Geometry
The Language of Log Geometry

Toric varieties

Terminology: We say Q is:
integral if Q is cancellative

fine if Q is integral and finitely generated
saturated if Q is integral and nx ∈ Q implies x ∈ Q, for

x ∈ Qgp, n ∈ N
toric if Q is fine and saturated and Qgp is torsion free

sharp if Q∗ = 0.
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Logarithmic Geometry
The Language of Log Geometry

Toric varieties

Generalization: toric varieties
Assume Q is toric (so Qgp ∼= Zr for some r). Let

A∗Q := Spec C[Qgp], a group scheme (torus). Thus

A∗Q(C) = {Qgp → C∗} ∼= (C∗)r , OA∗Q(A∗Q) = C[Qgp]

AQ := Spec C[Q], a monoid scheme. Thus

AQ(C) = {Q → C}, OAQ
(AQ) = C[Q]

AQ := the log scheme given by the open immersion j : A∗Q → AQ.

Have Γ(M) ∼= C∗ ⊕ Q.
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Logarithmic Geometry
The Language of Log Geometry

Toric varieties

Examples
I If Q = Nr , AQ(C) = Cr , A∗Q(C) = (C∗)r

I If Q is the submonoid of Z4 spanned by
{(1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1)}, then

AQ(C) = {(z1, z2, z3, z4) ∈ C4 : z1z2 = z3z4}.

A∗Q ∼= (C∗)3.
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Logarithmic Geometry
The Language of Log Geometry

Pictures

Pictures

Pictures of Q:
Spec Q is a finite topological space. Its points correspond to the
orbits of the action of A∗Q on AQ, and to the faces of the cone CQ
spanned by Q.

Pictures of a log scheme X
Embellish picture of X by attaching SpecMX ,x to X at x .
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Logarithmic Geometry
The Language of Log Geometry

Pictures

Example: The log line (Q = N, CQ = R≥)

Spec(N)

Spec(N→ C[N])
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Logarithmic Geometry
The Language of Log Geometry

Pictures

Example: The log plane (Q = N⊕N, CQ = R≥ × R≥)

Spec(N⊕N)

Spec(N⊕N→ C[N⊕N)
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Logarithmic Geometry
The Language of Log Geometry

Points and disks

Log points
The standard (hollow) log point
t := Spec C. (One point space). Ot = C (constants)
Add log structure:

α : Mt := C∗ ⊕N→ C (u, n) 7→ u0n =

{
u if q = 0
0 otherwise

We usually write P for a log point.
Generalizations

I Replace C by any field.
I Replace N by any sharp monoid Q.
I Add ideal to Q.
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Logarithmic Geometry
The Language of Log Geometry

Points and disks

Example: log disks
V a discrete valuation ring, e.g, C{t} (germs of holomorphic
functions)
K := frac(V ), mV := max(V ), kV := V /mV ,
π ∈ mV uniformizer, V ′ := V \ {0} ∼= V ∗ ⊕N

T := Spec V = {τ, t}, τ := T ∗ := Spec K , t := Spec k.

Log structures on T : Γ(αT ) : Γ(T ,MT )→ Γ(T ,OT ) :
trivial: αT/T = V ∗ → V (inclusion): Ttriv

standard: αT∗/T = V ′ → V (inclusion): Tstd

hollow: αhol = V ′ → V (inclusion on V ∗, 0 on mV ): Thol

splitm αm = V ∗ ⊕N→ V (inc, 1 7→ πm) : Tsplm
Note: Tspl1

∼= Tstd and Tsplm → Thol as m→∞
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Logarithmic Geometry
The Category of Log Schemes

Induced log structures

Inducing log structures

Pullback and pushforward
Given a map of locally ringed spaces f : X → Y , we can:

Pushforward a log structure on X to Y : f∗(MX )→ OY .
Pullback a log structure on Y to X : f ∗(MY )→ OX .

A morphism of log spaces is strict if f ∗(MY )→MX is an
isomorphism.
A chart for a log space is strict map X → AQ for some Q.
A log space (or structure) is coherent if locally on X it admits a
chart.
Generalization: relatively coherent log structures.
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Logarithmic Geometry
The Category of Log Schemes

Induced log structures

Example: Log disks and log points

Let T be a log disk, t its origin. Then the log structure on T
induces a log structure on t:

Log structure on T Induced structure on t
Trivial Trivial

Standard Standard
Hollow Standard

Split Standard
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Logarithmic Geometry
The Category of Log Schemes

Fiber products

Fiber products

The category of coherent log schemes has fiber products.
MX×Z Y → OX×Z Y is the log structure associated to

p−1
X MX ⊕p−1

Z MZ
p−1

Y MY → OX×Z Y .

Danger: MX×Z Y may not be integral or saturated. Fixing this can
“damage” the underlying space X ×Z Y .
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Logarithmic Geometry
The Category of Log Schemes

Morphisms

Properties of monoid homomorphisms

A morphism θ : P → Q of integral monoids is

strict if θ : P → Q is an isomorphism
local if θ−1(Q∗) = P∗

vertical if Q/P := Im(Q → Cok(θgp)) is a group.
exact if P = (θgp)−1(Q) ⊆ Pgp

A morphism of log schemes f : X → Y has P if for every x ∈ X ,
the map f [ : MY ,f (x) → MX ,x has P.
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Logarithmic Geometry
The Category of Log Schemes

Morphisms

Examples of monoid homomorphisms

Examples:
I N→ N⊕N : n 7→ (n, n)

C2 → C : (z1, z2) 7→ z1z2
Local, exact, and vertical.

I N⊕N→ N⊕N : (m, n) 7→ (m,m + n)
C2 → C2 : (z1, z2) 7→ (z1, z1z2) (blowup)
Local, not exact , vertical

I N→ Q := 〈q1, q2, q3, q4〉/(q1 + q2 = q3 + q4) : n 7→ nq4
Local, exact, not vertical.
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Logarithmic Geometry
The Category of Log Schemes

Differentials and deformations

Differentials

Let f : X → Y be a morphism of log schemes,
Universal derivation:

(d , δ) : (OX ,MX )→ Ω1
X/Y (some write ω1

X/Y )

dα(m) = α(m)δ(m) so δ(m) = d log m (sic)

Geometric construction:
(gives relation to deformation theory)
Infinitesimal neighborhoods of diagonal X → X ×Y X made strict:
X → PN

X/Y , Ω1
X/Y = J/J2.
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Logarithmic Geometry
The Category of Log Schemes

Differentials and deformations

If αX = αX∗/X where Z := X \ X ∗ is a DNC relative to Y ,

Ω1
X/Y = Ω1

X/Y (log Z )

In coordinates (t1, . . . tn), Z defined by t1 · · · tr = 0.
Ω1

X/Y has basis: (dt1/t1, . . . dtr/tr , dtr+1 . . . dtn).
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Logarithmic Geometry
The Category of Log Schemes

Differentials and deformations

Logarithmic de Rham complex

0→ OX → Ω1
X/Y → Ω2

X/Y · · ·

Logarithmic connections:

∇ : E → Ω1
X/Y ⊗ E

satisfying Liebnitz rule + integrability condition: ∇2 = 0.
Generalized de Rham complex

0→ E → E ⊗ Ω1
X/Y → E ⊗ Ω2

X/Y · · ·
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Logarithmic Geometry
The Category of Log Schemes

Smooth morphisms

Smooth morphisms
The definition of smoothness of a morphism f : X → Y follows
Grothendieck’s geometric idea: “formal fibration”: Consider
diagrams:

T
g
- X

T ′

i

? h
-

g ′
-

Y

f

?

Here i is a strict nilpotent immersion. Then f : X → Y is
smooth if g ′ always exists, locally on T ,

unramified if g ′ is always unique,
étale if g ′ always exists and is unique.
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Logarithmic Geometry
The Category of Log Schemes

Smooth morphisms

Examples: monoid schemes and tori

Let θ : P → Q be a morphism of toric monoids. R a base ring.
Then the following are equivalent:

I Aθ : AQ → AP is smooth
I A∗θ : A∗Q → A∗P is smooth
I R ⊗Ker(θgp) = R ⊗ Cok(θgp)tors = 0

Similarly for étale and unramified maps.
In general, smooth (resp. unramified, étale) maps look locally like
these examples.
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Logarithmic Geometry
The Geometry of Log Schemes

The space Xlog

The space Xlog (Kato–Nakayama)
X/C: (relatively) fine log scheme of finite type,
Xan : its associated log analytic space.

Xlog : topological space, defined as follows:

Underlying set: the set of pairs (x , σ), where x ∈ Xan and

O∗X ,x
x ]
- C∗ u

MX ,x

αX ,x

? σ
- S1

arg

?

u/|u|
?

commutes. Hence:
Xlog

τ- Xan - X
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Logarithmic Geometry
The Geometry of Log Schemes

The space Xlog

Each m ∈ τ−1MX defines a function arg(m) : Xlog → S1.
Xlog is given the weakest topology so that τ : Xlog → Xan and all
arg(m) are continuous.
Get τ−1Mgp

X
arg- S1 extending arg on τ−1O∗X .

Define sheaf of logarithms of sections of τ−1Mgp
X :

LX - τ−1Mgp
X

R(1)
? exp

- S1
?
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Logarithmic Geometry
The Geometry of Log Schemes

The space Xlog

Get “exponential” sequence:

0 - Z(1) - τ−1OX - τ−1O∗X - 0

0 - Z(1)
?

- LX
?

- τ−1Mgp
X

?
- 0

Here: τ−1OX → LX : a 7→ (exp a, Im(a)) ∈ τ−1Mgp
X × R(1).

Construct universal sheaf of τ−1OX -algebras Olog
X containing LX
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Logarithmic Geometry
The Geometry of Log Schemes

Geometry of log compactification

Compactification of open immersions

The map τ is an isomorphism over the set X ∗ where M = 0, so
we get a diagram

Xlog

X ∗an
j
-

jlog
-

Xan

τ

?

The map τ is proper, and for x ∈ X , τ−1(x) is a torsor under
Tx := Hom(Mgp

x ,S1) (a finite sum of compact tori).
We think of τ as a relative compactification of j .
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Logarithmic Geometry
The Geometry of Log Schemes

Geometry of log compactification

Example: monoid schemes

X = AQ := Spec(Q → C[Q]), with Q toric.

Xlog = Alog
Q = RQ × TQ

τ- X = AQ

where

AQ(C) = {z : Q → (C, ·)} (algebraic set)
RQ := {r : Q → (R≥, ·)} (semialgebraic set)
TQ := {ζ : Q → (S1, ·)} (compact torus)
τ : RQ × TQ → AQ(C) is multiplication: z = rζ.

So Alog
Q means polar coordinates for AQ.
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Logarithmic Geometry
The Geometry of Log Schemes

Geometry of log compactification

Example: log line, log point

If X = AN, then Xlog = R≥ × S1.
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Logarithmic Geometry
The Geometry of Log Schemes

Geometry of log compactification

or

(Real blowup)

If X = P = xN, Xlog = S1.
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Logarithmic Geometry
The Geometry of Log Schemes

Geometry of log compactification

Example: Olog
P

Γ(Plog ,Olog
P ) = Γ(S1

log ,O
log
P ) = C.

Pull back to universal cover exp : R(1)→ S1

Γ(R(1), exp∗Olog
P ) = C[θ],

generated by θ (that is, log(0)) .
Then π1(Plog ) = Aut(R(1)/S1) = Z(1) acts, as the unique
automorphism such that ργ(θ) = θ + γ. In fact, if N = d/dθ,

ργ = eγN .
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Logarithmic Geometry
Applications

Cohomology of compactifications

Application—Compactification
Theme: jlog compactifies X ∗ → X by adding a boundary.

Theorem
If X/C is (relatively) smooth, jlog : X ∗an → Xlog is locally aspheric.
In fact, (Xlog ,Xlog \ X ∗an) is a manifold with boundary.

Proof.
Reduce to the case X = AQ. Reduce to (RQ,R∗Q). Use the
moment map, a homeomorphism:

(RQ,R∗Q) ∼= (CQ,Co
Q) : r 7→

∑
a∈A

r(a)a

where A is a finite set of generators of Q and CQ is the real cone
spanned by Q.
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Logarithmic Geometry
Applications

Cohomology of compactifications

Example: The log line
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Logarithmic Geometry
Applications

Cohomology of compactifications

Cohomology of log compactifications

Let X/C be (relatively) smooth, and X ∗ the open set where the
log structure is trivial.

Theorem

H∗(Xlog ,Z)

H∗(X ∗,Z) �

∼=
-

H∗(Xan,Z)
?
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Logarithmic Geometry
Applications

Cohomology of compactifications

Log de Rham cohomology
Three de Rham complexes:

I Ω·X/C (log DR complex on X )
I Ωlog·

X/C (log DR compex on Xlog
I Ω·X∗/C (ordinary DR complex on X ∗

Theorem:
There is a commutative diagram of isomorphisms:

HDR(X ) - HDR(Xlog ) - HDR(X ∗)

HB(Xlog ,C)
?

- HB(X ∗an,C)
?
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Logarithmic Geometry
Applications

Riemann-Hilbert correspondence

X/S (relatively) smooth map of log schemes.

Theorem (Riemann-Hilbert)
Let X/C be (relatively) smooth. Then there is an equivalence of
categories:

MICnil (X/C) ≡ Lun(Xlog )

(E ,∇) 7→ Ker(τ−1E ⊗Olog
X

∇- τ−1E ⊗ Ω1log
X )
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Logarithmic Geometry
Applications

Riemann-Hilbert correspondence

Example: X := P (Standard log point)
Ω1

P/C
∼= N⊗ C ∼= C, so

MIC(P/C) ≡ {(E ,N) : vector space with endomorphism}

Plog = S1, so L(Plog ) is cat of reps of π1(Plog ) ∼= Z(1). Thus:

L(Plog ) ≡ {(V , ρ) : vector space with automorphism}

Conclusion:

{(E ,N) : N is nilpotent} ≡ {(V , ρ) : ρ is unipotent}

Use Olog
P = C[θ]:

(V , ρ) = Ker (τ∗E ⊗ C[θ]→ τ∗E ⊗ C[θ])

N 7→ e2πiN
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Logarithmic Geometry
Applications

Degenerations

Application: Degenerations

Theme: replacing f by flog smooth out singularities of mappings.

Theorem (Nakayama-Ogus)
Let f : X → S be a (relatively) smooth exact morphism. Then
flog : Xlog → Slog is a topological submersion, whose fibers are
orientable topological manifolds with boundary. The boundary
corresponds to the set where flog is not vertical.
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Logarithmic Geometry
Applications

Degenerations

Example
Semistable reduction C× C→ C : (x1, x2) 7→ x1x2
This is Aθ, where θ : N→ N⊕N : n 7→ (n, n)
Topology changes: (We just draw R× R→ R):
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Logarithmic Geometry
Applications

Degenerations

Log picture: RQ × TQ
Just draw RQ → RN : R≥ × R≥ → R≥ : (x1, x2) 7→ x1x2

Topology unchanged, and in fact is homeomorphic to projection
mapping. Proof: (Key is exactness of f , integrality of Cθ.)

52 / 62



Logarithmic Geometry
Applications

Cohomology and monodromy of degenerations

Consequences

Theorem
f : X → S (relatively) smooth, proper, and exact,

1. flog : Xlog → Slog is a fiber bundle, and
2. Rqflog∗(Z) is locally constant on Slog .
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Logarithmic Geometry
Applications

Cohomology and monodromy of degenerations

Monodromy
In the above situation, Rqf∗(Z) defines a representation of
π1(Slog ). We can study it locally, using Xlog → X × Slog .
(Vanishing cycles)
Restrict to D ⊆ S, D a log disk. Even better: to P ⊆ D, P a log
point.
Theorem
Let X → P be (relatively) smooth, saturated, and exact.

I The action of π1(Plog ) on Rqf∗(Z) is unipotent.
I Generalized Picard-Lefschetz formula for graded version of

action in terms of linear data coming from: MP →MX .

Proof uses a log construction of the Steenbrink complex
Ψ· := Olog

P → Olog
P ⊗ Ω1

X/P ⊗ · · ·
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Logarithmic Geometry
Applications

Cohomology and monodromy of degenerations

Example: Dwork families

Degree 3: Family of cubic curves in P3 : X → S:

t(X 3
0 + X 3

1 + X 3
2 )− 3X0X1X2 = 0

At t = 0, get union of three complex lines: At t =∞, get smooth
elliptic curve.
Xlog → Slog is a fibration. How can this be?
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Logarithmic Geometry
Applications

Cohomology and monodromy of degenerations

Fibers of X → S
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Logarithmic Geometry
Applications

Cohomology and monodromy of degenerations

Fibers of Xlog → Slog
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Logarithmic Geometry
Applications

Cohomology and monodromy of degenerations

Dehn twist
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Logarithmic Geometry
Applications

Cohomology and monodromy of degenerations

Degree 4:

t(X 4
0 + X 4

1 + X 4
2 + X 4

3 )− 4X0X1X2X3 = 0

At t − 0, get a (complex) tetrahedron. At t =∞, get a K3 surface.
Need to use relatively coherent log structure for verticality. Still
get a fibration!
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Logarithmic Geometry
Applications

Cohomology and monodromy of degenerations

Degree 5:

t(X 5
0 + X 5

1 + X 5
2 + X 5

3 + X 5
4 )− 5X0X1X2X3X4 = 0

Famous Calabi-Yau family from mirror symmetry.
Also used in proof of Sato-Tate

Nostalgia
t = 5/3 was subject of my first colloquim at Berkeley more than
thirty years ago.
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Logarithmic Geometry
Conclusion

Conclusion

I Log geometry provides a uniform geometric perspective to
treat compactification and degeneration problems in topology
and in algebraic and arithmetic geometry.

I Log geometry incorporates many classical tools and
techniques.

I Log geometry is not a revolution.
I Log geometry presents new problems and perspectives, both

in fundamentals and in applications.
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Logarithmic Geometry
Conclusion

Log:
It’s better than bad, it’s good.
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