Arthur Ogus

October 1, 2009, Berkeley

Outline

Introduction

The Language of Log Geometry

The Category of Log Schemes

The Geometry of Log Schemes

Applications

Conclusion

Emphasis

- What it's for
- How it works
- What it looks like

History

Founders:

Deligne, Faltings, Fontaine–Illusie, Kazuya Kato, Chikara Nakayama, many others

Log geometry in this form was invented discovered assembled in the 80's by Fontaine and Illusie with hope of studying *p*-adic Galois representations associated to varieties with bad reduction. Carried out by Kato, Tsuji, Faltings, and others. (The C_{st} conjecture.)

I'll emphasize geometric analogs—currently very active—today. Related to toric and tropical geometry Introduction

- Themes and Motivations

Motivating problem 1: Compactification

Consider

$$S^* \xrightarrow{j} S \xleftarrow{i} Z$$

j an open immersion, i its complementary closed immersion. For example: S^* a moduli space of "smooth" objects, inside some space S of "stable" objects, Z the "degenerate" locus.

Log structure is "magic powder" which when added to S "remembers S^* ."

└─ Themes and Motivations

Motivating problem 2: Degeneration

Study families, i.e., morphisms

Here f^* is smooth but f and g are only log smooth (magic powder).

The log structure allows f and even g to somehow "remember" f^* .

- Introduction

- Themes and Motivations

Benefits

- Log smooth maps can be understood locally, (but are still much more complicated than classically smooth maps).
- ► Degenerations can be studied locally on the singular locus Z.
- Log geometry has natural cohomology theories:
 - Betti
 - De Rham
 - Crystalline
 - Etale

Background and Roots

Roots and ingredients

- Toroidal embeddings and toric geometry
- Regular singular points of ODE's, log poles and differentials
- Degenerations of Hodge structures

Remark: A key difference between local toric geometry and local log geometry:

- toric geometry based on study of cones and monoids.
- log geometry based on study of morphisms of cones and monoids.

Some applications

- Compactifying moduli spaces: K3's, abelian varieties, curves, covering spaces
- Moduli and degenerations of Hodge structures
- Crystalline and étale cohomology in the presence of bad reduction—C_{st} conjecture
- Work of Gabber and others on resolution of singularities (uniformization)
- Work of Gross and Siebert on mirror symmetry

— The Language of Log Geometry

Definitions and examples

What is Log Geometry?

What is geometry? How do we do geometry? Locally ringed spaces: Algebra + Geometry

- ▶ Space: Topological space X (or topos): $X = (X, \{U \subseteq X\})$
- Ring: $(R, +, \cdot, 1_R)$ (usually commutative)
- Monoid: $(M, \cdot, 1_M)$ (usually commutative and cancellative)

Definition

A locally ringed space is a pair (X, \mathcal{O}_X) , where

X is a topological space (or topos)

• $\mathcal{O}_X : \{\mathcal{O}_X(U) : U \subseteq X\}$ a sheaf of rings on X

such that for each $x \in X$, the stalk $\mathcal{O}_{X,x}$ is a local ring.

— The Language of Log Geometry

Definitions and examples

Example

X a complex manifold:

For each open $U \subseteq X$, $\mathcal{O}_X(U)$ is the ring of analytic functions $U \to \mathbf{C}$.

 $\mathcal{O}_{X,x}$ is the set of germs of functions at x,

 $m_{X,x} := \{f : f(x) = 0\}$ is its unique maximal ideal.

The Language of Log Geometry

Definitions and examples

Example: Compactification log structures

X scheme or analytic space, Y closed algebraic or analytic subset, $X^* = X \setminus Y$

$$X^* \xrightarrow{j} X \xleftarrow{i} Y$$

Instead of the sheaf of ideals:

$$I_Y := \{a \in \mathcal{O}_X : i^*(a) = 0\} \subseteq \mathcal{O}_X$$

consider the sheaf of multiplicative submonoids:

$$\mathcal{M}_{X^*/X} := \{ a \in \mathcal{O}_X : j^*(a) \in \mathcal{O}_{X^*}^* \} \subseteq \mathcal{O}_X.$$

Log structure:

 $\alpha_{X^*/X} \colon \mathcal{M}_{X^*/X} \to \mathcal{O}_X$ (the inclusion mapping)

└─ The Language of Log Geometry

Definitions and examples

Notes

- This is generally useless unless codim (Y, X) = 1.
- ▶ $\mathcal{M}_{X^*/X}$ is a sheaf of faces of \mathcal{O}_X , i.e., a sheaf \mathcal{F} of submonoids such that $fg \in \mathcal{F}$ implies f and $g \in \mathcal{F}$.

$$0 o \mathcal{O}_X^* o \mathcal{M}_{X^*/X} o \underline{\Gamma}_Y(\mathit{Div}_X^-) o 0.$$

— The Language of Log Geometry

Definitions and examples

Definition of log structures

Let (X, \mathcal{O}_X) be a locally ringed space (e.g. a scheme or analytic space).

A prelog structure on X is a morphism of sheaves of (commutative) monoids

$$\alpha_X \colon \mathcal{M}_X \to \mathcal{O}_X.$$

It is a log structure if

$$\alpha^{-1}(\mathcal{O}_X^*) \to \mathcal{O}_X^*$$

is an isomorphism. (In this case $\mathcal{M}^*_X\cong\mathcal{O}^*_X.$)

Examples:

- $\mathcal{M}_{X/X} = \mathcal{O}_X^*$, the trivial log structure
- $\mathcal{M}_{\emptyset/X} = \mathcal{O}_X$, the empty log structure .

The Language of Log Geometry

Definitions and examples

Logarithmic spaces

A log space is a pair (X, α_X) , and a morphism of log spaces is a triple $(f, f^{\sharp}, f^{\flat})$:

$$f \colon X o Y, f^{\sharp} \colon f^{-1}(\mathcal{O}_Y) o \mathcal{O}_X, f^{\flat} \colon f^{-1}(\mathcal{M}_Y) o \mathcal{M}_X$$

Just write X for (X, α_X) when possible. If X is a log space, let \underline{X} be X with the trivial log structure. There is a canonical map of log spaces:

$$X \to \underline{X} : (X, \mathcal{M}_X \to \mathcal{O}_X) \to (X, \mathcal{O}_X^* \to \mathcal{O}_X)$$

(id: $X \to X$, id: $\mathcal{O}_X \to \mathcal{O}_X$, inc: $\mathcal{O}_X^* \to \mathcal{M}_X$)

Variant: Idealized log structures

Add $\mathcal{K}_X \subseteq \mathcal{M}_X$, sheaf of ideals, such that $\alpha_X : (\mathcal{M}_X, \mathcal{K}_X) \to (\mathcal{O}_X, 0).$

Example: torus embeddings and toric varieties

Example

The log line: A^1 , with the compactification log structure from:

Generalization

$$(\mathsf{G}_{\mathsf{m}})^r \subseteq A_Q$$

Here $(G_m)^r$ is a commutative group scheme: a (noncompact) torus,

 A_Q will be a *monoid scheme*, coming from a toric monoid Q, with $Q^{gp} \cong \mathbf{Z}^r$.

Notation Let Q be a cancellative commutative monoid.

$$Q^* :=$$
 the largest group contained in Q .

 $Q^{gp} :=$ the smallest group containing Q.

$$\overline{Q} := Q/Q^*.$$

Spec Q is the set of prime ideals of Q, i.e, the complements of the faces of Q.

N.B. A *face* of Q is a submonoid F which contains a and b whenever it contains a + b.

Terminology: We say Q is: integral if Q is cancellative fine if Q is integral and finitely generated saturated if Q is integral and $nx \in Q$ implies $x \in Q$, for $x \in Q^{gp}, n \in \mathbb{N}$ toric if Q is fine and saturated and Q^{gp} is torsion free sharp if $Q^* = 0$.

Generalization: toric varieties Assume Q is toric (so $Q^{gp} \cong \mathbf{Z}^r$ for some r). Let $\underline{A}^*_Q := \operatorname{Spec} \mathbf{C}[Q^{gp}]$, a group scheme (torus). Thus $\underline{A}^*_Q(\mathbf{C}) = \{Q^{gp} \to \mathbf{C}^*\} \cong (\mathbf{C}^*)^r, \quad \mathcal{O}_{\underline{A}^*_Q}(\underline{A}^*_Q) = \mathbf{C}[Q^{gp}]$

 $\underline{A}_{\mathsf{Q}} := \operatorname{Spec} \mathbf{C}[Q]$, a monoid scheme. Thus

$$\underline{A}_{\mathsf{Q}}(\mathsf{C}) = \{ Q \to \mathsf{C} \}, \quad \mathcal{O}_{\underline{A}_{\mathsf{Q}}}(\underline{A}_{\mathsf{Q}}) = \mathsf{C}[Q]$$

 $A_Q :=$ the log scheme given by the open immersion $j \colon \underline{A}_Q^* \to \underline{A}_Q$. Have $\Gamma(\mathcal{M}) \cong \mathbf{C}^* \oplus Q$.

Examples

► If
$$Q = \mathbf{N}^r$$
, $\underline{A}_Q(\mathbf{C}) = \mathbf{C}^r$, $\underline{A}_Q^*(\mathbf{C}) = (\mathbf{C}^*)^r$

▶ If Q is the submonoid of Z^4 spanned by $\{(1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1)\}$, then

$$\underline{A}_{\mathsf{Q}}(\mathsf{C}) = \{(z_1, z_2, z_3, z_4) \in \mathsf{C}^4 : z_1 z_2 = z_3 z_4\}.$$

 $\underline{A}_{\mathsf{Q}}^* \cong (\mathsf{C}^*)^3.$

Pictures

Pictures of Q:

Spec Q is a finite topological space. Its points correspond to the orbits of the action of \underline{A}_{Q}^{*} on \underline{A}_{Q} , and to the faces of the cone C_{Q} spanned by Q.

Pictures of a log scheme X

Embellish picture of X by attaching Spec $\mathcal{M}_{X,x}$ to X at x.

Example: The log line $(Q = \mathbf{N}, C_Q = \mathbf{R}_{\geq})$

 $\operatorname{Spec}(N \to C[N])$

Example: The log plane ($Q = \mathbf{N} \oplus \mathbf{N}, \ C_Q = \mathbf{R}_{\geq} \times \mathbf{R}_{\geq}$)

$\operatorname{Spec}(N\oplus N\to C[N\oplus N)$

Log points

The standard (hollow) log point

 $t := \operatorname{Spec} \mathbf{C}$. (One point space). $\mathcal{O}_t = \mathbf{C}$ (constants) Add log structure:

$$\alpha \colon \mathcal{M}_t := \mathbf{C}^* \oplus \mathbf{N} \to \mathbf{C} \quad (u, n) \mapsto u0^n = \begin{cases} u & \text{if } \mathbf{q} = 0\\ 0 & \text{otherwise} \end{cases}$$

We usually write P for a log point.

Generalizations

- Replace C by any field.
- ▶ Replace **N** by any sharp monoid *Q*.
- Add ideal to Q.

Example: log disks

V a discrete valuation ring, e.g. $C{t}$ (germs of holomorphic functions) $K := frac(V), m_V := max(V), k_V := V/m_V,$ $\pi \in m_V$ uniformizer, $V' := V \setminus \{0\} \cong V^* \oplus \mathbf{N}$ $T := \operatorname{Spec} V = \{\tau, t\}, \ \tau := T^* := \operatorname{Spec} K, \ t := \operatorname{Spec} k.$ Log structures on T: $\Gamma(\alpha_T)$: $\Gamma(T, M_T) \to \Gamma(T, \mathcal{O}_T)$: trivial: $\alpha_{T/T} = V^* \rightarrow V$ (inclusion): T_{triv} standard: $\alpha_{T^*/T} = V' \rightarrow V$ (inclusion): T_{std} hollow: $\alpha_{hol} = V' \rightarrow V$ (inclusion on V^* , 0 on m_V): T_{hol} split_m $\alpha_m = V^* \oplus \mathbb{N} \to V$ (inc, $1 \mapsto \pi^m$): T_{spl_m} Note: $T_{spl_1} \cong T_{std}$ and $T_{spl_m} \to T_{hol}$ as $m \to \infty$

Inducing log structures

Pullback and pushforward

Given a map of locally ringed spaces $f: X \to Y$, we can:

Pushforward a log structure on X to Y: $f_*(\mathcal{M}_X) \to \mathcal{O}_Y$.

Pullback a log structure on Y to X: $f^*(\mathcal{M}_Y) \to \mathcal{O}_X$.

A morphism of log spaces is *strict* if $f^*(\mathcal{M}_Y) \to \mathcal{M}_X$ is an isomorphism.

A *chart* for a log space is strict map $X \to A_Q$ for some Q. A log space (or structure) is *coherent* if locally on X it admits a chart.

Generalization: relatively coherent log structures.

Example: Log disks and log points

Let T be a log disk, t its origin. Then the log structure on T induces a log structure on t:

Log structure on *T* Trivial Standard Hollow Split Induced structure on *t* Trivial Standard Standard Standard

Fiber products

The category of coherent log schemes has fiber products. $\mathcal{M}_{X \times_{\mathcal{Z}} Y} \to \mathcal{O}_{X \times_{\mathcal{Z}} Y}$ is the log structure associated to

$$p_X^{-1}\mathcal{M}_X \oplus_{p_Z^{-1}\mathcal{M}_Z} p_Y^{-1}\mathcal{M}_Y \to \mathcal{O}_{X \times_Z Y}.$$

Danger: $\mathcal{M}_{X \times_Z Y}$ may not be integral or saturated. Fixing this can "damage" the underlying space $X \times_Z Y$.

Properties of monoid homomorphisms

A morphism $\theta \colon P \to Q$ of integral monoids is strict if $\overline{\theta} \colon \overline{P} \to \overline{Q}$ is an isomorphism local if $\theta^{-1}(Q^*) = P^*$ vertical if $Q/P := Im(Q \to Cok(\theta^{gp}))$ is a group. exact if $P = (\theta^{gp})^{-1}(Q) \subseteq P^{gp}$

A morphism of log schemes $f: X \to Y$ has **P** if for every $x \in X$, the map $f^{\flat}: M_{Y,f(x)} \to M_{X,x}$ has **P**.

Examples of monoid homomorphisms

Examples:

- ▶ $\mathbf{N} \rightarrow \mathbf{N} \oplus \mathbf{N} : n \mapsto (n, n)$ $\mathbf{C}^2 \rightarrow \mathbf{C} : (z_1, z_2) \mapsto z_1 z_2$ Local, exact, and vertical.
- ▶ $\mathbf{N} \oplus \mathbf{N} \to \mathbf{N} \oplus \mathbf{N} : (m, n) \mapsto (m, m + n)$ $\mathbf{C}^2 \to \mathbf{C}^2 : (z_1, z_2) \mapsto (z_1, z_1 z_2)$ (blowup) Local, not exact, vertical
- ▶ $\mathbf{N} \rightarrow Q := \langle q_1, q_2, q_3, q_4 \rangle / (q_1 + q_2 = q_3 + q_4) : n \mapsto nq_4$ Local, exact, not vertical.

Differentials

Let $f: X \to Y$ be a morphism of log schemes, Universal derivation:

$$(d, \delta) : (\mathcal{O}_X, \mathcal{M}_X) \to \Omega^1_{X/Y}$$
 (some write $\omega^1_{X/Y}$)
 $d\alpha(m) = \alpha(m)\delta(m)$ so $\delta(m) = d\log m$ (sic)

Geometric construction:

(gives relation to deformation theory) Infinitesimal neighborhoods of diagonal $X \to X \times_Y X$ made strict: $X \to \mathcal{P}_{X/Y}^N$, $\Omega_{X/Y}^1 = J/J^2$.

— The Category of Log Schemes

Differentials and deformations

If $\alpha_X = \alpha_{X^*/X}$ where $Z := X \setminus X^*$ is a DNC relative to Y, $\Omega^1_{X/Y} = \Omega^1_{\underline{X}/\underline{Y}}(\log Z)$ In coordinates (t_1, \dots, t_n) , Z defined by $t_1 \cdots t_r = 0$.

In coordinates (t_1, \ldots, t_n) , Z defined by $t_1 \cdots t_r = 0$ $\Omega^1_{X/Y}$ has basis: $(dt_1/t_1, \ldots, dt_r/t_r, dt_{r+1} \ldots, dt_n)$.

Logarithmic de Rham complex

$$0 \to \mathcal{O}_X \to \Omega^1_{X/Y} \to \Omega^2_{X/Y} \cdots$$

Logarithmic connections:

$$\nabla \colon E \to \Omega^1_{X/Y} \otimes E$$

satisfying Liebnitz rule + integrability condition: $\nabla^2 = 0$. Generalized de Rham complex

$$0 \to E \to E \otimes \Omega^1_{X/Y} \to E \otimes \Omega^2_{X/Y} \cdots$$

Smooth morphisms

The definition of smoothness of a morphism $f: X \rightarrow Y$ follows Grothendieck's geometric idea: *"formal fibration"*: Consider diagrams:

Here *i* is a strict nilpotent immersion. Then $f: X \to Y$ is smooth if g' always exists, locally on *T*, unramified if g' is always unique, étale if g' always exists and is unique.

Examples: monoid schemes and tori

Let $\theta: P \to Q$ be a morphism of toric monoids. R a base ring. Then the following are equivalent:

• $A_{\theta} \colon A_Q \to A_P$ is smooth

•
$$A^*_{ heta} \colon A^*_Q \to A^*_P$$
 is smooth

 $\blacktriangleright R \otimes \operatorname{Ker}(\theta^{gp}) = R \otimes \operatorname{Cok}(\theta^{gp})_{tors} = 0$

Similarly for étale and unramified maps.

In general, smooth (resp. unramified, étale) maps look locally like these examples.

The space X_{log} (Kato–Nakayama)

- X/C: (relatively) fine log scheme of finite type,
- X_{an} : its associated log analytic space.

 X_{log} : topological space, defined as follows:

Underlying set: the set of pairs (x, σ) , where $x \in X_{an}$ and

commutes. Hence:

 $X_{log} \xrightarrow{\tau} X_{an} \longrightarrow X$

Each $m \in \tau^{-1}M_X$ defines a function $\arg(m) \colon X_{log} \to \mathbf{S}^1$. X_{log} is given the weakest topology so that $\tau \colon X_{log} \to X_{an}$ and all $\arg(m)$ are continuous.

Get $\tau^{-1}\mathcal{M}_{X}^{gp} \xrightarrow{\operatorname{arg}} \underline{\mathbf{S}}^{1}$ extending arg on $\tau^{-1}\mathcal{O}_{X}^{*}$.

Define sheaf of logarithms of sections of $\tau^{-1}\mathcal{M}_X^{gp}$:

Get "exponential" sequence:

Here: $\tau^{-1}\mathcal{O}_X \to \mathcal{L}_X$: $a \mapsto (\exp a, Im(a)) \in \tau^{-1}\mathcal{M}_X^{gp} \times \underline{\mathbf{R}}(1).$

Construct universal sheaf of $\tau^{-1}\mathcal{O}_X$ -algebras \mathcal{O}_X^{log} containing \mathcal{L}_X

Compactification of open immersions

The map τ is an isomorphism over the set X^* where $\overline{\mathcal{M}} = 0$, so we get a diagram

The map τ is proper, and for $x \in X$, $\tau^{-1}(x)$ is a torsor under $T_x := \operatorname{Hom}(\overline{\mathcal{M}}_x^{gp}, \mathbf{S}^1)$ (a finite sum of compact tori). We think of τ as a relative compactification of j.

Example: monoid schemes

 $X = A_Q := \operatorname{Spec}(Q \to \mathbf{C}[Q])$, with Q toric.

$$X_{log} = A_Q^{log} = R_Q \times T_Q \xrightarrow{\tau} X = \underline{A}_Q$$

where

 $\underline{A}_Q(\mathbf{C}) = \{z \colon Q \to (\mathbf{C}, \cdot)\} \text{ (algebraic set)}$ $R_Q := \{r \colon Q \to (\mathbf{R}_{\geq}, \cdot)\} \text{ (semialgebraic set)}$ $T_Q := \{\zeta \colon Q \to (\mathbf{S}^1, \cdot)\} \text{ (compact torus)}$ $\tau \colon R_Q \times T_Q \to \underline{A}_Q(\mathbf{C}) \text{ is multiplication: } z = r\zeta.$

So A_Q^{log} means polar coordinates for <u>A_Q</u>.

- The Geometry of Log Schemes

Geometry of log compactification

Example: log line, log point

If
$$X = A_N$$
, then $X_{log} = \mathbf{R}_{\geq} \times \mathbf{S}^1$.

L The Geometry of Log Schemes

Geometry of log compactification

(Real blowup)

If $X = P = x_N$, $X_{log} = S^1$.

Logarithmic Geometry
The Geometry of Log Schemes
Geometry of log compactification

Example: \mathcal{O}_P^{log}

$$\Gamma(P_{log}, \mathcal{O}_P^{log}) = \Gamma(\mathbf{S}_{log}^1, \mathcal{O}_P^{log}) = \mathbf{C}.$$

Pull back to universal cover exp : $\textbf{R}(1) \rightarrow \textbf{S}^1$

$$\Gamma(\mathbf{R}(1), \exp^* \mathcal{O}_P^{\log}) = \mathbf{C}[\theta],$$

generated by θ (that is, log(0)). Then $\pi_1(P_{log}) = Aut(\mathbf{R}(1)/\mathbf{S}^1) = \mathbf{Z}(1)$ acts, as the unique automorphism such that $\rho_{\gamma}(\theta) = \theta + \gamma$. In fact, if $N = d/d\theta$,

$$\rho_{\gamma} = e^{\gamma N}$$

Cohomology of compactifications

Application—Compactification

Theme: j_{log} compactifies $X^* \rightarrow X$ by adding a boundary.

Theorem

If X/\mathbb{C} is (relatively) smooth, $j_{log} : X_{an}^* \to X_{log}$ is locally aspheric. In fact, $(X_{log}, X_{log} \setminus X_{an}^*)$ is a manifold with boundary.

Proof.

Reduce to the case $X = A_Q$. Reduce to (R_Q, R_Q^*) . Use the moment map, a homeomorphism:

$$(R_Q, R_Q^*) \cong (C_Q, C_Q^o)$$
 : $r \mapsto \sum_{a \in A} r(a)a$

where A is a finite set of generators of Q and C_Q is the real cone spanned by Q.

- Applications

Cohomology of compactifications

Example: The log line

Cohomology of log compactifications

Let X/\mathbf{C} be (relatively) smooth, and X^* the open set where the log structure is trivial.

Theorem

Applications

Cohomology of compactifications

Log de Rham cohomology

Three de Rham complexes:

- $\Omega^{\cdot}_{X/\mathbf{C}}$ (log DR complex on X)
- $\Omega_{X/\mathbf{C}}^{log}$ (log DR compex on X_{log}
- $\Omega^{\cdot}_{X^*/\mathbf{C}}$ (ordinary DR complex on X^*

Theorem:

There is a commutative diagram of isomorphisms:

Applications

Riemann-Hilbert correspondence

X/S (relatively) smooth map of log schemes.

Theorem (Riemann-Hilbert)

Let X/\mathbf{C} be (relatively) smooth. Then there is an equivalence of categories:

$$MIC_{nil}(X/\mathbf{C}) \equiv L_{un}(X_{log})$$
$$(E, \nabla) \mapsto \operatorname{Ker}(\tau^{-1}E \otimes \mathcal{O}_X^{log} \xrightarrow{\nabla} \tau^{-1}E \otimes \Omega_X^{1log})$$

- Applications

Riemann-Hilbert correspondence

Example:
$$X := P$$
 (Standard log point)
 $\Omega^{1}_{P/C} \cong \mathbb{N} \otimes \mathbb{C} \cong \mathbb{C}$, so
 $MIC(P/\mathbb{C}) \equiv \{(E, N) : \text{vector space with endomorphism}\}$
 $P_{log} = \mathbb{S}^{1}$, so $L(P_{log})$ is cat of reps of $\pi_{1}(P_{log}) \cong \mathbb{Z}(1)$. Thus:
 $L(P_{log}) \equiv \{(V, \rho) : \text{vector space with automorphism}\}$

Conclusion:

 $\{(E, N) : N \text{ is nilpotent}\} \equiv \{(V, \rho) : \rho \text{ is unipotent}\}$ Use $\mathcal{O}_P^{log} = \mathbf{C}[\theta]$: $(V, \rho) = \text{Ker}(\tau^* E \otimes \mathbf{C}[\theta] \to \tau^* E \otimes \mathbf{C}[\theta])$ $N \mapsto e^{2\pi i N}$

Application: Degenerations

Theme: replacing f by f_{log} smooth out singularities of mappings. Theorem (Nakayama-Ogus)

Let $f: X \to S$ be a (relatively) smooth exact morphism. Then $f_{log}: X_{log} \to S_{log}$ is a topological submersion, whose fibers are orientable topological manifolds with boundary. The boundary corresponds to the set where f_{log} is not vertical.

Degenerations

Example

Semistable reduction $\mathbf{C} \times \mathbf{C} \to \mathbf{C} : (x_1, x_2) \mapsto x_1 x_2$ This is A_{θ} , where $\theta : \mathbf{N} \to \mathbf{N} \oplus \mathbf{N} : n \mapsto (n, n)$ Topology changes: (We just draw $\mathbf{R} \times \mathbf{R} \to \mathbf{R}$):

Log picture: $R_Q \times T_Q$ Just draw $R_Q \rightarrow R_N : \mathbf{R}_{\geq} \times \mathbf{R}_{\geq} \rightarrow \mathbf{R}_{\geq} : (x_1, x_2) \mapsto x_1 x_2$

Topology unchanged, and in fact is homeomorphic to projection mapping. Proof: (Key is *exactness* of f, *integrality* of C_{θ} .)

- Applications

Cohomology and monodromy of degenerations

Consequences

Theorem

- $f \colon X \to S$ (relatively) smooth, proper, and exact,
 - 1. $f_{log}: X_{log} \rightarrow S_{log}$ is a fiber bundle, and
 - 2. $R^q f_{log*}(\mathbf{Z})$ is locally constant on S_{log} .

Applications

Cohomology and monodromy of degenerations

Monodromy

In the above situation, $R^q f_*(\mathbf{Z})$ defines a representation of $\pi_1(S_{log})$. We can study it locally, using $X_{log} \to X \times S_{log}$. (Vanishing cycles) Restrict to $D \subseteq S$, D a log disk. Even better: to $P \subseteq D$, P a log point.

Theorem

Let $X \rightarrow P$ be (relatively) smooth, saturated, and exact.

- The action of $\pi_1(P_{log})$ on $R^q f_*(\mathbf{Z})$ is unipotent.
- Generalized Picard-Lefschetz formula for graded version of action in terms of linear data coming from: M
 _P → M
 _X.

Proof uses a log construction of the Steenbrink complex

$$\Psi^{\cdot} := \mathcal{O}_{P}^{log}
ightarrow \mathcal{O}_{P}^{log} \otimes \Omega^{1}_{X/P} \otimes \cdots$$

Cohomology and monodromy of degenerations

Example: Dwork families

Degree 3: Family of cubic curves in P^3 : $X \rightarrow S$:

$$t(X_0^3 + X_1^3 + X_2^3) - 3X_0X_1X_2 = 0$$

At t = 0, get union of three complex lines: At $t = \infty$, get smooth elliptic curve.

 $X_{log} \rightarrow S_{log}$ is a fibration. How can this be?

Applications

Cohomology and monodromy of degenerations

Fibers of $X \rightarrow S$

Applications

Cohomology and monodromy of degenerations

Fibers of $X_{log} \rightarrow S_{log}$

Applications

Cohomology and monodromy of degenerations

Dehn twist

Applications

Cohomology and monodromy of degenerations

Degree 4:

$$t(X_0^4 + X_1^4 + X_2^4 + X_3^4) - 4X_0X_1X_2X_3 = 0$$

At t = 0, get a (complex) tetrahedron. At $t = \infty$, get a K3 surface. Need to use *relatively* coherent log structure for verticality. Still get a fibration! Applications

Cohomology and monodromy of degenerations

Degree 5:

$$t(X_0^5 + X_1^5 + X_2^5 + X_3^5 + X_4^5) - 5X_0X_1X_2X_3X_4 = 0$$

Famous Calabi-Yau family from mirror symmetry. Also used in proof of Sato-Tate

Nostalgia

t = 5/3 was subject of my first colloquim at Berkeley more than thirty years ago.

Conclusion

- Log geometry provides a uniform geometric perspective to treat compactification and degeneration problems in topology and in algebraic and arithmetic geometry.
- Log geometry incorporates many classical tools and techniques.
- Log geometry is not a revolution.
- Log geometry presents new problems and perspectives, both in fundamentals and in applications.

Log: It's better than bad, it's good.