ERRATUM TO "NOTES ON CRYSTALLINE COHOMOLOGY"

PIERRE BERTHELOT AND ARTHUR OGUS

Assertion (B2.1) of Appendix B to [BO] is incorrect as stated: a necessary condition for its conclusion to hold is that the transition maps $D_n^q \to D_{n-1}^q$ be surjective for all q and $n \ge 1$. However, [BO] only uses the weaker version (B2.1) below, which takes place in the derived category and holds for any $D \in K^-(\mathbb{N}, A_{\bullet})$. Therefore, this incorrect statement has no consequence on the validity of the rest of [BO] and the text can be corrected by the following modifications.

1) Replace paragraph (B2.1) by the following text:

"(B2.1) There exists in $D^-(\mathbb{N}, A_{\bullet})$ an isomorphism $F \xrightarrow{\sim} D$ where F is such that each F_n^q is a projective A_n -module and each map $F_n^q \to F_{n-1}^q$ is surjective."

2) Replace from page B.3, line -2 to page B.4, line -9 by the following text:

"<u>Proof.</u> To prove statement (B2.1), we first observe that we may assume that the transition maps $D_n^q \to D_{n-1}^q$ are surjective for all q and all $n \ge 1$. Indeed, for any A_{\bullet} -module E, the flasque resolution $\Gamma(E) \to \Gamma(E)/E \to 0 \to \ldots$ defined in (B.1.6) is a length 1 resolution of E by A_{\bullet} -modules with surjective transition maps. As it is functorial in E, we can apply it to each term D^q of the complex $D \in K^-(\mathbb{N}, A_{\bullet})$, and we obtain in this way a double complex of A_{\bullet} -modules with surjective transition maps. The associated total complex D' belongs to $D^-(\mathbb{N}, A_{\bullet})$, its terms have surjective transition maps and the natural morphism $D \to D'$ is a quasi-isomorphism. Therefore it is sufficient to prove (B2.1) for D'. In fact we shall prove the following more precise statement, which clearly suffices.

(B2.1a) Assume that $D \in K^{-}(\mathbb{N}, A_{\bullet})$ is such that, for all q, the inverse system D^{q} has surjective transition maps. Then there exists an $F \in K^{-}(\mathbb{N}, A_{\bullet})$ and a surjective quasi-isomorphism $F \to D$ such that each F_{n}^{q} is a projective A_{n} -module and each map $F_{n}^{q} \to F_{n-1}^{q}$ is surjective.

To prove (B2.1a), we begin by observing that if K_{n-1}^{\bullet} is an acyclic complex of projective A_{n-1} -modules and is bounded above, then there exists an acyclic complex K_n^{\bullet} of projective A_n -modules, still bounded above, and a surjective map $K_n^{\bullet} \to K_{n-1}^{\bullet}$. In fact, one sees easily by descending induction on the degree q that one can write each K_{n-1}^q as a direct sum $P_{n-1}^{q-1} \oplus P_{n-1}^q$, where the boundary map is given by the formula: $d^q(p^{q-1}, p^q) = (p^q, 0)$. Now write P_{n-1}^q as a quotient of a free A_n^q -module P_n^q and take $K_n^q = P_n^{q-1} \oplus P_n^q$ with similarly defined boundary maps. (As a matter

Date: August 21, 2013.

of fact, it is even true that K_{n-1}^{\bullet} lifts to A_n , as Houzel shows [SGA 5, Exp. XV], but we shall not need this result.)

We now prove (B2.1a) by constructing the complexes $\{F_n^{\bullet} : n \in \mathbb{N}\}$ inductively. Given $F_{n-1}^{\bullet} \to D_{n-1}^{\bullet}$, it is standard to find a $P_n^{\bullet} \in K^-(A_n)$ consisting of projective A_n -modules and a surjective quasi-isomorphism $P_n^{\bullet} \to D_n^{\bullet}$, and then a morphism $P_n^{\bullet} \to F_{n-1}^{\bullet}$ covering the given $D_n^{\bullet} \to D_{n-1}^{\bullet}$. We shall add an acyclic complex to P_n^{\bullet} to construct F_n^{\bullet} so that $F_n^{\bullet} \to F_{n-1}^{\bullet}$ is surjective. Let K_{n-1}^{\bullet} be the mapping cone of the identity endomorphism of F_{n-1}^{\bullet} ; by the previous paragraph, we can find a surjective map $K_n^{\bullet} \to K_{n-1}^{\bullet}$, where $K_n^{\bullet} \in K^-(A_n)$ is acyclic and has projective terms. Then K_n^{\bullet} is also split: there exists a family of projective A_n -modules $\{E^q : q \in \mathbb{Z}\}$ such that $K_n^q \cong E^{q-1} \oplus E^q$ for all q, where the boundary map is as above. It follows that, for any complex $G^{\bullet} \in K(A_n)$, there is a canonical isomorphism

$$\prod_{q} \operatorname{Hom}_{A_{n}}(E^{q}, G^{q}) \xrightarrow{\sim} \operatorname{Hom}_{K(A_{n})}(K_{n}^{\bullet}, G^{\bullet}).$$

Namely, if $h^q \colon E^q \to G^q$ for all q,

$$\{(d_G^{q-1} \circ h^{q-1}, h^q) \colon E^{q-1} \oplus E^q \to G^q : q \in \mathbb{Z}\}$$

defines a morphism of complexes $K_n^{\bullet} \to G^{\bullet}$. Since each E^q is projective, it follows that $\operatorname{Hom}_{K(A_n)}(K_n^{\bullet}, \cdot)$ is an exact functor. Now set $F_n^{\bullet} = P_n^{\bullet} \oplus K_n^{\bullet}[-1]$ and take the obvious surjection $F_n^{\bullet} \to F_{n-1}^{\bullet}$ extending $P_n^{\bullet} \to F_{n-1}^{\bullet}$. To define the morphism $F_n^{\bullet} \to D_n^{\bullet}$, take the given morphism on the summand P_n^{\bullet} . Since D_n^q maps surjectively to D_{n-1}^q , we can find on the second summand a morphism of complexes $K_n^{\bullet}[-1] \to D_n^{\bullet}$ lifting the morphism $K_n^{\bullet}[-1] \to F_{n-1}^{\bullet} \to D_{n-1}^{\bullet}$. This completes the construction."

References

- [BO] P. Berthelot, A. Ogus, Notes on Crystalline Cohomology, Mathematical Notes 21 (1978), Princeton University Press.
- [SGA 5] A. Grothendieck, Cohomologie l-adique et fonctions L, avec la collaboration de I. Bucur, C. Houzel, L. Illusie, J.-P. Jouanolou et J.-P. Serre, Lecture Notes in Math. 589 (1977), Springer-Verlag.

IRMAR, UNIVERSITÉ DE RENNES 1, CAMPUS DE BEAULIEU, 35042 RENNES CEDEX, FRANCE *E-mail address*: pierre.berthelot@univ-rennes1.fr *URL*: http://perso.univ-rennes1.fr/pierre.berthelot

Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720-3840, USA

E-mail address: ogus@math.berkeley.edu *URL*: http://math.berkeley.edu/~ogus/