ERRATUM TO "NOTES ON CRYSTALLINE COHOMOLOGY"

PIERRE BERTHELOT AND ARTHUR OGUS

Assertion (B2.1) of Appendix B to $[\mathrm{BO}]$ is incorrect as stated: a necessary condition for its conclusion to hold is that the transition maps $D_{n}^{q} \rightarrow D_{n-1}^{q}$ be surjective for all q and $n \geq 1$. However, $[\mathrm{BO}]$ only uses the weaker version (B2.1) below, which takes place in the derived category and holds for any $D \in K^{-}\left(\mathbb{N}, A_{\bullet}\right)$. Therefore, this incorrect statement has no consequence on the validity of the rest of $[\mathrm{BO}]$ and the text can be corrected by the following modifications.

1) Replace paragraph (B2.1) by the following text:
"(B2.1) There exists in $D^{-}\left(\mathbb{N}, A_{\bullet}\right)$ an isomorphism $F \xrightarrow{\sim} D$ where F is such that each F_{n}^{q} is a projective A_{n}-module and each map $F_{n}^{q} \rightarrow F_{n-1}^{q}$ is surjective."
2) Replace from page B.3, line -2 to page B.4, line -9 by the following text:
"Proof. To prove statement (B2.1), we first observe that we may assume that the transition maps $D_{n}^{q} \rightarrow D_{n-1}^{q}$ are surjective for all q and all $n \geq 1$. Indeed, for any A_{\bullet}-module E, the flasque resolution $\Gamma(E) \rightarrow \Gamma(E) / E \rightarrow 0 \rightarrow \ldots$ defined in (B.1.6) is a length 1 resolution of E by A_{\bullet}-modules with surjective transition maps. As it is functorial in E, we can apply it to each term D^{q} of the complex $D \in K^{-}\left(\mathbb{N}, A_{\bullet}\right)$, and we obtain in this way a double complex of A_{\bullet}-modules with surjective transition maps. The associated total complex D^{\prime} belongs to $D^{-}\left(\mathbb{N}, A_{\bullet}\right)$, its terms have surjective transition maps and the natural morphism $D \rightarrow D^{\prime}$ is a quasi-isomorphism. Therefore it is sufficient to prove (B2.1) for D^{\prime}. In fact we shall prove the following more precise statement, which clearly suffices.
(B2.1a) Assume that $D \in K^{-}\left(\mathbb{N}, A_{\bullet}\right)$ is such that, for all q, the inverse system D^{q} has surjective transition maps. Then there exists an $F \in K^{-}\left(\mathbb{N}, A_{\bullet}\right)$ and a surjective quasi-isomorphism $F \rightarrow D$ such that each F_{n}^{q} is a projective A_{n}-module and each map $F_{n}^{q} \rightarrow F_{n-1}^{q}$ is surjective.

To prove (B2.1a), we begin by observing that if K_{n-1}^{\bullet} is an acyclic complex of projective A_{n-1}-modules and is bounded above, then there exists an acyclic complex $K_{n}^{\boldsymbol{\bullet}}$ of projective A_{n}-modules, still bounded above, and a surjective map $K_{n}^{\boldsymbol{\bullet}} \rightarrow K_{n-1}^{\bullet}$. In fact, one sees easily by descending induction on the degree q that one can write each K_{n-1}^{q} as a direct sum $P_{n-1}^{q-1} \oplus P_{n-1}^{q}$, where the boundary map is given by the formula: $d^{q}\left(p^{q-1}, p^{q}\right)=\left(p^{q}, 0\right)$. Now write P_{n-1}^{q} as a quotient of a free A_{n}^{q}-module P_{n}^{q} and take $K_{n}^{q}=P_{n}^{q-1} \oplus P_{n}^{q}$ with similarly defined boundary maps. (As a matter
of fact, it is even true that K_{n-1}^{\bullet} lifts to A_{n}, as Houzel shows [SGA 5, Exp. XV], but we shall not need this result.)

We now prove (B2.1a) by constructing the complexes $\left\{F_{n}^{\bullet}: n \in \mathbb{N}\right\}$ inductively. Given $F_{n-1}^{\bullet} \rightarrow D_{n-1}^{\bullet}$, it is standard to find a $P_{n}^{\bullet} \in K^{-}\left(A_{n}\right)$ consisting of projective A_{n}-modules and a surjective quasi-isomorphism $P_{n}^{\bullet} \rightarrow D_{n}^{\bullet}$, and then a morphism $P_{n}^{\bullet} \rightarrow F_{n-1}^{\bullet}$ covering the given $D_{n}^{\bullet} \rightarrow D_{n-1}^{\bullet}$. We shall add an acyclic complex to P_{n}^{\bullet} to construct F_{n}^{\bullet} so that $F_{n}^{\bullet} \rightarrow F_{n-1}^{\bullet}$ is surjective. Let K_{n-1}^{\bullet} be the mapping cone of the identity endomorphism of F_{n-1}^{\bullet}; by the previous paragraph, we can find a surjective map $K_{n}^{\bullet} \rightarrow K_{n-1}^{\bullet}$, where $K_{n}^{\bullet} \in K^{-}\left(A_{n}\right)$ is acyclic and has projective terms. Then $K_{n}^{\boldsymbol{\bullet}}$ is also split: there exists a family of projective A_{n}-modules $\left\{E^{q}: q \in \mathbb{Z}\right\}$ such that $K_{n}^{q} \cong E^{q-1} \oplus E^{q}$ for all q, where the boundary map is as above. It follows that, for any complex $G^{\bullet} \in K\left(A_{n}\right)$, there is a canonical isomorphism

$$
\prod_{q} \operatorname{Hom}_{A_{n}}\left(E^{q}, G^{q}\right) \xrightarrow{\sim} \operatorname{Hom}_{K\left(A_{n}\right)}\left(K_{n}^{\bullet}, G^{\bullet}\right) .
$$

Namely, if $h^{q}: E^{q} \rightarrow G^{q}$ for all q,

$$
\left\{\left(d_{G}^{q-1} \circ h^{q-1}, h^{q}\right): E^{q-1} \oplus E^{q} \rightarrow G^{q}: q \in \mathbb{Z}\right\}
$$

defines a morphism of complexes $K_{n}^{\bullet} \rightarrow G^{\bullet}$. Since each E^{q} is projective, it follows that $\operatorname{Hom}_{K\left(A_{n}\right)}\left(K_{n}^{\bullet},\right)$ is an exact functor. Now set $F_{n}^{\bullet}=P_{n}^{\bullet} \oplus K_{n}^{\bullet}[-1]$ and take the obvious surjection $F_{n}^{\bullet \bullet} \rightarrow F_{n-1}^{\bullet}$ extending $P_{n}^{\bullet \bullet} \rightarrow F_{n-1}^{\bullet}$. To define the morphism $F_{n}^{\bullet} \rightarrow$ D_{n}^{\bullet}, take the given morphism on the summand P_{n}^{\bullet}. Since D_{n}^{q} maps surjectively to D_{n-1}^{q}, we can find on the second summand a morphism of complexes $K_{n}^{\bullet}[-1] \rightarrow D_{n}^{\bullet}$ lifting the morphism $K_{n}^{\bullet}[-1] \rightarrow F_{n-1}^{\bullet} \rightarrow D_{n-1}^{\bullet}$. This completes the construction."

References

[BO] P. Berthelot, A. Ogus, Notes on Crystalline Cohomology, Mathematical Notes 21 (1978), Princeton University Press.
[SGA 5] A. Grothendieck, Cohomologie ℓ-adique et fonctions L, avec la collaboration de I. Bucur, C. Houzel, L. Illusie, J.-P. Jouanolou et J.-P. Serre, Lecture Notes in Math. 589 (1977), SpringerVerlag.

IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
E-mail address: pierre.berthelot@univ-rennes1.fr
URL: http://perso.univ-rennes1.fr/pierre.berthelot
Department of Mathematics, University of California at Berkeley, Berkeley, CA 947203840, USA

E-mail address: ogus@math.berkeley.edu
URL: http://math.berkeley.edu/~ogus/

