Vanishing of Cohomology

February 27, 2017

Proposition 1 Let \mathcal{A} and \mathcal{B} be abelian categories and let $(T^i, \delta^i): \mathcal{A} \to \mathcal{B}$ be a cohomological δ -functor. Suppose that \mathcal{F} is a full subcategory of \mathcal{A} with the following properties:

1. For every exact sequence $0 \to F_1 \to F_2 \to F_3 \to 0$ in \mathcal{A} with F_1 and F_2 in of \mathcal{F} , then F_3 also belongs to \mathcal{F} and the sequence

$$0 \to T^0(F_1) \to T^0(F_2) \to T^0(F_3) \to 0$$

is exact.

2. For i > 0, the functors T^i are effaceable in \mathcal{F} .

Then $T^i(F) = 0$ for every $F \in \mathcal{F}$ and every i > 0.

Proof: If F is an object of \mathcal{F} , then since T^1 is effaceable in \mathcal{F} , there exists an embedding $\epsilon: F \to \tilde{F}$ where $\tilde{F} \in \mathcal{F}$ and $T^1(\epsilon) = 0$. Let $a: \tilde{F} \to Q$ be the cokernel of ϵ . We have an exact sequence

$$T^{0}(F) \longrightarrow T^{0}(\tilde{F}) \xrightarrow{a} T^{0}(Q) \xrightarrow{\delta} T^{1}(F) \xrightarrow{0} T^{1}(\tilde{F})$$

Since F and \tilde{F} belong to \mathcal{F} , hypothesis (1) implies that a is surjective, so $\delta = 0$, and it follows that $T^1(F) = 0$. We proceed to prove that $T^i(F) = 0$ for all F and all i > 0 by induction on i. Assume this is true for i and that F is any object of \mathcal{F} . Since T^{i+1} is effaceable in \mathcal{F} , there exists an injection $\epsilon: F \to \tilde{F}$ with $\tilde{F} \in \mathcal{F}$, and with $T^{i+1}(\epsilon) = 0$. By hypothesis (1), the cokernel Q of ϵ belongs to \mathcal{F} , and by the induction hypothesis, $T^i(Q) = 0$. Then the exact sequence

$$T^i(Q) \longrightarrow T^{i+1}(F) \stackrel{0}{\longrightarrow} T^{i+1}(\tilde{F})$$

shows that $T^{i+1}(F) = 0$.

Corollary 2 Let \mathcal{A} and \mathcal{B} be abelian categories and $(T^{\cdot}, \delta^{\cdot})$ a cohomological δ -functor from \mathcal{A} to \mathcal{B} . Suppose that \mathcal{A} has enough injectives and that T^{i} is effaceable for all i > 0. Then $T^{i}(I) = 0$ for all i > 0 and every injective object I of \mathcal{A} .

Proof: We apply the previous argument with \mathcal{F} the category of injective objects of \mathcal{A} . If $0 \to F_1 \to F_2 \to F_3 \to 0$ is an exact sequence in \mathcal{A} with F_1 and F_2 injective, then the sequence splits. It follows that F_3 is injective and that $T^0(F_2) \to T^0(F_3)$ is surjective. Furthermore, if $A \in \mathcal{A}$ and i > 0, then there exists a monomorphism $\epsilon: A \to \tilde{A}$ with $T^i(\epsilon) = 0$, since T^i is effaceable. Since \mathcal{A} has enough injectives, there exists another monomorphism $\tilde{A} \to F$ with F injective. Then the composite $\epsilon': A \to \tilde{A} \to F$ is a monomorphism and $T^i(\epsilon') = 0$.

Corollary 3 If X is a topological space and F is a flasque abelian sheaf on X, then $H^q(X, F) = 0$ for q > 0.

Proof: We will use the following result.

Lemma 4 If G is a flasque abelian sheaf on a topological space X, then any G-torsor on X has a global section.

Proof: Let *T* be a *G*-torsor, *i.e.*, a sheaf of *F*-sets on *X* such that the stalks are nonempty and such that the map *F* × *T* → *T* × *T* is bijective. Consider the set of pairs (*U*, *t*) such that *U* is open in *X* and *t* ∈ *T*(*U*), and write (*U*₁, *t*₁) ≥ (*U*₂, *t*₂) if *U*₂ ⊆ *U*₁ and *t*₂ is restriction of *T*₁ to *U*₂. If $\mathcal{U} := \{(U_{\lambda}, t_{\lambda}) : \lambda \in \Lambda\}$ is any chain in this ordered set, then the fact that *T* is a sheaf guarantees that there is a unique *t* ∈ *T*($\cup_{\lambda}U_{\lambda}$) whose restriction to each *U*_λ is *t*_λ, and then ($\cup U_{\lambda}, t$) is an upper bound for \mathcal{U} . The Hausdorff maximality principle then guarantees the existence of a maximal pair (*U*, *t*), and it suffices to prove that *U* = *X*. Otherwise there exists $x \in X \setminus U$, and since *T* is a torsor, there exist an open neighborhood *V* of *x* and an *s* ∈ *T*(*V*). Then there exists a unique $g \in G(U \cap V)$ such that $gs_{|U \cap V} = t_{|U \cap V}$. Since *G* is flasque, there is an $h \in G(V)$ such that $h_{|U \cap V} = g$. Since *T* is a sheaf, there is a (unique) section of *T* on $U \cap V$ whose restriction to *U* is *t* and whose restriction to *V* is *hs*.

We can now verify that the category \mathcal{F} of flasque abelian sheaves on X satisfies the hypotheses of Proposition 1 If $0 \to F' \to F \to F'' \to 0$ is an

exact sequence in with F' and F flasque, then the lemma implies that then for every open set U of X, the map $F(U) \to F''(U)$ is surjective. Thus the rows of the commutative diagram below are exact.

In this diagram ρ is surjective because F is flasque and it follows that ρ'' is surjective. Thus F'' is flasque, and the category of flasque sheaves satisfies (1.1). Since every injective is flasque, it also satisfies (1.2).

Theorem 5 Suppose that X is a topological space and \mathcal{B} is a base for its topology which is closed under finite intersection and such that each $U \in \mathcal{B}$ is quasi-compact. Let F be a sheaf of abelian groups on X. Then the following are equivalent:

- 1. For every $U \in \mathcal{B}$, $H^q(U, F) = 0$ for q > 0.
- 2. For every finite open cover $\mathcal{U} \subseteq \mathcal{B}$ of an element U of \mathcal{B} , the Cech cohomology $\check{H}^q(\mathcal{U}, F)$ of F with respect to \mathcal{U} vanishes.

Proof: We omit the proof that (1) implies (2). To prove that (2) implies (1), consider the set \mathcal{F} of all abelian sheaves on X satisfying (2). We claim that if $F \in \mathcal{F}$ then $H^q(U, F) = 0$ for q > 0 and $U \in \mathcal{B}$. Without loss of generality, we may assume that $X \in \mathcal{B}$, and it will suffice to prove that $H^q(X, F) = 0$ for q > 0. By Hartshorne (II 4.3), \mathcal{F} contains all flasque sheaves, and in particular all injective sheaves. So by Proposition 1, it will suffice to prove that \mathcal{F} satisfies (1.1). Suppose that $0 \to A \to B \to C \to 0$ is an exact sequence of abelian sheaves on X and A and B belong to \mathcal{F} . If $\mathcal{U} \subseteq \mathcal{B}$ is a finite open cover of an element U of \mathcal{B} , then by hypothesis the Cech cohomology groups $\check{H}^q(\mathcal{U}, A)$ vanish for q > 0, and in particular for q = 1. Since any $U \in \mathcal{B}$ is quasi-compact, it follows that any A-torsor on Uis trivial, and hence that the sequence

$$0 \to A(U) \to B(U) \to C(U) \to 0$$

is exact. Now if \mathcal{U} is any finite subset of \mathcal{B} , it follows that for any multi-index I and any $I \to \mathcal{U}$, the intersection U_I belongs to \mathcal{B} , and hence the sequence

$$0 \to \prod_{I} A(U_{I}) \to \prod_{I} B(U_{I}) \to \prod_{I} C(U_{I}) \to 0$$

is exact. In other words, we get an exact sequence of complexes:

$$0 \to \check{C}^{\cdot}(\mathcal{U}, A) \to \check{C}^{\cdot}(\mathcal{U}, B) \to \check{C}^{\cdot}(\mathcal{U}, C) \to 0.$$

Taking the long exact sequence of cohomology we find the exact sequence

$$\check{H}^q(\mathcal{U}, B) \to \check{H}^q(\mathcal{U}, C) \to \check{H}^{q+1}(\mathcal{U}, A).$$

Since A and B belong to \mathcal{F} , we deduce that $\check{H}^q(\mathcal{U}, C) = 0$ for q > 0 if \mathcal{U} is a cover of an element of \mathcal{B} .

Theorem 6 If X is an affine scheme and F is a quasi-coherent sheaf on X, then $H^q(X, F) = 0$ for q > 0.

Proof: Thanks to the previous result, it will suffice to show that if \mathcal{B} is the set of special affine open subsets of X and \mathcal{U} is any finite cover of an element U of \mathcal{B} , then the Cech cohomology $\check{H}^q(U, F) = 0$ for q > 0. Note first that if $j: U \to X$ is the inclusion map, then j_*j^*F is quasi-coherent on X, because the j is a quasi-compact and quasi-separated map. The same applies to the inclusion of any U_I , and since \mathcal{U} is finite, we see that all the terms of the "sheaf" Cech complex $\underline{C}(\mathcal{U}, F)$ are quasi-coherent. This complex thus defines a resolution of F by quasi-coherent sheaves, and since the global section functor is exact on the category of quasi-coherent sheaves, the complex remains exact when we apply Γ . Thus the global Cech complex is acyclic, and the result is proved.