## The trace map for projective space

For simplicity we work over an affine scheme $S=\operatorname{Spec} R$. Recall that if $E$ is an $R$-module, then $\mathbf{P} E$ is the scheme $\operatorname{Proj} S \cdot E$. On $\mathbf{P} E$ there is a canonical exact sequence of quasi-coherent sheaves:

$$
0 \rightarrow \mathcal{H} \rightarrow E \otimes \mathcal{O}_{\mathbf{P} E} \rightarrow \mathcal{O}_{\mathbf{P} E}(1) \rightarrow 0
$$

Here we have written $E \otimes \mathcal{O}_{\mathbf{P} E}$ to mean $\pi^{*} \tilde{E}$, where $\tilde{E}$ is the quasi-coherent sheaf on $S$ associated to the $R$-module $E$. The map $u: E \otimes \mathcal{O}_{\mathbf{P} E} \rightarrow \mathcal{O}_{\mathbf{P} E}(1)$ is the universal invertible quotient of $E$, and $\mathcal{H}$ is the universal hyperplane in $E$. Tensoring the above sequence with $\mathcal{O}_{\mathbf{P} E}(-1)$, we find:

$$
0 \rightarrow \mathcal{H}(-1) \rightarrow E \otimes \mathcal{O}_{\mathbf{P} E}(-1) \rightarrow \mathcal{O}_{\mathbf{P} E} \rightarrow 0
$$

We shall use the fact that there is a canonical isomorphism

$$
\mathcal{H}(-1) \cong \Omega_{\mathbf{P} E / R}^{1},
$$

Now suppose that $E$ is projective of rank $n+1$. Then the isomorphism above induces an isomorphism:

$$
\Lambda^{n+1} \mathcal{E}(-n-1) \cong \Omega_{\mathbf{P} E / S}^{n}
$$

The Koszul complex of the homomorphism $E \otimes \mathcal{O}_{\mathbf{P} E}(-1) \rightarrow \mathcal{O}_{\mathbf{P} E} \rightarrow 0$ is the complex:

$$
0 \rightarrow \Lambda^{n+1} \mathcal{E}(-n-1) \rightarrow \Lambda^{n} \mathcal{E}(-n) \rightarrow \cdots \rightarrow \mathcal{E}(-1) \rightarrow \mathcal{O}_{\mathbf{P} E} \rightarrow 0
$$

It is exact becuase the mapping $u$ is surjective. Thus the complex:

$$
K^{\cdot}:=\Lambda^{n} \mathcal{E}(-n) \rightarrow \cdots \rightarrow \mathcal{E}(-1) \rightarrow \mathcal{O}_{\mathbf{P} E}
$$

is an $n$-term resolution of the complex $\Lambda^{n+1} \mathcal{E}(-n-1) \cong \Omega_{\mathbf{P} E / R}^{n}$. By the projection formula,

$$
H^{q}\left(\mathbf{P} E, K^{j}\right)=\Lambda^{n-j} E \otimes H^{q}\left(\mathbf{P} E, \mathcal{O}_{\mathbf{P} E}(j-n)\right)
$$

Since $j-n>-n-1$, these groups vanish if $q>0$, so the complex $K^{*}$ is in fact an acyclic resolution of $\Omega_{\mathbf{P} E / R}^{n}$. Hence the complex of global sections $H^{0}\left(\mathbf{P} E, K^{*}\right)$ calculates the cohomology of $\Omega_{\mathbf{P} E / R}^{n}$. But this complex vanishes except in degree $n$, where it is canonically isomorphic to $R$. We deduce a canonical (and coordinate free) isomorphism

$$
H^{n}\left(\mathbf{P} E, \Omega_{\mathbf{P} E / R}^{n}\right) \cong R
$$

