
Differentials and Smoothness

February 17, 2017

We present a supplement, and in some cases alternative, to Hartshorne’s
Chapter II,§8 and Chapter II,§10. These notes are not meant to be self-
contained, and will required reading Hartshorne for some definitions, some
statements, and many important examples. We often do not include detailed
proofs.

1 Derivations and deformations

Definition 1 Let n be a natural number. An “nth order thickening” is a
closed immersion i:S → T which is defined by an ideal I such that In+1 =
0. A “nilpotent thickening” is a closed immersion which is an nth order
thickening for some n > 0.

If Y is a scheme, a thickening in the category of Y -schemes means a
thickening i:S → T of Y -schemes. Sometimes to emphasize this we may
want to write i:S/Y → T/Y .

The underlying map of topological spaces of a nilpotent thickening is a
homeomorphism, and we will sometimes identify the underlying spaces of S
and T . First order thickening are especially convenient to work with. If I is
the ideal of a first order thickening i:S → T , then I2 = 0, and this means
that if a is a local section of OT and x of I, then the product ax depends only
on the image of a in OS. Thus I has a natural structure of an OS-module:
the natural map I → i∗i

∗(I) is an isomorphism. We will sometimes ourselves
to identify I with i∗(I).

Example 2 IfM is a quasi-coherent sheaf of OS-modules, there is a scheme
D(M) whose underlying topological space is S and whose structure sheaf
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is OS ⊕M, with the obvious OS-module structure and with multiplication
defined by (a, x)(b, y) := (ab, ay+bx). Then the map (a, x)→ a defines a first
order thickening i:S → D(M) whose ideal sheaf I identifies with M. The
map OS → OS ⊕M sending a to (a, 0), defines a morphism ρ:D(M) → S
such that ρ ◦ i = id.

Definition 3 Let F be a presheaf on the category of Y -schemes, let i:S → T
be a nilpotent thickening, and let ξ be an element of F (S). Then a “defor-
mation of ξ to T” is an element ζ of F (T ) such that F (i)(ζ) = ξ, and we
write Defξ(T ) to denote the set of all such elements.

If T ′ → T is any morphism and S ′ := S ×T T ′, then S ′ → T ′ is an nth
order thickening, and a deformation of ξ to T pulls back to a deformation of
the pullback ξ′ to S ′ to T ′. Thus Defξ becomes a presheaf on the category of
T -schemes. If F is a sheaf, then Defξ defines a sheaf on the Zariski topology
of T , equivalently on the Zariski topology of S.

If a thickening S → T admits a retraction ρ:T → S (as in Example 2),
then F (ρ)(ξ) is automatically a deformation of ξ.

Definition 4 Let f :X → Y be a morphism of schemes and let E be a sheaf of
OX-modules. Then DerX/Y (E) is the sheaf of f−1(OY )-linear maps D:OX →
E such that D(ab) = D(a)b+ aD(b) for any two local sections a, b of OX .

Note that DerX/Y is an OX-submodule of Hom(OX , E).
The following notion is extremely pervasive in mathematics.

Definition 5 Let X be a topological space, let G be a sheaf of groups on X.
A (left) G-pseudo torsor is a sheaf of (left) G-sets: G × S → S such that the
corresponding map

G × S → S × S : (g, s) 7→ (gs, s)

is an isomorphism. A torsor is a pseudo-torsor each of whose stalks is
nonempty.

There is an obvious notion of a morphism of G-torsors, and thus an obvi-
ous notion of the category of G-torsors on X and of the set of isomorphism
classes of G-torsors. If S is a G-torsor and U is an open subset of X and if
S(U) is not empty, then S(U) is isomorphic to G(U): given an s ∈ S(U), the
map G(U)→ S(U) : g 7→ gs is an isomorphism of left G(U)-sets.
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Theorem 6 Let f :X → Y be a morphism of schemes and let X/Y be the
functor hX from the category of Y -schemes to the category of sets. Let i:S →
T be a first-order thickening, defined by an ideal I, and let g:S → X be an
element of X/Y (S). Then the sheaf g∗(Defg) has a natural structure (see the
formula below) of a pseudo-torsor under the sheaf of groups

DerX/Y (OX , g∗I) ∼= Hom(Ω1
X/Y , g∗I).

Proof: A deformation h of g is a morphism h:T → X such that h ◦ i = g.
Since i is a homeomorphism and g is given, to give h is the same as to give
a homomorphism h]:OX → g∗OT . Let D:OX → g∗I be a derivation, and
define h̃]:OX → g∗OT to be D + h]. This map is OY -linear, and we claim
that in fact it is a homomorphism. If a, b ∈ OX ,

(D + h])(ab) = D(ab) + h](ab) = aDb+ bDa+ h](a)h](b),

while

(D + h]((a)(D + h](b)) = D(a)D(b) + h](b)D(a)h](a)D(b) + h](a)h](b).

Since I2 = 0, D(a)D(b) = 0, and h](b)D(a) = g](b)D(a) = bD(a); and
similarly h](a)D(b) = g](a)D(b) = aD(b). and D really is a derivation.

On the other hand, if h1 and h2 are deformations of g, then the OY -linear
map h]2 − h

]
1 factors through I, and it is easy to check that this difference is

a derivation OX → g∗I.

For example if M is a quasi-coherent sheaf of OX-modules, we have a
standard deformation ρ ∈ Def id(D(M), and if D ∈ DerX/Y (M), then D + ρ
is the deformation given by a 7→ (a,Da) ∈ OX ⊕M.

Corollary 7 Let f :X → Y be a morphism of schemes, and let IX/Y be the
ideal of the (locally closed) diagonal embedding: ∆:X → X ×Y X. Then the
map

d:OX → IX/Y /I2X/Y : a 7→ p]2(a)− p]1(a)

is a universal derivation.

Proof: Let T be the locally closed subscheme of X ×Y X defined by I2X/Y .
Then X → T is a first order thickening, and p2 and p1 are two deformations
of idX. It follows that their difference d is a derivation. Suppose D:OX →
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M is any derivation of X/Y ; we claim that D factors through a unique
OX-linear map IX/Y /I2X/Y → M. We already know that the target of the
universal derivation is quasi-coherent, so we may assume that M is also
quasi-coherent. Then the homomorphism OX → OX ⊕M : a 7→ (a,Da)
defines a morphism of schemes ξ:D(M) → X, and the pair (ρ, ξ) defines a
morphism D(M) → X ×Y X. These morphisms agree on X ⊆ D(M) and
hence sends IX/Y to the ideal I = (0,M) of X in D(M). Since I2 = 0,
this morphism indeces a map h: IX/Y I2X/Y → I. Moreover, if a ∈ OX ,

h(p]2(a)− p]1(a)) = ξ](a)− ρ](a) = D(a).
To check the uniqueness of h, let us observe that p1∗IX/Y /I2X/Y is gen-

erated as a sheaf of OX-modules the image of d. Working locally, we may
assume that X/Y is given by a homomorphism R → A. Then IX/Y is the
sheaf associated with the ideal K := Ker(A ⊗R A → A. Say

∑
ai ⊗ bi ∈ K.

Then
∑
aibi = 0, so∑
ai ⊗ bi =

∑
ai ⊗ bi −

∑
aibi ⊗ 1 =

∑
ai(1⊗ bi − bi ⊗ 1).

The exact sequences in the following result help with the calculation of
sheaves of differentials. The proof is an easy consequence of the univeral
mapping property of differentials.

Theorem 8 Let f :X → Y and g:Y → Z be morphims of schemes and let
h := g ◦ f .

1. The natural maps fit into an exact sequence:

g∗ΩY/Z → ΩX/Z → ΩX/Y → 0

2. if f is a closed immersion defined by an ideal sheaf I, ΩX/Y = 0, and
there is an exact sequence:

I/I2 δ- f ∗ΩY/Z → ΩX/Z → 0

where δ fits into a commutative diagram:

I
d

- ΩY/Z

I/I2
? δ

- f ∗ΩY/Z

?
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3. If b:Y ′ → Y is a morphism and X ′ := Y ′ ×Y X, the natural map
pr∗Ω1

X/Y → Ω1
X′/Y ′ is an isomorphism.

Example 9 In the situation of part (2) of Theorem 8, suppose that X = Z
and that h = idX . Then the sequence (2) induces an isomorphism

I/I2 → f ∗ΩY/Z .

Indeed, it is clear that ΩX/X = 0, and it remains only to prove that the
map

δ: I/I2 → i∗ΩX/Y

is injective. We will construct an inverse of this map as follows. Let Y1 be
the closed subscheme of Y defined by I2, and let h:Y1 → Y and f1:X → Y1
be the natural inclusions, and let g1 = g ◦ h:Y → X. Note that f1 is a
first-order thickening in the category of X-schemes, since g1 ◦ f1 = idX . Let
h̃ := f ◦ g ◦ h:Y1 → Y , and note that h̃ ◦ f = f That is, h and h̃ are two
deformations of f to Y1, and hence h] − h̃] is a derivation OY → I/I2. If
a ∈ I, then

D(a) = h](a)− h̃](a) = h](a)− h])g](f ](a)) = h](a)

Thus D defines a homomorphism Ω1
Y/X sending da to the class of a in I/I2

and provides a splitting of the map δ.
For example, suppose that Y is a scheme of finite type over a field k and

the inclusion f :X → Y is corresponds to a k-rational point x of Y . Then we
get an isomorphism:

mx/m
2
x
∼= ΩY/k(x).

Thus in this case the Zariski tangent space of Y at x, the k-dual of mx/m
2
x,

Equivalently the set of deformations of the inclusion x → Y to the dual
numbers Dk(ε), becomes identified with the set of maps ΩY/k → i∗k(x), that
is, with the fiber of V(ΩY/k) over x. In general, VΩY/Z is called the tangent
space (or bundle) of Y/Z.

Corollary 10 Let X/k be a scheme locally of finite type, where k is alge-
braically closed. Then the dimension of mx/m

2
x is an uppersemicontinuous

function on the set of closed points of X.

Proof: This is because ΩX/k is a quasi-coherent sheaf of finite type on X
(hence coherent, since X is noetherian), and it follows from Nakayama’s
lemma that the dimension of ΩX/k(x) is upper semicontinous. In fact:
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Lemma 11 Let X be a scheme and let E be a quasi-coherent sheaf of OX-
modules which is locally finitely generated. Then the dimension of E(x) is
uppersemicontinuous on X. If E is locally free, it is in fact locally constant,
and the converse holds if X is reduced.

Proof: Let x be a point of X, and let (e1(x), . . . ed(x)) be a basis for E(x) :=
Ex/mX,xEx. There exist an open affine neighborhood U of x and sections
(e1, . . . , ed) of E(U), such that the image of ei in E(x) is ei(x). Replace
X by U and let (OX)n → E be the corresponding map. It follows from
Nakayama’s lemma that the induced map on (OX,x)n → Ex is surjective,
and hence that is is surjective in some neighborhood of x (again using the
fact that E is finitely generated). Then dimE(x′) ≤ dimE(x) for all x′ in this
neighborhood. Suppose the dimension is in fact constant. We may assume
it is constant and that X is affine, say X = SpecA, and E corresponds to
a finitely generated A-module M . We have constructed a surjective map
An → M , where n is the dimension of M ⊗ k(x) for every x ∈ SpecA. It
follows that the map k(x)n →M ⊗ k(x) is bijective for every x. Let K ⊆ An

be the kernel of An →M , and observe that any coordinate of any element of
the kernel maps to zero in Ap/PAP for every prime P . Since A is reduced,
the intersection of all the primes is zero, so K = 0.

Example 12 The map I/I2 → i∗ΩX/Y might not be injective, even if I is
the maximal ideal corresponding to a closed point of a scheme X of finite
type over Y = Spec k. For example, let k be a field of characteristic p which
is not perfect, with an element a which is not a pth power, let X := Spec k[X]
and let I be the ideal generated by f := Xp − a. Since this polynomial is
irreducible, I is maximal and corresponds to a closed point x. But df = 0,
so the map in this case is zero.

2 Smooth, unramified, and étale morphisms

The following definition makes sense for any morphism of sheaves X → Y ,
but we state it only for schemes.

Definition 13 A morphism f :X → Y is

1. formally smooth if for every affine nth order thickening S → T over
Ym every g ∈ X/Y (S), can be deformed to T ;
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2. formally unramified if for every S → T every g as above, has at most
one deformation to T .

3. formally étale if it is both formally smooth and formally unramified.

A morphism is smooth if it is formally smoth and locally of finite presenta-
tion, is unramified if it is formally unramified and locally of finite type, and
is étale if it is smooth and unramified.

If f is formally étale, then the uniqueness of the deformations implies
that the liftings on open covers agree on the overlaps and hence patch to a
unique global lifting. Since every nth order thickening is a succession of first
order thickenings, it suffice in the above definition just to consider first order
thickenings. In this case, let I be the ideal sheaf of S in T . Then Defg forms
a pseudo-torsor under DerX/Y (g∗I), and to say that f is formally smooth
is to say that this pseudo-torsor is always in fact a torsor. To say that f is
formally unramified is to say that the pseudo-torsor has at most one element.

Corollary 14 A morphism f :X → Y is formally unramified if and only if
Ω1
X/Y = 0.

Proof: If Ω1
X/Y = 0, it follows from Theorem 6 that first order deformations

are unique if they exist. Suppose conversely that f is unramified, let E be
any quasi-coherent sheaf of X and let X → DX(E) be the trivial extension
of X by E . Then the set of deformations of idX to DX(E) is not empty and
is a torsor under Hom(Ω1

X/Y , E). It follows that this group is zero. Taking

E = Ω1
X/Y , we see that the latter must vanish.

Theorem 15 Let f :X → Y be a morphism of finite type. Then f is un-
ramified if and only if its geometric fibers are finite, reduced, and discrete.

Proof: Since f is of finite type, the sheaf Ω1
X/Y is also of finite type. It

vanishes if and only if for each x ∈ X, the stalk Ω1
X/Y at x vanishes, and by

Nakayama’s lemma, this is true if and only if the fiber Ω1
X/Y (x) vanishes, Let

y := f(x), which we identify with Spec k(y) → Y , and let Xy := X ×Y y.
Then if p:Xy → Y is the natural map, p∗Ω1

X/Y
∼= Ω1

Xy/y
. The point x of X

defines a point x′ of Xy with p(x′) = x, and the above isomorphism identifies
Ω1
Xy

(x′) with Ω1
X/Y (x). Thus we see that f is unramified if and only if every

Xy → y is unramfied. Since y → y is faithfully flat, Ω1
Xy/y

= 0 if and only if

Ω1
Xy/y

is unramified.
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Proposition 16 If f :X → Y is smooth, then the sheaf Ω1
X/Y is locally free.

Theorem 17 Let f :X → Y and g:Y → Z be morphisms of schemes, each
locally of finite presentation, and let h := g ◦ f .

1. Suppose that f :X → Y is a closed immersion defined by a sheaf of
ideals I. If X → Z is smooth, the map

d: I/I2 → f ∗Ω1
Y/Z

of Theorem 8 is injective and locally split. The converse is true provided
that Y → Z is smooth.

2. If f is smooth, the map

f ∗Ω1
Y/Z → Ω1

X/Z

of Theorem 8. is injective and locally split. The converse is true pro-
vided that h is smooth.

Proof: Suppose that h:X → Z is smooth. Let j:Y1 → Y be the closed
subscheme of Y defined by I2. Then i:X → Y1 is a first-order thickening.
Assuming without loss of generality that X is affine, the smoothness of X/Z
implies that there is a retraction r:Y1 → X, compatible with the given maps
to Z. Let j̃ := f ◦ r:Y1 → Y , and note that j̃ ◦ i = f ◦ r ◦ i = f = j ◦ i.
Thus j]− j̃] “is” a derivation D : OY → I/I2. This derivation defines a map
Ω1
Y/Z → I/I2 which gives the desired splitting.

For the converse, suppose that g is smooth, working locally, that

s: f ∗Ω1
Y/Z → I/I2

splits d. Let i:S → T be an affine first order thickening over Z, defined by
a square zero ideal J , and let r:S → X be a morphism (over Z). Since
Y/Z is smooth, there exists a deformation s of f ◦ f to T . Then s]:OY →
s∗OT necessarily maps I to r∗J , and since J 2 = 0, factors through a map
θ: I/I2 → s∗J . Then θ ◦ s: f ∗Ω1

Y/Z → J , composed with the natural map

Ω1
Y/Z → f∗f

∗Ω1
Y/Z defines a derivation D:OY → s∗J . Then s̃ := s −D is a

map T → Y , and in fact s̃] kills I and hence s̃ factors through X.
We omit the proof of (2), which is quite similar.
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Remark 18 In the situation of part (1) of the previous theorem, let x be
a point of X, and suppose that Y → Z is smooth. The morphism X → Z
is smooth in some neighborhood of x if and only if the map of k(x)-vector
spaces:

d(x): I(x)→ Ω1
Y/Z(x)

is injective. Smoothness implies that d is injective and locally split, and
it follows immediately that d is injective. Conversely, if d(x) is injective,
choose a lift f1, . . . , fr to Ix of a basis for I(x). By Nakayama’s lemma,
these elements generate Ix. (Recall that X is of finite presentation.) Then
(df1(x), . . . , dfr(x)) remains linearly independing in Ω1

Y/Z(x), and hence can

be completeted to a basis(df1(x), . . . , dfr(x), ω1(x), ωs(x)), with ωi ∈ Ω1
Y/Z,x).

Since Ω1
Y/Z,x is free, it follows that df1, . . . dfr, ω1, ωs) is a basis, and the desired

splitting is easy to construct.

Corollary 19 Let X/k be a scheme of finite type over a field k and let x be
a k-rational point of X. Then X/k is smooth in some neighborhood of x if
and only if X is regular at x.

Proof: The question is local, so we may assume that X can be embededd in
Y := An. If mxOY,x is the maximal ideal of the local ring OY,x, the map d(x)
above identifies with the map Ix/mxIx → mx/m

2
x. Thus the map is injective

if and only if Ix ∩ m2
x ⊆ mxIx. Since Y is regular at x, this condition is

equivalent to the regularity of X at x.
Let us recall the proof.
Since the closed points of X are dense and since localizations of regular

local rings are regular, X is a regular scheme if and only if the local rings at
the closed points of X are regular. Working locally, we may assume that X
can be embedded as a closed subscheme of an affine space Y/k. Let x be a
closed point of X. Corollary 18 tells us that X is smooth if and only if the
map I(x) → mx/m

2
x is injective. This is equivalent to the regularity of X

at x. Let us recall the proof. Let mx be the maximal ideal of OY,x and let
mx = mx/Ix be the maximal ideal of OX,x. We have exact sequences:

0→ Ix ∩m2
x/Ixmx → I(x)→ Ix/Ix ∩m2

x → 0

0→ Ix/Ix ∩m2
x → mx/m

2
x → mx/m

2
x → 0

where mx is the maximal ideal of OY,y and mx is the maximal ideal of OX,x.
For simplicity of notation, rewrite these sequences as:

0→ K(x)→ I(x)→ I(x).
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0→ I(x)→ mx/m
2
x → mx/m

2
x → 0.

Since Y is regular, dimx(Y ) = dimmx/m
2
x, and since Ix can be generated by

dim I(x) elements,

dimx(X) ≥ dimx(Y )− dim I(x)
≥ dim(mx/m

2
x)− dim(K(x))− dim(I(x))

≥ dim(mx/m
2
x)− dim(K(x))

If K(x) = 0 we conclude that dimx(X) ≥ dim(mx/m
2
x), and it follows that in

fact equality holds and X is regular at x. For the converse, suppose that X is
regular and choose a a sequence of elements f1, . . . , fr of Ix lifting a basis for
I(x). Then f1(x) · · · fr(x) ∈ I(x) are linearly independent in mx/m

2
x, and

hence can be completed to a basis for this vector space. Lifting the remaining
elements to elements of mx, we end up with a sequence (f1, . . . , fn) of ele-
ments of mx such that (f1, . . . , fr) lie in Ix and such that (f1(x), . . . , fn(x) is
a basis for the maximal mx of x in OY,x. Let J be the ideal OY,y generated by
(f1, . . . , fr). Then it follows from the argument above that X ′ := SpecOY,y/J
is regular of dimension dimx Y −dim(Ix) = dimmx/ovm

2
x. If X is regular at

x, then this is also the dimension of X. But X ⊆ X ′ and since X ′ is regular,
it is irreducible, and it follows that X and X ′ coincide at x. Then J = Ix
and it follows that K(x) = 0.

Theorem 20 Let f :X → Z be a morphism locally of finite presentation.
Assume that X and Y are locally noetherian. Then f is smooth if and only
if it is flat and its geometric fibers are regular.

Proof: Assume that f is smooth. Let x be a point of X, let z := f(x),
and let z be the spectrum of algebraically closed field endowed with a map
to z. Then Xz is smooth, and hence by Corollary 19 it is regular. Our task
is to prove that f is flat. We use the following techinique from commutative
algebra.

Lemma 21 Let R→ B be a local homomorphism of noetherian local rings.

1. B is flat over R if and only if TorR1 (B, kR) = 0.

2. Suppose that B is flat over R and that A is the quotient of B by the
ideal I generated by an element b of mB. If the image b of b in B/mRB
is a nonzero divisor, then A is also flat over R.

10



Proof: Statement (1) is the famous “local criterion of flatness,” and we use
it to prove (2). Since B is R flat, TorR1 (B, kR) = 0, so the top row of the
diagram below is exact:

0 - TorR1 (A, kR) - I ⊗R kR
β
- B ⊗R kR

B ⊗R kR

π

6

·b

-

By assumption ·b is injective, and it follows that π is also injective. The map π
is obtained from the surjective map B → I and hence is also surjective, hence
bijective. Then it follows that β is injective and then that TorR1 (A, kR) =
0.

We return to the proof of the theorem. Since Xz → Xz is flat, it follows
that Xz is regular, and in particular is an integral domain. Working locally,
we may assume that there exists a closed immersion i:X → Y , where Y
is both flat and smooth over Z—for example affine n-space over Z. Let
R := OZ,z, B = OY,x, and A := OX,x. Let I be the kernel of the surjection
B → I. By Theorem 17, the map d: I(x) → Ω1

Y/Z(x) is injective. Choose a
sequence of generators (b1, . . . , br) for I such that (f1(x), . . . , fr(x)) is a basis
for I(x) Theorem 17 implies that for every i, the subscheme X ′i of Y defined
by (b1, . . . , bi) is again smooth over Z. We prove that it is flat by induction
on i. This is true by assumption if i = 0, and the general induction step will
follow from the case i = 1. Since Y/R is smooth, its fibers are regular, and
hence B⊗R k is an integral domain. Since the image b of b1 in B⊗R k is not
zero, b is a nonzero divisor, and since B is flat, the lemma implies that A is
also flat. This completes the proof.

For the converse, suppose that X → Z is flat and that its geometric
fibers are regular. We claim that X → Z is smooth. Again we work locally
in a neighborhood of a point x, so we can assume that there is a closed
immersion i:X → Y where Y is smooth over Z (e.g. affine space). Suppose
Y = Spec(B) and X = Spec(A), with A = B/I. If z is a geometric point
lying over the image z ∈ Z of X, then by Corollary 19 we know that X ×z z
is smooth over z. Let B := B ⊗R k and A := A⊗R k and let I be the kernel
of the map B ⊗R k → A⊗R k. Since A/R is flat, in fact I = I ⊗R kR. Then

I(x) := I/otBk(x) = I ⊗B kR ⊗B k(x) ∼= I ⊗B k(x),
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and d: I(x) → Ω1
B/R(x) identifies with the map I(x) → Ω1

B/kR
(x). tensoring

over kR with k(z), we get the corresponding map for the geometric fibers
Xz → Yz, which is injective.
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