Cohomology and Base Change

Let A and B be abelian categories and T: A — B and additive functor. We say
T is half-exact if whenever 0 — M’ — M — M"” — 0 is an exact sequence of
A-modules, the sequence T'(M') — T(M) — T(M") is exact.

Lemma 1 Let n: 7" — T be a morphism of half exact functors, and for each
M, let T" (M) be the cokernel of nas. Then T" is half-exact if T' is right exact.

Proof: If0— M' — M — M"” — 0 is an exact sequece, we get a commutative
diagram:

T'(M') — T'(M) — T'(M") ——— 0

T//(M/) _ T//(M) ., TI/(M//)

The rows and columns are exact and the bottom vertical arrows are surjective.
A diagram chase shows that the bottom row is exact. O

The following useful lemma is not especially well known.

Theorem 2 (Nakayama’s lemma for half-exact functors) Let A — B be
a local homomorism of noetherian local rings and T a half-exact functor A-linear
functor from the category of finitely generated A-modules to the category of
finitely generated B-modules. Let k be the residue field of A. Then if T(k) =0,
in fact T(M) =0 for all M.

Proof: Our hypothesis is that T'(k) = 0, and we want to conclude that T'(M) =
0 for every finitely generated A-module M. Consider the family F of submodules
M’ of M such that T(M/M') # 0. Our claim is that the 0 submodule does not
belong to F, and so of course it will suffice to prove that F is empty. Assuming
otherwise, we see from the fact that M is noetherian that F has a maximal
element M'. Let M"” := M/M’'. Then T(M") # 0, but T(M"") = 0 for every
nontrivial quotient M’ of M". We shall see that this leads to a contradiction.
To simply the notation, we replace M by M”. Thus it suffices to prove that
T(M) = 0 under the assumption that T'(M") = 0 for every proper quotient of
M.

Let I be the annihilator of M and let m denote the maximal ideal of A. If
I = m, then M is isomorphic to a direct sum of a (finite number of) copies of
k. By assumption, T'(k) = 0, hence T'(M) = 0, a contradiction. So there exists



an element a of m such that a € I. Let M’ be the kernel of multiplication of a
on M, so that there are exact sequences:

0—-M — M —aM—0
0—waM —- M — M/aM — 0,

and hence also exact sequences:

T(M') = T(M) — T(aM)
T(aM) — T(M) — T(M/aM).

Then aM = 0, since a does not belong to the annihilator of M, and hence
M/aM is a proper quotient of M, and hence T'(M/aM) = 0.

Case 1: If M’ # 0, then the first sequence above shows that aM is also a
proper quotient of M, and hence also T(aM) = 0, and then the last sequence
implies that T'(M) = 0.

Case 2: If M’ =0, we find exact sequences

0-M-—" M ——> M/aM =0
T(M) -2+ T(M) —> T(M/aM)

However we still know that T'(M/aM) = 0, hence multiplication by a on T(M)
is surjective. But T (M) is a finitely generated B-module and multiplication by
a on this module is the same as multiplication by 6(a). Since §(a) belongs to the
maximal ideal of B, Nakayama’s lemma implies that T'(M) = 0, as required. O

Here are two important appications to flatness.

Theorem 3 (local criterion for flatness) Let 0: A — B be a local homo-
morphism of noetherian local rings and let N be a finitely generated B-module.
Then N s flat as an A-module if and only if Tor{'(N, A/m) = 0.

Proof: To prove that N is flat as an A-module, it suffices to prove that
Tor{(N,M) = 0 for all finitely generated A-modules M. The functor M +
Tor{*(N, M) is half-exact, A-linear, and takes finitely generated A-modules to
finitely generated B-modules. Thus the result follows from Nakayama’s lemma
for the half exact functor Tor{ (N, ). O

Theorem 4 (Criterion of Flatness along the Fiber) Let R — A and A —
B be local homomorphisms of noetherian local rings, let k be the residue field of
R, and let N be a finitely generated B-module. If N is flat over R and N Qg k
18 flat over A ®pg k, then N is flat over A.

Proof: 'We will need the following:

Lemma 5 Let A be a ring, let I be an ideal of A, and let M be an A-module.
Suppose that M/IM is flat as an A/I-module and also that Tori*(A/I, M) = 0.
Then Tor{(A/J, M) =0 for every ideal J containing I.



Proof: Let 0 - K — F — M — 0 be an exact sequence of A-modules, with
F free. Since Tor{'(A/I, M) = 0, the sequence

(x) 0— K/IK — F/IF — M/IM — 0

is an exact sequence of A/I-modules. Since M/IM is flat over A/I, the sequence
remains exact if we tensor over A/I with A/J, so the sequence

0—-K/JK - F/JF - M/JM — 0
is still exact. However, F' is free over A, and we also have an exact sequence
0— Tor{(M,A}J) = K/JK — F/JF — M/JM — 0
Hence Tor{' (A/.J, M) = 0. O

Now to prove the theorem, let mp be the maximal ideal of R and let [ :=
mprA. Then we have a surjective map mr @z A — I, and hence also a surjective
map:

mrRRARs N —>1T®sN.

Since mr ®r A®4 N 2 mpg Qg N, we find maps
f g
mrOr N —> I N — N

We have just seen that f is surjective. On the other hand, the kernel of go f is
Tork(k, N) = 0, so gof is injective. Then it follows that f is also injective, hence
an isomorphism, and hence that g is injective. The kernel of g is Tor{'(A/I, N),
so this also vanishes. Furthermore, N/IN 2 N ®4 (A/I) 2 N ®4 AQpr k =
N ®p k, and since N is flat over R, N ®p k is flat over AQr k = A/I. By
the lemma, it follows that Tori' (A/.J, N) = 0 for every ideal J containing I and
in particular for J equal to the maximal ideal of A. By the local criterion for
flatness, this implies that NV is flat over A. O

Proposition 6 Let A be a ring, and let T be an A-linear homomorphism from
the category of A-modules to itself. Then there is a natural transformation
n:T(A)® — T. This functor is an isomorphism if and only if T' is right ezact
and commutes with direct limits.

Proof: An element x of M defines a homomorphism 6,: A — M and hence a
homomorphism T'(0,): T(A) — T(M). Define T(A) x M — T(M) by (t,z) —
0. (t). This map is bilinear and hence defines a natural homomorphism

v T(A) @ M — T(M).

Since T is additive, it commutes with finite direct sums, and hence 7y, is an
isomorphism if M is free and finitely generated. Assume that T is right exact
and commuts with direct limits. For any M, there is an exact sequence:

0-K—-FE—-M-—Q0,



with F free and finitely generated, and hence a commutative diagram:

T(A) @K — T(A)® E — T(A)® M 0

T(K)

T(E)

T(M) —— 0

The middle vertical arrow is an isomorphism, and it follows that the right ver-
tical arrow is surjective. Since A is noetherian, K is finitely generated, and we
can conclude that the left vertical arrow is surjective. Then the right vertical
arrow is an isomorphism. This proves that 7y, is an isomorphism if M is finitely
generated, and the same is true for all M since both sides commute with di-
rect limits. The converse is obvious, since tensor products are right exact and
commute with direct limits. O

Corollary 7 Let A — B be a local homomorphism of noetherian local rings
and let T be a half exact and linear functor from the category of moetherian
A-modules to itself. Assume that T takes finitely generated modules to finitely
generated modules and commutes with direct limits.

1. If T(k) =0, then T(M) =0 for all M.

2. If T(A) — T(k) is surjective, then T is right exact and the natural trans-
formation T(A)® — T is an isomorphism.

Proof: Statement (1) follows from Nakayama’s lemma for half-exact functors.
To prove (2), let T"(M) := T(A) ® 4 M and let T”(M) be the cokernel of the
map ny T (M) — T(M) defined above. The functor 7" takes finitely generated
modules to finitely generated modules and is is half exact by Lemma 1. By
Nakayama’s lemma for half-exact functors, 7”7 = 0. Then n,; is surjective
for all M. It follows easily that T is right exact, and hence that 7, is an
isomorphism by Proposition 6. Note that for statement (2), we just need to
assume that T'(A) is finitely generated. O

Theorem 8 (cohomology and base change) Let X/S be a proper scheme,
where S = Spec A and A is a noetherian local ring, and let E be a coherent
sheaf on X which is flat over S. If M is an A-module, let E ® M denote the
quasi-coherent sheaf on X obtained by tensoring the pullback ofM to X with E.
In particular, if M is the residue field of A, E® M identifies with restriction of
FE to the closed fiber X over k. Then the following statement hold.

1. If HY(X,, Ey) =0, then HY(X,E® M) =0 for all M.

2. If H(X,E)®a k — HY( Xy, Ey) is surjective, then it is an isomorphism,
and in fact HI(X,E) @4 M — HY(X,E ® M) is an isomorphism for all
M.



3. Suppose that H1(X, E)®4 k — HY Xy, FEy) is surjective. Then HY(X, E)
is flat if and only if HY(X,E) ® k — HI=Y(Xy, Ey,) is surjective.

Proof: For each g, let T? be the functor taking an A-module M to HY(X,E ® M).
Since E is flat, an exact sequence 0 — M’ — M — M"” — 0 yields an ex-
act sequence 0 - EQ M — EQ M — E® M” — 0, and so the functors
T fit into a cohomological J-functor. In particiular, each 77 is half-exact.
Furthermore it takes finitely generated modules to finitely generated modules
because X/A is proper, and it commutes with direct limits by a Cech calcu-
lation, or using the fact that X is noetherian. Thus statements (1) and (2)
follow from the corresponding statements of Corollary 7. To prove (3), note
that since T" forms a cohomological J-functor, T is left exact if and only
if 7971 is right exact. If HY(X,E) ® k — HYI(Xy, Ey) is surjective, then
TY(M) = H(E® M) =2 HY(E) ®4 M for all M. Thus H?(E) is flat if and
only if T? is left exact, which is the case if and only if 797! is right exact,
equivalently, if and only if H?"Y(X, E) ® k — H9~1(Xy, Ey,) is surjective. [



