
Cohomology and Base Change

Let A and B be abelian categories and T :A → B and additive functor. We say
T is half-exact if whenever 0 → M ′ → M → M ′′ → 0 is an exact sequence of
A-modules, the sequence T (M ′)→ T (M)→ T (M ′′) is exact.

Lemma 1 Let η:T ′ → T be a morphism of half exact functors, and for each
M , let T ′′(M) be the cokernel of ηM . Then T ′′ is half-exact if T ′ is right exact.

Proof: If 0→M ′ →M →M ′′ → 0 is an exact sequece, we get a commutative
diagram:

T ′(M ′) - T ′(M) - T ′(M ′′) - 0

T (M ′)
?

- T (M)
?

- T (M ′′)
?

T ′′(M ′)
?

- T ′′(M)
?

- T ′′(M ′′)
?

The rows and columns are exact and the bottom vertical arrows are surjective.
A diagram chase shows that the bottom row is exact.

The following useful lemma is not especially well known.

Theorem 2 (Nakayama’s lemma for half-exact functors) Let A→ B be
a local homomorism of noetherian local rings and T a half-exact functor A-linear
functor from the category of finitely generated A-modules to the category of
finitely generated B-modules. Let k be the residue field of A. Then if T (k) = 0,
in fact T (M) = 0 for all M .

Proof: Our hypothesis is that T (k) = 0, and we want to conclude that T (M) =
0 for every finitely generated A-moduleM . Consider the family F of submodules
M ′ of M such that T (M/M ′) 6= 0. Our claim is that the 0 submodule does not
belong to F , and so of course it will suffice to prove that F is empty. Assuming
otherwise, we see from the fact that M is noetherian that F has a maximal
element M ′. Let M ′′ := M/M ′. Then T (M ′′) 6= 0, but T (M ′′′) = 0 for every
nontrivial quotient M ′′′ of M ′′. We shall see that this leads to a contradiction.
To simply the notation, we replace M by M ′′. Thus it suffices to prove that
T (M) = 0 under the assumption that T (M ′′) = 0 for every proper quotient of
M .

Let I be the annihilator of M and let m denote the maximal ideal of A. If
I = m, then M is isomorphic to a direct sum of a (finite number of) copies of
k. By assumption, T (k) = 0, hence T (M) = 0, a contradiction. So there exists
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an element a of m such that a 6∈ I. Let M ′ be the kernel of multiplication of a
on M , so that there are exact sequences:

0→M ′ → M → aM → 0
0→ aM → M →M/aM → 0,

and hence also exact sequences:

T (M ′)→ T (M) → T (aM)
T (aM)→ T (M) → T (M/aM).

Then aM 6= 0, since a does not belong to the annihilator of M , and hence
M/aM is a proper quotient of M , and hence T (M/aM) = 0.

Case 1: If M ′ 6= 0, then the first sequence above shows that aM is also a
proper quotient of M , and hence also T (aM) = 0, and then the last sequence
implies that T (M) = 0.

Case 2: If M ′ = 0, we find exact sequences

0→M
a- M - M/aM → 0

T (M)
a- T (M) - T (M/aM)

However we still know that T (M/aM) = 0, hence multiplication by a on T (M)
is surjective. But T (M) is a finitely generated B-module and multiplication by
a on this module is the same as multiplication by θ(a). Since θ(a) belongs to the
maximal ideal of B, Nakayama’s lemma implies that T (M) = 0, as required.

Here are two important appications to flatness.

Theorem 3 (local criterion for flatness) Let θ:A → B be a local homo-
morphism of noetherian local rings and let N be a finitely generated B-module.
Then N is flat as an A-module if and only if TorA1 (N,A/m) = 0.

Proof: To prove that N is flat as an A-module, it suffices to prove that
TorA1 (N,M) = 0 for all finitely generated A-modules M . The functor M 7→
TorA1 (N,M) is half-exact, A-linear, and takes finitely generated A-modules to
finitely generated B-modules. Thus the result follows from Nakayama’s lemma
for the half exact functor TorA1 (N, ).

Theorem 4 (Criterion of Flatness along the Fiber) Let R→ A and A→
B be local homomorphisms of noetherian local rings, let k be the residue field of
R, and let N be a finitely generated B-module. If N is flat over R and N ⊗R k
is flat over A⊗R k, then N is flat over A.

Proof: We will need the following:

Lemma 5 Let A be a ring, let I be an ideal of A, and let M be an A-module.
Suppose that M/IM is flat as an A/I-module and also that TorA1 (A/I,M) = 0.
Then TorA1 (A/J,M) = 0 for every ideal J containing I.
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Proof: Let 0 → K → F → M → 0 be an exact sequence of A-modules, with
F free. Since TorA1 (A/I,M) = 0, the sequence

(∗) 0→ K/IK → F/IF →M/IM → 0

is an exact sequence of A/I-modules. Since M/IM is flat over A/I, the sequence
remains exact if we tensor over A/I with A/J , so the sequence

0→ K/JK → F/JF →M/JM → 0

is still exact. However, F is free over A, and we also have an exact sequence

0→ TorA1 (M,A/J)→ K/JK → F/JF →M/JM → 0

Hence TorA1 (A/J,M) = 0.

Now to prove the theorem, let mR be the maximal ideal of R and let I :=
mRA. Then we have a surjective map mR⊗RA→ I, and hence also a surjective
map:

mR ⊗R A⊗A N → I ⊗A N.

Since mR ⊗R A⊗A N ∼= mR ⊗R N , we find maps

mR ⊗R N
f- I ⊗A N

g- N

We have just seen that f is surjective. On the other hand, the kernel of g ◦ f is
Tor1R(k,N) = 0, so g◦f is injective. Then it follows that f is also injective, hence
an isomorphism, and hence that g is injective. The kernel of g is TorA1 (A/I,N),
so this also vanishes. Furthermore, N/IN ∼= N ⊗A (A/I) ∼= N ⊗A A ⊗R k ∼=
N ⊗R k, and since N is flat over R, N ⊗R k is flat over A ⊗R k ∼= A/I. By
the lemma, it follows that TorA1 (A/J,N) = 0 for every ideal J containing I and
in particular for J equal to the maximal ideal of A. By the local criterion for
flatness, this implies that N is flat over A.

Proposition 6 Let A be a ring, and let T be an A-linear homomorphism from
the category of A-modules to itself. Then there is a natural transformation
η:T (A)⊗ → T . This functor is an isomorphism if and only if T is right exact
and commutes with direct limits.

Proof: An element x of M defines a homomorphism θx:A → M and hence a
homomorphism T (θx):T (A) → T (M). Define T (A) ×M → T (M) by (t, x) 7→
θx(t). This map is bilinear and hence defines a natural homomorphism

ηM :T (A)⊗M → T (M).

Since T is additive, it commutes with finite direct sums, and hence ηM is an
isomorphism if M is free and finitely generated. Assume that T is right exact
and commuts with direct limits. For any M , there is an exact sequence:

0→ K → E →M → 0,
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with E free and finitely generated, and hence a commutative diagram:

T (A)⊗K - T (A)⊗ E - T (A)⊗M - 0

T (K)
?

- T (E)
?

- T (M)
?

- 0

The middle vertical arrow is an isomorphism, and it follows that the right ver-
tical arrow is surjective. Since A is noetherian, K is finitely generated, and we
can conclude that the left vertical arrow is surjective. Then the right vertical
arrow is an isomorphism. This proves that ηM is an isomorphism if M is finitely
generated, and the same is true for all M since both sides commute with di-
rect limits. The converse is obvious, since tensor products are right exact and
commute with direct limits.

Corollary 7 Let A → B be a local homomorphism of noetherian local rings
and let T be a half exact and linear functor from the category of noetherian
A-modules to itself. Assume that T takes finitely generated modules to finitely
generated modules and commutes with direct limits.

1. If T (k) = 0, then T (M) = 0 for all M .

2. If T (A)→ T (k) is surjective, then T is right exact and the natural trans-
formation T (A)⊗ → T is an isomorphism.

Proof: Statement (1) follows from Nakayama’s lemma for half-exact functors.
To prove (2), let T ′(M) := T (A) ⊗A M and let T ′′(M) be the cokernel of the
map ηMT

′(M)→ T (M) defined above. The functor T ′′ takes finitely generated
modules to finitely generated modules and is is half exact by Lemma 1. By
Nakayama’s lemma for half-exact functors, T ′′ = 0. Then ηM is surjective
for all M . It follows easily that T is right exact, and hence that ηM is an
isomorphism by Proposition 6. Note that for statement (2), we just need to
assume that T (A) is finitely generated.

Theorem 8 (cohomology and base change) Let X/S be a proper scheme,
where S = SpecA and A is a noetherian local ring, and let E be a coherent
sheaf on X which is flat over S. If M is an A-module, let E ⊗M denote the
quasi-coherent sheaf on X obtained by tensoring the pullback of M̃ to X with E.
In particular, if M is the residue field of A, E⊗M identifies with restriction of
E to the closed fiber Xk over k. Then the following statement hold.

1. If Hq(Xk, Ek) = 0, then Hq(X,E ⊗M) = 0 for all M .

2. If Hq(X,E)⊗A k → Hq(Xk, Ek) is surjective, then it is an isomorphism,
and in fact Hq(X,E)⊗A M → Hq(X,E ⊗M) is an isomorphism for all
M .
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3. Suppose that Hq(X,E)⊗A k → Hq(Xk, Ek) is surjective. Then Hq(X,E)
is flat if and only if Hq−1(X,E)⊗ k → Hq−1(Xk, Ek) is surjective.

Proof: For each q, let T q be the functor taking anA-moduleM toHq(X,E ⊗M).
Since E is flat, an exact sequence 0 → M ′ → M → M ′′ → 0 yields an ex-
act sequence 0 → E ⊗M ′ → E ⊗M → E ⊗M ′′ → 0, and so the functors
T · fit into a cohomological δ-functor. In particiular, each T q is half-exact.
Furthermore it takes finitely generated modules to finitely generated modules
because X/A is proper, and it commutes with direct limits by a Cech calcu-
lation, or using the fact that X is noetherian. Thus statements (1) and (2)
follow from the corresponding statements of Corollary 7. To prove (3), note
that since T · forms a cohomological δ-functor, T q is left exact if and only
if T q−1 is right exact. If Hq(X,E) ⊗ k → Hq(Xk, Ek) is surjective, then
T q(M) = Hq(E ⊗M) ∼= Hq(E) ⊗A M for all M . Thus Hq(E) is flat if and
only if T q is left exact, which is the case if and only if T q−1 is right exact,
equivalently, if and only if Hq−1(X,E)⊗ k → Hq−1(Xk, Ek) is surjective.
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