Homework Assignment #2:

Due February 15

- 1. Let X be a scheme and \mathcal{L} an invertible sheaf on X. Assume that \mathcal{L} is ample, in the following sense. For every quasi-coherent sheaf of ideals \mathcal{I} on X and every $x \in X$ at which $\mathcal{I}_x = \mathcal{O}_{X,x}$, there exists an n > 0and a section s of $\Gamma(X, \mathcal{I} \otimes \mathcal{L}^n)$ such that $s(x) \neq 0$. Prove that X is separated. Conclude that the quasi-separation hypothesis on the theorem I proved in class is superflous.
- 2. Prove that, with the definition above, a sheaf on X is ample if and only if its restriction to X_{red} is ample.
- 3. Let $i: Y \to U$ be an closed immersion and let $j: U \to X$ be an open immersion. Prove that if $U \to X$ is quasi-compact, then there also exist an open immersion $j': Y \to Z$ and a closed immersion $i': Z \to X$ such that $j \circ i = i' \circ j'$. Can you find an example showing that the quasi-compact hypothesis is not superflows? (I haven't yet.)
- 4. Let us allow ourselves to use the following fact: If $f: X \to Y$ is a proper morphism of noetherian schemes, then $f_*(\mathcal{O}_X)$ is a coherent sheaf of \mathcal{O}_Y -algebras. Prove:
 - (a) If X/k is a proper scheme over an algebraically closed field and \mathcal{O}_X is ample, then X consists of a finite set of points (not necessarily reduced).
 - (b) Let *E* be a vector space over *k*, let $f: X \to \mathbf{P}E$ be a morphism, with X/k proper, and let $\mathcal{L} := f^*(\mathcal{O}_{\mathbf{P}E}(1))$. Let *Z* be a connected closed subscheme of *X*. Prove that f(Z) is a single point iff the restriction of \mathcal{L} to *Z* is isomorphic to \mathcal{O}_Z .