Differentials and the Trace

Arthur Ogus

November 2, 2007

Let A be a commutative ring and let B be a finite flat A-algebra. For each element b of B, let $b_{B}: B \rightarrow B$ denote multiplication by b and let $\operatorname{Tr}_{B / A}: B \rightarrow A$ denote the map sending b to the trace of b_{B}. Thus

$$
\operatorname{Tr}_{B / A} \in \omega_{B / A}:=\operatorname{Hom}_{A}(B, A)
$$

We endow $\omega_{B / A}$ with the B-module structure defined by $b \phi\left(b^{\prime}\right):=\phi\left(b^{\prime} b\right)$.
Lemma: If B has basis $\left(e_{1}, \ldots, e_{n}\right)$ and $\left(e_{1}^{*}, \ldots, e_{n}^{*}\right)$ is the dual basis, then

$$
\operatorname{Tr}_{B / A}=\sum e_{i} e_{i}^{*} \in \omega_{B / A} .
$$

Proof: In fact, if η is any A-linear endomorphism of B, the $i j$ th entry of matrix for η in the basis $\left(e_{1}, \ldots e_{n}\right)$ is $e_{i}^{*}\left(\eta\left(e_{j}\right)\right)$. Thus the trace of η is $\sum e_{i}^{*}\left(\eta\left(e_{i}\right)\right)$. If $b \in B$ and $\eta=b_{\beta}$, we find $\operatorname{Tr}_{B / A}(b)=\sum e_{i}^{*}\left(b e_{i}\right)=\sum e_{i} e_{i}^{*}(b)$.

Theorem: Let $f \in A[X]$ be a monic polynomial of degree n, let $B:=$ $A[X] /(f)$, and let β be the image of X in B.

1. B is a free A-module of rank n, with basis $\left(1, \beta, \ldots \beta^{n-1}\right)$.
2. $\omega_{B / A}$ is a free B-module of rank 1 , with basis $\tau:=\partial_{n-1}$, where $\left(\partial_{0}, \ldots, \partial_{n-1}\right)$ is the dual basis to $\left(1, \beta, \ldots \beta^{n-1}\right)$.
3. $\operatorname{Tr}_{B / A}=f^{\prime}(\beta) \tau \in \omega_{B / A}$.

Proof: ${ }^{1}$ The key point is the following.
Lemma: Write $f(X)=(X-\beta) g(X)$, where $g(X)=\sum_{i} b_{i} X^{i} \in B[X]$. Then

$$
\partial_{i}=b^{i} \tau \text { for } i=0, \ldots n-1 .
$$

[^0]Note that this lemma implies that the element τ generates $\omega_{B / A}$ as a B module: the map $B \rightarrow \omega_{B / A}$ it defines is surjective. Since both the source and target of this map are free A-modules of the same rank, it is an isomorphism, and (2) of the theorem follows. Moreover, if we combine the two lemmas, we find

$$
\begin{aligned}
\operatorname{Tr}_{B / A} & =\sum \beta^{i} \partial_{i} \\
& =\sum \beta^{i} b_{i} \tau \\
& =g(\beta) \tau
\end{aligned}
$$

But $g(\beta)=f^{\prime}(\beta)$ since $f(X)=(X-\beta) g(X)$.
It remains only to prove the lemma. Let us write $f(X)=\sum a_{i} X^{i}$, so that

$$
\beta^{n}=-\sum_{i=0}^{n-1} a_{i} \beta^{i}
$$

and

$$
a_{i}=b_{i-1}-\beta b_{i} \quad \text { for } 0 \leq i \leq n .
$$

We calculate:

$$
\beta \partial_{i}\left(\beta^{j}\right)=\partial_{i}\left(\beta^{j+1}\right)= \begin{cases}1 & \text { if } j=i-1 \\ -a_{i} & \text { if } j=n-1 \\ 0 & \text { otherwise }\end{cases}
$$

In other words, $\beta \partial_{i}=\partial_{i-1}-a_{i} \tau$, or

$$
\partial_{i-1}=\beta \partial_{i}+a_{i} \tau .
$$

We prove our claim that $\partial_{i}=b_{i} \tau$ by descending induction on i. Since $b_{n-1}=$ 1 , the result is true for $i=n-1$. Using the above formulas and the induction hypothesis, we find:

$$
\begin{aligned}
\partial_{i-1} & =\beta \partial_{i}+a_{i} \tau \\
& =\beta b_{i} \tau+\left(b_{i-1}-\beta b_{i}\right) \tau \\
& =b_{i-1} \tau
\end{aligned}
$$

[^0]: ${ }^{1}$ This discussion is based on the exposition in the book Anneaux Locaux Henseliens by M. Raynaud, which is in turn based on notes by J. Tate.

