Dimension of Local Rings

April 13, 2016

For each natural number n, consider the polynomial

$$
p_{n}(t):=\binom{t+n}{n}=\frac{(t+n)(t+n-1) \cdots(t+1)}{n!} \in \mathbf{Q}[t] .
$$

Note that

$$
p_{n}(t)=\frac{t^{n}}{n!}+\cdots+1 .
$$

It follows that the set of polynomials $\left\{p_{0}(t), \ldots, p_{n}(t)\right\}$ forms a basis for the space of polynomials in $\mathbf{Q}[t]$ of degree at most n. For any $f \in \mathbf{Q}[t]$, let

$$
\Delta(f)(t):=f(t)-f(t-1)
$$

Note that the degree of Δf exactly one less than the degree of f. Furthermore,

$$
\Delta p_{n}=p_{n-1}
$$

Let $\mathbf{Q}^{\mathbf{N}}$ denote the ring of functions $\mathbf{N} \rightarrow \mathbf{Q}$. We define an equivalence relation on this set by saying that $f \sim g$ if $f(i)=g(i)$ for all i sufficiently large. This is the quotient by the ideal of functions which are eventually zero, and so the set of equivalence classes is again a ring, which we denote by \mathcal{A} The evident map from the set of polynomials into \mathcal{A} injective.

If $f \in \mathbf{Q}^{\mathbf{N}}$, we can define $\Delta(f)$ by $\Delta(f)(i)=f(i)-f(i-1)$, and Δ induces a maps $\mathcal{A} \rightarrow \mathcal{A}$. Note that if $\Delta(f)=0$, then f is constant.

Lemma 0.1 If $f \in \mathbf{Q}^{\mathbf{N}}$, then f is equivalent to an element of $\mathbf{Q}[t]$ if and only if Δf is.

Proof: Suppose $\Delta(f) \sim g \in \mathbf{Q}[t]$. Write $g=\sum a_{n} p_{n}$ with $a_{n} \in \mathbf{Q}$. Then $\Delta(f)=\sum a_{n} \Delta p_{n+1}$. Let $h:=\sum a_{n} p_{n+1}$, so that $\Delta(f)=\Delta(g)$. Hence $f-h$ is eventually constant, and it follows that $f \sim h+c$ for some c.

Let A be a noetherian local ring with maximal ideal \mathfrak{m} and let M be a finitely generated A-module. An ideal I of A is said to be an ideal of definition of A if $I \subseteq \mathfrak{m}$ and I contains some power of \mathfrak{m}. Then A / I has finite length, and hence so does A / I^{i} for every i. Recall that a filtration F on M is said to be I-stable if $I F^{i} M \subseteq F^{i+1} M$ for all i, with equality for all i sufficiently large. Given such a filtration, $M / F^{i+1} M$ has finite length for all i, and we set

$$
\ell_{M, F}(i):=\ell\left(M / F^{i+1} M\right) .
$$

Proposition 0.2 With the notation above, there exists a polynomial $p_{M, F} \in$ $\mathrm{Q}[t]$ of degree less than or equal to the number of generators of I, such that

$$
\ell_{M, F}(i)=p_{M, F}(i) \quad \text { for all } i \gg 0
$$

Proof: Consider the graded ring $G_{I}(A):=\sum I^{i} / I^{i+1}$. This ring is generated over $G_{0}=A / I$ by I / I^{2}, and can be regarded as a quotient of the polynomial $\operatorname{ring} G:=G_{0}\left[t_{1}, \ldots, t_{n}\right]$, where n is the number of generators of I. Since F is I-stable, the graded $G_{I}(A)$-module $G_{I}(M):=\sum F^{i} M / F^{i+1} M$ is finitely generated over $G_{I}(A)$ and hence also over G. For each i we have an exact sequence

$$
0 \rightarrow G_{i}(M) \rightarrow M / F^{i+1} M \rightarrow M / F^{i} M \rightarrow 0
$$

Hence for all i,

$$
\Delta \ell_{M, F}(i)=\ell\left(G_{i}(M)\right)
$$

By Lemma 0.1, it suffices to show that there is a $q \in A_{0}$ of degree less than n such that $q(i)=\ell\left(G_{i}(M)\right)$ for all i sufficiently large. Thus it suffices to prove the following result.

Lemma 0.3 Let R be an Artinian local ring, let N be a finitely generated graded module over the graded ring $R\left[t_{1}, \ldots, t_{n}\right]$, and let $h_{N}(i):=\ell\left(N_{i}\right)$. Then there is a unique polynomial $p_{N} \in \mathbf{Q}[t]$ such that $p_{n}(i)=h_{N}(i)$ for all i sufficiently large. The degree of p_{N} is at most $n-1$.

Proof: By induction on n. If $n=0, N_{i}=0$ for i sufficiently large, so $h_{n} \sim 0$. If $n>0$, let $t:=t_{n}$ and consider the exact sequence of graded modules

$$
0 \rightarrow K \rightarrow N \xrightarrow{t} N \rightarrow \bar{N} \rightarrow 0
$$

Here multiplication by t increases degrees, and by additivity of lengths we have that

$$
h_{K}(i-1)+h_{N}(i)=h_{N}(i-1)+h_{\bar{N}},
$$

i.e., that

$$
\Delta h_{N}=h_{\bar{N}}-h_{K(-1)}
$$

Since K and \bar{N} are killed by t, the induction hypothesis applies to them, and it follows that Δh_{N} is given by a polynomial of degree at most $n-2$. Hence h_{N} is given by a polynomial of degree at most $n-1$.

Lemma 0.4 The degree and leading term of $\ell_{M, F}$ are independent of the I-stable filtration F, and the degree is independent of the ideal I.

Proof: For the first statement, recall that $I^{i} M \subseteq F^{i} M$ for all i and that for some $r, F^{i+r} M \subseteq I^{i} M$ for all $i \geq 0$. We deduce

$$
\ell_{M, I}(i) \geq \ell_{M, F)(i)} \quad \text { and } \quad \ell_{M, F(i+r)} \geq \ell_{M, I}(i)
$$

Hence for large enough i,

$$
p_{M, I}(i) \geq p_{M, F}(i) \quad \text { and } \quad p_{M, F}(i+r) \geq p_{M, I}(i)
$$

Expanding out the polynomials, we find the desired conclusion
For the second statement, observe first that $\ell_{M, I}(i) \geq \ell_{M, \mathfrak{m}}(i)$ for all i. This implies that the degree of $p_{M, I}$ is at least the degree of $p_{M, \mathfrak{m}}$. On the other hand, if $m^{r} \subseteq I$, then $\mathfrak{m}^{i r} \subseteq I^{i}$ for all i, and it follows that $\ell_{M, I}(i) \leq \ell_{M, \mathfrak{m}}(i r)$ for all i. Hence for i large,

$$
p_{M, I}(i) \leq p_{M, \mathfrak{m}}(r i)
$$

Thus the degree of $p_{M, \mathfrak{m}}(r t)$ is at least the degree of $p_{M, I}(t)$.
For a finitely generated A-module M, we denote by $d(M)$ the degree of the polynomial $p_{M, F}$ for any I-stable filtration F as above and any ideal of definition I of A.

Corollary 0.5 If $M^{\prime} \subset M$, then $d\left(M^{\prime}\right) \leq d(M)$. If $x \in \mathfrak{m}$ is a nonzero divisor of M, then $d(M / x M)<d(M)$.

Proof: Let F be an I-stable filtration on M and endow M; with the induced filtration. By Artin-Rees, this filtration is again I-stable, so so $d\left(M^{\prime}\right)$ is the degree of $p_{M^{\prime}, F}$. Since $\ell_{M^{\prime}}(i) \leq \ell_{M}(i), d\left(M^{\prime}\right) \leq d(M)$. Now let $M^{\prime}=x M$. Since x is a nonzero divisor, $M^{\prime} \cong M$, and the filtration F filtration on M^{\prime} is \mathfrak{m}-stable. Hence the degree and leading coefficient of $p_{N, F}$ agree with those of $p_{M, \mathfrak{m}}$. The strict exact sequence

$$
0 \rightarrow\left(M^{\prime}, F\right) \rightarrow(M, F) \rightarrow(\bar{M}, F) \rightarrow 0
$$

then shows that $p_{M, F}-p_{M^{\prime}, F}=p_{\bar{M}, F}$, and hence that the degree of the latter is strictly less than the degree of $p_{M, F}$.

Definition 0.6 If M is a nonzero finitely generated A-module, then

- $\operatorname{dim}(M)$ is the supremum of the set of all k such that there exists a chain of prime ideals of length k contained in the support of M.
- $d(M)$ is the degree of the polynomial $p_{M, \mathfrak{m}}$ defined above.
- $s(M)$ is the minimim number of element of \mathfrak{m} needed to generate an ideal I such that M/IM has finite length.

Theorem 0.7 The above numbers are all equal.
Proof: Step 1: $\operatorname{dim}(M) \leq d(M)$.
By induction on $d(M)$. If $d(M)=0$, then M has finite length and so its support is just $\{\mathfrak{m}\}$, and $\operatorname{dim}(M)=0$. For the induction step, let $P_{0} \subseteq P_{1} \subseteq \cdots P_{k}$ be a chain of prime ideals in $\operatorname{supp}(M)$. We claim that $k \leq \operatorname{dim}(M)$. Without loss of generality we may assume that P_{0} is a minimal prime of $\operatorname{supp}(M)$ and hence is associated to M. Then there exists an embedding $A / P_{0} \subseteq M$ and hence $d\left(A / P_{0}\right) \leq d(M)$. Thus it suffices to prove the result with $M=A / P_{0}$, which we henceforth assume. If $P_{0}=\mathfrak{m}$ there is nothing to prove, and othewise we can choose $x \in P_{1} \backslash P_{0}$. Then if $\bar{M}:=M / x M$, it follows that $d(\bar{M})<d(M)$ and hence by the induction assumption, $\operatorname{dim}(\bar{M}) \leq d(\bar{M})$. But $P_{1} \in \operatorname{supp}(\bar{M})$ so $\operatorname{dim}(\bar{M}) \geq k-1$. Thus $k-1 \leq d(\bar{M}) \leq d(M)-1$,

Step 2: $d(M) \leq s(M)$.
Let J be the annihilator of M. Then M is a faithful A / J-module, and we may without loss of generality replace A by A / J. Choose a sequence
$\left(x_{1}, \ldots, x_{s}\right)$ of elements in the maximal ideal of A such that $M / I M$ is Artinian, where $I:=\left(x_{1}, \ldots, x_{s}\right)$. Then $m^{n} M \subseteq I M$ for some n. We claim that I is an ideal of definition of A, equivalently, that m is the only prime ideal of A containing I. We need the following usesful lemma.

Lemma 0.8 Let E be a finitely generated module over a commutative ring R and let I be an ideal of R. Then

$$
\operatorname{supp}(E / I E)=\operatorname{supp}(E) \cap \operatorname{supp}(R / I)
$$

Proof: Let P be a prime ideal of R. Since $E / I E \cong E \otimes A / I$, it is clear that $(E / I)_{P}$ vanishes if E_{P} or $(A / I)_{P}$ vanishes, so $\operatorname{supp}(E / I E) \subseteq(E) \cap(R / I)$. Suppose on the other hand that $I \subseteq P$ and that $E_{P} \neq 0$. By Nakayama, $E(P):=E_{P} / P E_{P} \cong(E / P E)_{P}$ is not zero, and since $I \subseteq P, E / P E \cong$ $(E / I) / P(E / I)$, and hence $E / I E(P) \cong(E / P E) P \neq 0$.

In our case, M is faithful, so $\operatorname{supp}(M)=\operatorname{Spec}(A)$, and since $\operatorname{supp}(M / I M)=$ $\{m\}$, it follows that $\operatorname{supp}(A / I)=\{m\}$. Then $d(M)$ is the degree of $p_{M, I}$, which is at most s, by Proposition 0.2.

Step 3: $s(M) \leq \operatorname{dim}(M)$. By induction on $\operatorname{dim}(M)$. If this is zero, the support of M is $\{\mathfrak{m}\}$, hence M is annihilated by a power of \mathfrak{m}, hence M has finite length and we can take the empty sequence for $\left(x_{1}, \ldots, x_{s}\right)$. Thus $s=0$. If $\operatorname{dim}(M)$ is positive, then the support of M contains a finite number of minimal primes (finite since all are associated to M) none of which is \mathfrak{m} and it follows by prime avoidance that there exists an $x \in \mathfrak{m}$ which does not belong to any such minimal prime. Then the support of $M / x M$ does not contain any of the minimal primes of $\operatorname{supp}(M)$ and hence $\operatorname{dim}(M / x M)<\operatorname{dim}(M)$. By the induction assumption, $s(M / x M) \leq \operatorname{dim}(M / x M) \leq \operatorname{dim}(M)-1$, so there is a sequence $\left(x_{1}, \ldots x_{s-1}\right)$ with $s \leq \operatorname{dim}(M)-1$ such that $\left(M / x M /\left(x_{1}, \ldots, x_{s-1}\right)\right.$ has finite length. Then $M /\left(x, x_{1}, \ldots, x_{s-1}\right) M$ has finite length.

