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For each natural number n, consider the polynomial

pn(t) :=

(
t + n

n

)
=

(t + n)(t + n− 1) · · · (t + 1)

n!
∈ Q[t].

Note that

pn(t) =
tn

n!
+ · · ·+ 1.

It follows that the set of polynomials {p0(t), . . . , pn(t)} forms a basis for the
space of polynomials in Q[t] of degree at most n. For any f ∈ Q[t], let

∆(f)(t) := f(t)− f(t− 1)

Note that the degree of ∆f exactly one less than the degree of f . Further-
more,

∆pn = pn−1

Let QN denote the ring of functions N → Q. We define an equivalence
relation on this set by saying that f ∼ g if f(i) = g(i) for all i sufficiently
large. This is the quotient by the ideal of functions which are eventually
zero, and so the set of equivalence classes is again a ring, which we denote
by A The evident map from the set of polynomials into A injective.

If f ∈ QN, we can define ∆(f) by ∆(f)(i) = f(i) − f(i − 1), and ∆
induces a maps A → A. Note that if ∆(f) = 0, then f is constant.

Lemma 0.1 If f ∈ QN, then f is equivalent to an element of Q[t] if and
only if ∆f is.

Proof: Suppose ∆(f) ∼ g ∈ Q[t]. Write g =
∑

anpn with an ∈ Q. Then
∆(f) =

∑
an∆pn+1. Let h :=

∑
anpn+1, so that ∆(f) = ∆(g). Hence f − h

is eventually constant, and it follows that f ∼ h + c for some c.
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Let A be a noetherian local ring with maximal ideal m and let M be
a finitely generated A-module. An ideal I of A is said to be an ideal of
definition of A if I ⊆ m and I contains some power of m. Then A/I has
finite length, and hence so does A/I i for every i. Recall that a filtration F
on M is said to be I-stable if IF iM ⊆ F i+1M for all i, with equality for all i
sufficiently large. Given such a filtration, M/F i+1M has finite length for all
i, and we set

`M,F (i) := `(M/F i+1M).

Proposition 0.2 With the notation above, there exists a polynomial pM,F ∈
Q[t] of degree less than or equal to the number of generators of I, such that

`M,F (i) = pM,F (i) for all i >> 0

Proof: Consider the graded ring GI(A) :=
∑

I i/I i+1. This ring is generated
over G0 = A/I by I/I2, and can be regarded as a quotient of the polynomial
ring G := G0[t1, . . . , tn], where n is the number of generators of I. Since F
is I-stable, the graded GI(A)-module GI(M) :=

∑
F iM/F i+1M is finitely

generated over GI(A) and hence also over G. For each i we have an exact
sequence

0→ Gi(M)→M/F i+1M →M/F iM → 0

Hence for all i,
∆`M,F (i) = `(Gi(M)).

By Lemma 0.1, it suffices to show that there is a q ∈ A0 of degree less than
n such that q(i) = `(Gi(M)) for all i sufficiently large. Thus it suffices to
prove the following result.

Lemma 0.3 Let R be an Artinian local ring, let N be a finitely generated
graded module over the graded ring R[t1, . . . , tn], and let hN(i) := `(Ni).
Then there is a unique polynomial pN ∈ Q[t] such that pn(i) = hN(i) for all
i sufficiently large. The degree of pN is at most n− 1.

Proof: By induction on n. If n = 0, Ni = 0 for i sufficiently large, so
hn ∼ 0. If n > 0, let t := tn and consider the exact sequence of graded
modules

0→ K → N
t- N → N → 0

2



Here multiplication by t increases degrees, and by additivity of lengths we
have that

hK(i− 1) + hN(i) = hN(i− 1) + hN ,

i.e., that
∆hN = hN − hK(−1)

Since K and N are killed by t, the induction hypothesis applies to them, and
it follows that ∆hN is given by a polynomial of degree at most n− 2. Hence
hN is given by a polynomial of degree at most n− 1.

Lemma 0.4 The degree and leading term of `M,F are independent of the
I-stable filtration F , and the degree is independent of the ideal I.

Proof: For the first statement, recall that I iM ⊆ F iM for all i and that
for some r, F i+rM ⊆ I iM for all i ≥ 0. We deduce

`M,I(i) ≥ `M,F )(i) and `M,F (i+r) ≥ `M,I(i)

Hence for large enough i,

pM,I(i) ≥ pM,F (i) and pM,F (i + r) ≥ pM,I(i)

Expanding out the polynomials, we find the desired conclusion
For the second statement, observe first that `M,I(i) ≥ `M,m(i) for all

i. This implies that the degree of pM,I is at least the degree of pM,m. On
the other hand, if mr ⊆ I, then mir ⊆ I i for all i, and it follows that
`M,I(i) ≤ `M,m(ir) for all i. Hence for i large,

pM,I(i) ≤ pM,m(ri)

Thus the degree of pM,m(rt) is at least the degree of pM,I(t).

For a finitely generated A-module M , we denote by d(M) the degree of
the polynomial pM,F for any I-stable filtration F as above and any ideal of
definition I of A.

Corollary 0.5 If M ′ ⊂ M , then d(M ′) ≤ d(M). If x ∈ m is a nonzero
divisor of M , then d(M/xM) < d(M).
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Proof: Let F be an I-stable filtration on M and endow M ; with the induced
filtration. By Artin-Rees, this filtration is again I-stable, so so d(M ′) is the
degree of pM ′,F . Since `M ′(i) ≤ `M(i), d(M ′) ≤ d(M). Now let M ′ = xM .
Since x is a nonzero divisor, M ′ ∼= M , and the filtration F filtration on M ′

is m-stable. Hence the degree and leading coefficient of pN,F agree with those
of pM,m. The strict exact sequence

0→ (M ′, F )→ (M,F )→ (M,F )→ 0

then shows that pM,F −pM ′,F = pM,F , and hence that the degree of the latter
is strictly less than the degree of pM,F .

Definition 0.6 If M is a nonzero finitely generated A-module, then

• dim(M) is the supremum of the set of all k such that there exists a
chain of prime ideals of length k contained in the support of M .

• d(M) is the degree of the polynomial pM,m defined above.

• s(M) is the minimim number of element of m needed to generate an
ideal I such that M/IM has finite length.

Theorem 0.7 The above numbers are all equal.

Proof: Step 1: dim(M) ≤ d(M).
By induction on d(M). If d(M) = 0, then M has finite length and

so its support is just {m}, and dim(M) = 0. For the induction step, let
P0 ⊆ P1 ⊆ · · ·Pk be a chain of prime ideals in supp(M). We claim that
k ≤ dim(M). Without loss of generality we may assume that P0 is a min-
imal prime of supp(M) and hence is associated to M . Then there exists
an embedding A/P0 ⊆ M and hence d(A/P0) ≤ d(M). Thus it suffices to
prove the result with M = A/P0, which we henceforth assume. If P0 = m

there is nothing to prove, and othewise we can choose x ∈ P1 \ P0. Then
if M := M/xM , it follows that d(M) < d(M) and hence by the induction
assumption, dim(M) ≤ d(M). But P1 ∈ supp(M) so dim(M) ≥ k− 1. Thus
k − 1 ≤ d(M) ≤ d(M)− 1, .

Step 2: d(M) ≤ s(M).
Let J be the annihilator of M . Then M is a faithful A/J-module, and

we may without loss of generality replace A by A/J . Choose a sequence
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(x1, . . . , xs) of elements in the maximal ideal of A such that M/IM is Ar-
tinian, where I := (x1, . . . , xs). Then mnM ⊆ IM for some n. We claim
that I is an ideal of definition of A, equivalently, that m is the only prime
ideal of A containing I. We need the following usesful lemma.

Lemma 0.8 Let E be a finitely generated module over a commutative ring
R and let I be an ideal of R. Then

supp(E/IE) = supp(E) ∩ supp(R/I)

Proof: Let P be a prime ideal of R. Since E/IE ∼= E⊗A/I, it is clear that
(E/I)P vanishes if EP or (A/I)P vanishes, so supp(E/IE) ⊆ (E) ∩ (R/I).
Suppose on the other hand that I ⊆ P and that EP 6= 0. By Nakayama,
E(P ) := EP/PEP

∼= (E/PE)P is not zero, and since I ⊆ P , E/PE ∼=
(E/I)/P (E/I), and hence E/IE(P ) ∼= (E/PE)P 6= 0.

In our case, M is faithful, so supp(M) = Spec(A), and since supp(M/IM) =
{m}, it follows that supp(A/I) = {m}. Then d(M) is the degree of pM,I ,
which is at most s, by Proposition 0.2.

Step 3: s(M) ≤ dim(M). By induction on dim(M). If this is zero, the
support of M is {m}, hence M is annihilated by a power of m, hence M
has finite length and we can take the empty sequence for (x1, . . . , xs). Thus
s = 0. If dim(M) is positive, then the support of M contains a finite number
of minimal primes (finite since all are associated to M) none of which is m and
it follows by prime avoidance that there exists an x ∈ m which does not belong
to any such minimal prime. Then the support of M/xM does not contain any
of the minimal primes of supp(M) and hence dim(M/xM) < dim(M). By the
induction assumption, s(M/xM) ≤ dim(M/xM) ≤ dim(M)−1, so there is a
sequence (x1, . . . xs−1) with s ≤ dim(M)−1 such that (M/xM/(x1, . . . , xs−1)
has finite length. Then M/(x, x1, . . . , xs−1)M has finite length.
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