Dimension of Local Rings

April 13, 2016

For each natural number n, consider the polynomial

$$p_n(t) := \binom{t+n}{n} = \frac{(t+n)(t+n-1)\cdots(t+1)}{n!} \in \mathbf{Q}[t]$$

Note that

$$p_n(t) = \frac{t^n}{n!} + \dots + 1$$

It follows that the set of polynomials $\{p_0(t), \ldots, p_n(t)\}$ forms a basis for the space of polynomials in $\mathbf{Q}[t]$ of degree at most n. For any $f \in \mathbf{Q}[t]$, let

$$\Delta(f)(t) := f(t) - f(t-1)$$

Note that the degree of Δf exactly one less than the degree of f. Furthermore,

 $\Delta p_n = p_{n-1}$

Let $\mathbf{Q}^{\mathbf{N}}$ denote the ring of functions $\mathbf{N} \to \mathbf{Q}$. We define an equivalence relation on this set by saying that $f \sim g$ if f(i) = g(i) for all *i* sufficiently large. This is the quotient by the ideal of functions which are eventually zero, and so the set of equivalence classes is again a ring, which we denote by \mathcal{A} The evident map from the set of polynomials into \mathcal{A} injective.

If $f \in \mathbf{Q}^{\mathbf{N}}$, we can define $\Delta(f)$ by $\Delta(f)(i) = f(i) - f(i-1)$, and Δ induces a maps $\mathcal{A} \to \mathcal{A}$. Note that if $\Delta(f) = 0$, then f is constant.

Lemma 0.1 If $f \in \mathbf{Q}^{\mathbf{N}}$, then f is equivalent to an element of $\mathbf{Q}[t]$ if and only if Δf is.

Proof: Suppose $\Delta(f) \sim g \in \mathbf{Q}[t]$. Write $g = \sum a_n p_n$ with $a_n \in \mathbf{Q}$. Then $\Delta(f) = \sum a_n \Delta p_{n+1}$. Let $h := \sum a_n p_{n+1}$, so that $\Delta(f) = \Delta(g)$. Hence f - h is eventually constant, and it follows that $f \sim h + c$ for some c.

Let A be a noetherian local ring with maximal ideal \mathfrak{m} and let M be a finitely generated A-module. An ideal I of A is said to be an *ideal of definition* of A if $I \subseteq \mathfrak{m}$ and I contains some power of \mathfrak{m} . Then A/I has finite length, and hence so does A/I^i for every i. Recall that a filtration Fon M is said to be I-stable if $IF^iM \subseteq F^{i+1}M$ for all i, with equality for all isufficiently large. Given such a filtration, $M/F^{i+1}M$ has finite length for all i, and we set

$$\ell_{M,F}(i) := \ell(M/F^{i+1}M).$$

Proposition 0.2 With the notation above, there exists a polynomial $p_{M,F} \in \mathbf{Q}[t]$ of degree less than or equal to the number of generators of I, such that

$$\ell_{M,F}(i) = p_{M,F}(i) \quad for \ all \ i >> 0$$

Proof: Consider the graded ring $G_I(A) := \sum I^i / I^{i+1}$. This ring is generated over $G_0 = A/I$ by I/I^2 , and can be regarded as a quotient of the polynomial ring $G := G_0[t_1, \ldots, t_n]$, where *n* is the number of generators of *I*. Since *F* is *I*-stable, the graded $G_I(A)$ -module $G_I(M) := \sum F^i M / F^{i+1} M$ is finitely generated over $G_I(A)$ and hence also over *G*. For each *i* we have an exact sequence

$$0 \to G_i(M) \to M/F^{i+1}M \to M/F^iM \to 0$$

Hence for all i,

$$\Delta \ell_{M,F}(i) = \ell(G_i(M)).$$

By Lemma 0.1, it suffices to show that there is a $q \in A_0$ of degree less than n such that $q(i) = \ell(G_i(M))$ for all i sufficiently large. Thus it suffices to prove the following result.

Lemma 0.3 Let R be an Artinian local ring, let N be a finitely generated graded module over the graded ring $R[t_1, \ldots, t_n]$, and let $h_N(i) := \ell(N_i)$. Then there is a unique polynomial $p_N \in \mathbf{Q}[t]$ such that $p_n(i) = h_N(i)$ for all i sufficiently large. The degree of p_N is at most n - 1.

Proof: By induction on n. If n = 0, $N_i = 0$ for i sufficiently large, so $h_n \sim 0$. If n > 0, let $t := t_n$ and consider the exact sequence of graded modules

$$0 \to K \to N \xrightarrow{\iota} N \to \overline{N} \to 0$$

Here multiplication by t increases degrees, and by additivity of lengths we have that

$$h_K(i-1) + h_N(i) = h_N(i-1) + h_{\overline{N}},$$

i.e., that

$$\Delta h_N = h_{\overline{N}} - h_{K(-1)}$$

Since K and \overline{N} are killed by t, the induction hypothesis applies to them, and it follows that Δh_N is given by a polynomial of degree at most n-2. Hence h_N is given by a polynomial of degree at most n-1.

Lemma 0.4 The degree and leading term of $\ell_{M,F}$ are independent of the *I*-stable filtration *F*, and the degree is independent of the ideal *I*.

Proof: For the first statement, recall that $I^i M \subseteq F^i M$ for all i and that for some $r, F^{i+r} M \subseteq I^i M$ for all $i \ge 0$. We deduce

$$\ell_{M,I}(i) \ge \ell_{M,F(i)}$$
 and $\ell_{M,F(i+r)} \ge \ell_{M,I}(i)$

Hence for large enough i,

definition I of A.

$$p_{M,I}(i) \ge p_{M,F}(i)$$
 and $p_{M,F}(i+r) \ge p_{M,I}(i)$

Expanding out the polynomials, we find the desired conclusion

For the second statement, observe first that $\ell_{M,I}(i) \geq \ell_{M,\mathfrak{m}}(i)$ for all i. This implies that the degree of $p_{M,I}$ is at least the degree of $p_{M,\mathfrak{m}}$. On the other hand, if $m^r \subseteq I$, then $\mathfrak{m}^{ir} \subseteq I^i$ for all i, and it follows that $\ell_{M,I}(i) \leq \ell_{M,\mathfrak{m}}(ir)$ for all i. Hence for i large,

$$p_{M,I}(i) \le p_{M,\mathfrak{m}}(ri)$$

Thus the degree of $p_{M,\mathfrak{m}}(rt)$ is at least the degree of $p_{M,I}(t)$.

For a finitely generated A-module M, we denote by d(M) the degree of the polynomial $p_{M,F}$ for any I-stable filtration F as above and any ideal of

Corollary 0.5 If $M' \subset M$, then $d(M') \leq d(M)$. If $x \in \mathfrak{m}$ is a nonzero divisor of M, then d(M/xM) < d(M).

Proof: Let F be an I-stable filtration on M and endow M; with the induced filtration. By Artin-Rees, this filtration is again I-stable, so so d(M') is the degree of $p_{M',F}$. Since $\ell_{M'}(i) \leq \ell_M(i), d(M') \leq d(M)$. Now let M' = xM. Since x is a nonzero divisor, $M' \cong M$, and the filtration F filtration on M' is m-stable. Hence the degree and leading coefficient of $p_{N,F}$ agree with those of $p_{M,\mathfrak{m}}$. The strict exact sequence

$$0 \to (M', F) \to (M, F) \to (\overline{M}, F) \to 0$$

then shows that $p_{M,F} - p_{M',F} = p_{\overline{M},F}$, and hence that the degree of the latter is strictly less than the degree of $p_{M,F}$.

Definition 0.6 If M is a nonzero finitely generated A-module, then

- dim(M) is the supremum of the set of all k such that there exists a chain of prime ideals of length k contained in the support of M.
- d(M) is the degree of the polynomial $p_{M,\mathfrak{m}}$ defined above.
- s(M) is the minimim number of element of m needed to generate an ideal I such that M/IM has finite length.

Theorem 0.7 The above numbers are all equal.

Proof: Step 1: dim $(M) \leq d(M)$.

By induction on d(M). If d(M) = 0, then M has finite length and so its support is just $\{\mathfrak{m}\}$, and $\dim(M) = 0$. For the induction step, let $P_0 \subseteq P_1 \subseteq \cdots P_k$ be a chain of prime ideals in supp(M). We claim that $k \leq \dim(M)$. Without loss of generality we may assume that P_0 is a minimal prime of supp(M) and hence is associated to M. Then there exists an embedding $A/P_0 \subseteq M$ and hence $d(A/P_0) \leq d(M)$. Thus it suffices to prove the result with $M = A/P_0$, which we henceforth assume. If $P_0 = \mathfrak{m}$ there is nothing to prove, and othewise we can choose $x \in P_1 \setminus P_0$. Then if $\overline{M} := M/xM$, it follows that $d(\overline{M}) < d(M)$ and hence by the induction assumption, $\dim(\overline{M}) \leq d(\overline{M})$. But $P_1 \in supp(\overline{M})$ so $\dim(\overline{M}) \geq k-1$. Thus $k-1 \leq d(\overline{M}) \leq d(M)-1$,

Step 2: $d(M) \leq s(M)$.

Let J be the annihilator of M. Then M is a faithful A/J-module, and we may without loss of generality replace A by A/J. Choose a sequence (x_1, \ldots, x_s) of elements in the maximal ideal of A such that M/IM is Artinian, where $I := (x_1, \ldots, x_s)$. Then $m^n M \subseteq IM$ for some n. We claim that I is an ideal of definition of A, equivalently, that m is the only prime ideal of A containing I. We need the following usesful lemma.

Lemma 0.8 Let E be a finitely generated module over a commutative ring R and let I be an ideal of R. Then

$$supp(E/IE) = supp(E) \cap supp(R/I)$$

Proof: Let P be a prime ideal of R. Since $E/IE \cong E \otimes A/I$, it is clear that $(E/I)_P$ vanishes if E_P or $(A/I)_P$ vanishes, so $supp(E/IE) \subseteq (E) \cap (R/I)$. Suppose on the other hand that $I \subseteq P$ and that $E_P \neq 0$. By Nakayama, $E(P) := E_P/PE_P \cong (E/PE)_P$ is not zero, and since $I \subseteq P$, $E/PE \cong (E/I)/P(E/I)$, and hence $E/IE(P) \cong (E/PE)P \neq 0$.

In our case, M is faithful, so supp(M) = Spec(A), and since $supp(M/IM) = \{m\}$, it follows that $supp(A/I) = \{m\}$. Then d(M) is the degree of $p_{M,I}$, which is at most s, by Proposition 0.2.

Step 3: $s(M) \leq \dim(M)$. By induction on $\dim(M)$. If this is zero, the support of M is $\{\mathfrak{m}\}$, hence M is annihilated by a power of \mathfrak{m} , hence M has finite length and we can take the empty sequence for (x_1, \ldots, x_s) . Thus s = 0. If $\dim(M)$ is positive, then the support of M contains a finite number of minimal primes (finite since all are associated to M) none of which is \mathfrak{m} and it follows by prime avoidance that there exists an $x \in \mathfrak{m}$ which does not belong to any such minimal prime. Then the support of M/xM does not contain any of the minimal primes of supp(M) and hence $\dim(M/xM) < \dim(M)$. By the induction assumption, $s(M/xM) \leq \dim(M) - 1$, so there is a sequence (x_1, \ldots, x_{s-1}) with $s \leq \dim(M) - 1$ such that $(M/xM/(x_1, \ldots, x_{s-1})$ has finite length. Then $M/(x, x_1, \ldots, x_{s-1})M$ has finite length.