Depth and CohomoIogy

April 23, 2016

Let A be a ring and E a nonzero A-module. A sequence of elements $\left(a_{1}, \ldots, a_{r}\right)$ is E-regular if $E /\left(a_{1}, \ldots, a_{r}\right) E \neq 0$ and for all i, multiplication by a_{i} acts injectively $E /\left(a_{1}, \ldots, a_{i-1}\right) E$. If I is an ideal of $A, \operatorname{depth}_{I}(E)$ is the maximum length of an E-regular sequence of elements in I. If there are no such sequences we set $\operatorname{depth}_{I}(E)=0$, and if there is no bound on the length of such a sequence or if $E / I E=0$ we set $\operatorname{depth}_{I}(E)=\infty$. If P and Q are prime ideals of A with $P \subseteq Q, \operatorname{dim}(Q, P)$ is the maximum length of a chain of prime ideals joining P and Q, and $\operatorname{dist}(Q, P)$ is the minimum length of a saturated chain of prime ideals joining P and Q. If A is a local ring and \mathfrak{m} is its maximal ideal, then $\operatorname{depth}_{\mathfrak{m}}(E)$ is often just written as depth (E).

Lemma 0.1 With above conventions,

1. If $I \subseteq \sqrt{J}$, then $\operatorname{depth}_{I}(E) \leq \operatorname{depth}_{J}(E)$.
2. If Q is a prime ideal, then $\operatorname{depth}_{Q}(E) \leq \operatorname{depth}\left(E_{Q}\right)$, where in the latter E_{Q} is regarded as a module over the local ring A_{Q}.

Theorem 0.2 Assume that A is a noetherian ring, that E is a noetherian A-module, and that I is an ideal of A.

1. If Q is a prime ideal belonging to the support of $E / I E$, then

$$
\operatorname{depth}_{I}(E) \leq \operatorname{dim}_{Q} E
$$

2. $\operatorname{depth}_{I}(E)=\inf \left\{i: \operatorname{Ext}_{A}^{i}(A / I, E) \neq 0\right\}$.
3. If P is an associated prime of E and Q contains P, then

$$
\operatorname{depth}_{Q}(E) \leq \operatorname{dist}(Q, P)
$$

Proof: We give here only the proof of (3). Note first that $E / Q E \neq 0$, because Q contains an associated prime of E and E is finitely generated. Since $\operatorname{dist}(Q, P)$ does not changen if we replace Q by A_{Q} and Q and P by their corresponding primes in $A_{Q},(2)$ of Lemma 0.1 implies that we may assume without of generality that A is local and that Q is its maximal ideal.

We argue by induction on $d:=\operatorname{dist}(Q, P)$. If $d=0$, then $Q=P$ and hence is associated to E. In this case no elemenet of Q acts injectively on E, and hence depth $(E)=0$. Suppose that $d>0$ and that $Q=Q_{0} \supset \cdots Q_{d}=P$ is a saturated chain of distinct primes joining f P and Q, with d minimal. Then $Q_{1} \supset \cdots P$ is a saturated chain of prime ideals joining Q_{1} and P, and there can be no shorter such chain. Thus $\operatorname{dist}\left(Q_{1}, P\right)=d-1$, and by the induction assumption, we have

$$
\begin{equation*}
\operatorname{depth}_{Q_{1}}(E) \leq d-1 \tag{1}
\end{equation*}
$$

Choose $x \in Q \backslash Q_{1}$ and let $J:=\left(Q_{1}, x\right)$. Thus $Q_{1} \subsetneq J \subseteq Q$. Since there are no prime ideals between Q_{1} and Q, Q is the only prime ideal containing J, and hence Q is nilpotent modulo J. It follows that $\sqrt{J}=Q$ and hence by (1) of Lemma 0.1,

$$
\begin{equation*}
\operatorname{depth}_{J}(E)=\operatorname{depth}_{Q}(E) \tag{2}
\end{equation*}
$$

By Lemma (2) below, $\operatorname{depth}_{Q_{1}}(E) \geq \operatorname{depth}_{J}(E)-1$. Combining this inequality with (1) and (2), we find

$$
\operatorname{depth}_{Q}(E)=\operatorname{depth}_{J}(E) \leq \operatorname{depth}_{Q_{1}}(E)+1 \leq(d-1)+1=d
$$

proving the theorem. It remains only to prove the lemma below.
Lemma 0.3 With the notation above,

$$
\operatorname{depth}_{Q_{1}}(E) \geq \operatorname{depth}_{J}(E)-1
$$

The lemma asserts that $\operatorname{Ext}^{i}\left(A / Q_{1}, E\right)=0$ for $i<\operatorname{depth}_{J}(E)-1$. To prove this, note that since Q_{1} is a prime ideal and $x \in Q \backslash Q_{1}$, multiplication by x on A / Q_{1} is injective. Since $J=Q_{1}+(x)$, we find a short exact sequence

$$
0 \longrightarrow A / Q_{1} \xrightarrow{x} A / Q_{1} \longrightarrow A / J \longrightarrow 0
$$

and consequently a long exact sequence:
$\operatorname{Ext}^{i}(A / J, E) \longrightarrow \operatorname{Ext}^{i}\left(A / Q_{1}, E\right) \xrightarrow{x} \operatorname{Ext}^{i}\left(A / Q_{1}, E\right) \longrightarrow \operatorname{Ext}^{i+1}(A / J, E)$.
If $i<\operatorname{depth}_{J}(E)-1$, then $i+1<\operatorname{depth}_{J}(E)$, and hence $\operatorname{Ext}^{i+1}(A / J, E)=0$. Then it follows from the exact sequence above that multiplication by x on $\operatorname{Ext}^{i}\left(A / Q_{1}, E\right)$ is surjective. But $\operatorname{Ext}^{i}\left(A / Q_{1}, E\right)$ is finitely generated over the local ring A, and x belongs to the maximal ideal of A, and it follows by Nakayama's lemma that $\operatorname{Ext}^{i}\left(A / Q_{1}, E\right)=0$, as required.

A ring is said to be catenary if for any pair of prime ideals with $P \subseteq Q$, $\operatorname{dist}(Q, P)=\operatorname{dim}(Q, P)$. Since every prime ideal contains a minimal prime and is contained in a maximal prime, it is enough to verify this condition whenever Q is maximal and P is minimal. The quotient of a catenary ring is necessarily catenary.

A noetherian local ring R is Cohen-Macaulay if $\operatorname{depth}(R)=\operatorname{dim}(R)$. Statement (3) of the previous theorem implies that every associated prime of such a ring R is minimal, and since every minimal prime is also associated, it follows that R is catenary. Hence any quotient of a Cohen-Macaulay local ring is catenary.

