Depth and Cohomology

April 23, 2016

Let A be a ring and F a nonzero A-module. A sequence of elements
(a1,...,a,) is E-regular if E/(ay,...,a,)E # 0 and for all 4, multiplication
by a; acts injectively E/(ay,...,a;—1)E. If T is an ideal of A, depth,(FE) is
the maximum length of an F-regular sequence of elements in I. If there are
no such sequences we set depth;(F) = 0, and if there is no bound on the
length of such a sequence or if E/IE = 0 we set depth,(E) = oo. If P and
@ are prime ideals of A with P C @, dim(@, P) is the maximum length of a
chain of prime ideals joining P and @), and dist(Q, P) is the minimum length
of a saturated chain of prime ideals joining P and Q). If A is a local ring and
m is its maximal ideal, then depthy, (F) is often just written as depth(FE).

Lemma 0.1 With above conventions,
1. If I C/J, then depth;(E) < depth,(E).

2. If Q is a prime ideal, then depthy(E) < depth(Eq), where in the latter
Eq is regarded as a module over the local ring Ag.

]

Theorem 0.2 Assume that A is a noetherian ring, that E is a noetherian
A-module, and that I is an ideal of A.

1. If Q is a prime ideal belonging to the support of E/IE, then

depth;(F) < dimg E.

2. depth;(E) = inf{i : Ext’,(A/I, E) # 0}.



3. If P 1s an associated prime of E and Q) contains P, then
depthg(E) < dist(Q, P).

Proof: We give here only the proof of (3). Note first that E/QE # 0,
because () contains an associated prime of E and F is finitely generated.
Since dist(Q, P) does not changen if we replace Q) by Ag and @ and P by
their corresponding primes in Ag, (2) of Lemma 0.1 implies that we may
assume without of generality that A is local and that @) is its maximal ideal.

We argue by induction on d := dist(Q, P). If d = 0, then @ = P and
hence is associated to E. In this case no elemenet of ) acts injectively on E,
and hence depth(E) = 0. Suppose that d > 0 and that Q = Qp D ---Qq = P
is a saturated chain of distinct primes joining f P and (), with d minimal.
Then ()1 D --- P is a saturated chain of prime ideals joining ¢); and P, and
there can be no shorter such chain. Thus dist(@Q, P) = d — 1, and by the
induction assumption, we have

depthy, (F) <d —1 (1)

Choose z € Q \ @1 and let J := (Qq,x). Thus Q; € J C Q. Since there
are no prime ideals between @)1 and @, @) is the only prime ideal containing
J, and hence Q is nilpotent modulo J. It follows that v/J = @ and hence by
(1) of Lemma 0.1,

depth;(E) = depthg(E). (2)

By Lemma (2) below, depthy (E) > depth;(£) — 1. Combining this
inequality with (1) and (2), we find

depthg (E) = depth ;(F) < depthg, (E) +1 < (d—1)+1=d,
proving the theorem. It remains only to prove the lemma below.
Lemma 0.3 With the notation above,
depthy, (E) > depth;(E) — 1

The lemma asserts that Ext’(4/Q;, E) = 0 for i < depth,(E) — 1. To prove
this, note that since @); is a prime ideal and = € @ \ @1, multiplication by x
on A/Qq is injective. Since J = @ + (x), we find a short exact sequence

0— A/Qr — A/Qy — A/J — 0,
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and consequently a long exact sequence:
Ext'(A/J, E) — Ext'(A/Q,, F) — Ext'(A/Q,, F) — Ext'*'(A/J, E).

If i < depth;(E)—1, then i+1 < depth(E), and hence Ext"™(A/J, E) = 0.
Then it follows from the exact sequence above that multiplication by x on
Ext'(A/Q1, E) is surjective. But Ext'(A4/Q,, E) is finitely generated over
the local ring A, and = belongs to the maximal ideal of A, and it follows by
Nakayama’s lemma that Ext’(A/Q,, E) = 0, as required. O]

A ring is said to be catenary if for any pair of prime ideals with P C (@,
dist(Q, P) = dim(Q, P). Since every prime ideal contains a minimal prime
and is contained in a maximal prime, it is enough to verify this condition
whenever () is maximal and P is minimal. The quotient of a catenary ring
is necessarily catenary.

A noetherian local ring R is Cohen-Macaulay if depth(R) = dim(R).
Statement (3) of the previous theorem implies that every associated prime of
such a ring R is minimal, and since every minimal prime is also associated,
it follows that R is catenary. Hence any quotient of a Cohen-Macaulay local
ring is catenary.



