Associated Primes

February 25, 2016

Definition 1 Let R be a ring and let E be an R-module.

1. The annihilator of an element x of E is the set $\operatorname{Ann}(x)$ of all $a \in R$ such that $a x=0$. It is an ideal of R, the kernel of the map $R \rightarrow E$ sending 1 to x.
2. The annihilator of E is the set of all a in R such that $a x=0$ for all x in E. It is also an ideal of R, and is the intersection of the ideals $\operatorname{Ann}(x): x \in E$.
3. The support of E is the set $\operatorname{Supp}(E)$ of all prime ideals P such that the localizaiton E_{P} of E at P is not zero.
4. A prime ideal P is associated to E if there is some element x of E such that $\operatorname{Ann}(x)=P$. The set of such prime ideals is denoted by $\operatorname{Ass}(E)$. Thus a prime ideal P belongs to E if and only if there is an injection $A / P \rightarrow E$.

Proposition 2 If E is an R-module and P is a prime ideal of R such that $P \in \operatorname{Supp}(E)$, then P contains $\operatorname{Ann}(E)$. The converse holds if E is finitely generated.

Proof: If there is some $a \in \operatorname{Ann}(E) \backslash P$, then $a x=0$ for every $x \in E$, hence x maps to zero in the localization E_{P}, and hence $E_{P}=0$. For the converse, suppose that x_{1}, \ldots, x_{n} is a finite set of generators for E and that P is a prime ideal containing $\operatorname{Ann}(E)$. Since E is generated by $x_{1}, \ldots, x_{n}, \operatorname{Ann}(E)$ is the intersection of the ideals $\operatorname{Ann}\left(x_{i}\right)$ for $i=1, \ldots, i_{n}$. We claim that P contains $\operatorname{Ann}\left(x_{i}\right)$ for some i. Otherwise there is some $a_{i} \in \operatorname{Ann}\left(x_{i}\right) \backslash P$ for every i, and $a:=\prod_{i} a_{i} \in \operatorname{Ann}(E) \backslash P$, a contradiction. But if P contains $\operatorname{Ann}\left(x_{i}\right), a x_{i} \neq 0$ for every $a \in R \backslash P$, and hence the image of x_{i} in E_{P} is not zero. Thus $P \in \operatorname{Supp}(E)$.

To see that the hypothesis of finite generation is not superflous in the above proposition, consider the following example. Take $R=\mathbf{Z}$ and $E=$ $\oplus_{p} \mathbf{Z} / p \mathbf{Z}$. Then $\operatorname{Ann}(E)$ is the zero ideal, but the localization of E by the zero ideal is $E \otimes \mathbf{Q}=0$.

Proposition 3 Let R be a commutative ring and E an R-module. Suppose that the localization E_{P} of E at P is zero for every maximal ideal P of R. Then $E=0$.

Proof: Let x be an element of E. For each P, let $\lambda_{P}: E \rightarrow E_{P}$ be the localization homomorphism. Then $\lambda_{P}(x)=0$. This means that there is some $s_{P} \in R \backslash P$ such that $s_{P} x=0$. Let I be the ideal of R generated by the set of all these elements s_{P}. For every maximal ideal P of R, the ideal I contains $s_{P} \notin P$, and hence $I \nsubseteq P$. Since I is not contained in any maximal ideal of R, I is not a proper ideal, hence $1 \in I$. This implies that there exists a finite sequence $s_{P_{1}}, \cdots, s_{P_{m}}$ and a elements $a_{1}, \ldots a_{m}$ such that $1=a_{1} s_{P_{1}}+\cdots+a_{m} s_{P_{m}}$. Then $x=a_{1} s_{P_{1}} x+\cdots+a_{m} s_{P_{m}} x=0$.

Proposition 3 implies that the support of E is empty if and only if $E=0$.
Corollary 4 Let E be an R-module and a an element of R. Then the following are equivalent.

1. The localization E_{a} of E at a vanishes.
2. For every $x \in E$, there exists an n such that $a^{n} x=0$. (Then a is said to be locally nilpotent on E.)
3. The element a belongs to every P in the support of E.

Proof: The equivalence of (1) and (2) is clear. To prove that (2) implies (3), suppose P is a maximal ideal in the support of E. Then $E_{P} \neq 0$, so for some $x \in E, \lambda_{P}(x) \neq 0$, and hence for every $s \notin P, s x \neq 0$. Since $a^{n} x=0$ for some $n, a^{n} \in P$, hence $a \in P$. To prove that (3) implies (1), suppose that $E_{a} \neq 0$. We can view E_{a} as a module over the ring R_{a} obtained by localizing the ring R by a. Then by Proposition 3, applied to the R_{a}-module E_{a}, there exists a prime ideal in the support of E_{a}. This prime ideal is the localization P_{a} of some prime ideal P in R not containing a. Since $\left(E_{a}\right)_{P_{a}}=E_{P}$, we see that $E_{P} \neq 0$; i.e., P belongs to the support of E. By hypothesis, $a \in P$, a contradiction.

Note that $\operatorname{Ass}(E) \subseteq \operatorname{Supp}(E)$, because if $A / P \rightarrow E$ is injective, the localized map $(A / P)_{P} \rightarrow E_{P}$ is injective, and $(A / P)_{P} \neq 0$. (In fact $(A / P)_{P}$ is a field).

Proposition 5 If R is noetherian and $E \neq 0$, then $\operatorname{Ass}(E) \neq \emptyset$. Moreover, a prime ideal P belongs to the support of E if and only if P contains a prime associated to E. In particular, every minimal element of $\operatorname{Supp}(E)$ belongs to $\operatorname{Ass}(E)$.

Proof: For the first part, see Lang. Suppose $Q \in \operatorname{Ass}(E)$ and $Q \subseteq P$. Then $T:=R \backslash Q$ contians $S:=R \backslash P$, so that E_{Q} is a localization of E_{P}. Since $E_{Q} \neq 0$, it follows that $E_{P} \neq 0$. Conversely, suppose that $E_{P} \neq 0$. Then E_{P} has an associated prime Q. Thus there is some element y of E_{P} such that $\operatorname{Ann}(y)=Q$. Evidently $Q \subseteq P$; otherwise there is some $q \in Q$ which acts as an isomorphism on E_{P} and kills y, contradicting the fact that $y \neq 0$. Say $y=\lambda_{P}(x) / s$ with $s \in S:=R \backslash P$. Since s acts as an isomorphism on $E_{P}, \operatorname{Ann}(s y)=\operatorname{Ann}(y)$, so without loss of generality $y=\lambda(x)$. Let q_{1}, \cdots, q_{m} be a finite set of generators for Q. Then $\lambda\left(q_{i} x\right)=0$, hence there is some $s_{i} \in S$ such that $s_{i} q_{i} x=0$. Let s be the product of all these s_{i}. Then $q_{i} s x=0$ for all i, and hence $q s x=0$ for all q, so $Q \subseteq A n n(s x)$. On the other hand, if $a x=0$, then $a \lambda(s x)=0$, hence $s a \lambda(x)=0$ and hence $a \lambda(x)=0$, so $a \in Q$. Thus $\operatorname{Ann}(s x)=Q$ and $Q \in \operatorname{Ass}(E)$.

Proposition 6 Let E be a module over a noetherian ring R and let a be an element of R

1. Multiplication by a on E is locally nilpotent iff a belongs to every associated prime of E.
2. Multiplication by a on E is injective iff a belongs to no associated prime of E.

Proof: It follows from Proposition 5 that a belongs to to every associated prime of E iff it belongs to every prime in the support of E. By Corollary 4, this is true iff multiplication by a on E is locally nilpotent. This proves (1).

For (2), suppose first that $a \in P \in \operatorname{Ass}(E)$. Then there is a nonzero x in E such that $\operatorname{Ann}(x)=P$. Thus $a x=0$ and $x \neq 0$, so multiplication by a is not injective. Suppose for the converse that $a x=0$ for some $x \neq 0$. Let E^{\prime} be the set of multiples of x. Then $\operatorname{Ass}\left(E^{\prime}\right) \neq 0$, so there is some multiple of x, say $b x$, such that $\operatorname{Ann}(b x)$ is a prime ideal P. Then $P \in A s s(E)$ and $a b x=0$, so $a \in P$.

Proposition 7 Suppose that R is noetherian and M is a noetherian R module. Then M admits a filtration $0=M_{0} \subseteq M_{1} \subseteq \cdots M_{n}=M$ such that $M_{i} / M_{i-1} \cong A / P_{i}$ for some prime ideal P_{i}. Morever, $\operatorname{Ass}(M) \subseteq$ $\left\{P_{1}, \cdots, P_{n}\right\}$. In particular, $\operatorname{Ass}(M)$ is finite.

We omit the proof.
A nonzero module E is said to be coprimary if for every $a \in A$, multiplication by a is either locally nilpotent or injective. If R is noetherian, then it follows from Proposition 6 that E is coprimary iff it has a unique associated prime.

