The Fundamental Theorem of Calculus

May 2, 2010

The fundamental theorem of calculus has two parts:
Theorem (Part I). Let f be a continuous function on $[a, b]$ and define a function $g:[a, b] \rightarrow \mathbf{R}$ by

$$
g(x):=\int_{a}^{x} f
$$

Then g is differentiable on (a, b), and for every $x \in(a, b)$,

$$
g^{\prime}(x)=f(x)
$$

At the end points, g has a one-sided derivative, and the same formula holds. That is, the right-handed derivative of g at a is $f(a)$, and the left-handed derivative of f at b is $f(b)$.

Proof: This proof is surprisingly easy. It just uses the definition of derivatives and the following properties of the integral:

1. If f is continuous on $[a, b]$, then $\int_{a}^{b} f$ exists.
2. If f is continous on $[a, b]$ and $c \in[a, b]$, then

$$
\int_{a}^{c} f+\int_{c}^{b} f=\int_{a}^{b} f
$$

3 . If $m \leq f \leq M$ on $[a, b]$, then

$$
(b-a) m \leq \int_{a}^{b} f \leq(b-a) M
$$

Let x be a point in (a, b). (We just treat the case of $x \in(a, b)$ since the endpoints can be treated similarly.) If $x \in(a, b)$, we shall show that $g^{\prime}\left(x^{+}\right)=g^{\prime}\left(x^{-}\right)=f(x)$. Knowing that the two one-sided derivatives exist and are equal, we can conclude that the derivative exists and has this value.

By definition,

$$
g^{\prime}\left(x^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{g(x+h)-g(x)}{h} .
$$

Property (1) assures us that g is well defined provided that $h<b-x$. Property (2) allows us to simplify the numerator, since it implies that

$$
\begin{equation*}
g(x+h)-g(x):=\int_{a}^{x+h} f-\int_{a}^{x} f=\int_{x}^{x+h} f . \tag{1}
\end{equation*}
$$

This is already great, since we only need to worry about f over the small interval $[x, x+h]$. A picture is helpful here, but I don't have time to include one in thise notes. Draw one yourself.

Now recall the definition of a limit. We have to show that given any $\epsilon>0$, there is a $\delta>0$ such that

$$
\begin{equation*}
\left|\frac{g(x+h)-g(x)}{h}-f(x)\right|<\epsilon . \tag{2}
\end{equation*}
$$

whenever $0<h<\delta$. This is where we use the continuity of f at x. We know from this that there is a δ such that $\left|f\left(x^{\prime}\right)-f(x)\right|<\epsilon$ whenever $\left|x^{\prime}-x\right|<\delta$. This means that

$$
f(x)-\epsilon<f\left(x^{\prime}\right)<f(x)+\epsilon
$$

for all such x^{\prime}. We use this same δ our criterion for the limit in equation (2). Let us verify that this works. Suppose that $0<h<\delta$. Then on the interval $[x, x+h]$, we know that f is between $f(x)-\epsilon$ and $f(x)+\epsilon$. By property (3) of integrals, it follows that

$$
(f(x)-\epsilon) h \leq \int_{x}^{x+h} f \leq(f(x)+\epsilon) h .
$$

Since $h>0$, we can divide both sides by h to conclude that

$$
\begin{aligned}
& f(x)-\epsilon \leq 1 / h \int_{x}^{x+h} f \leq f(x)+\epsilon, \quad \text { i.e., } \\
& f(x)-\epsilon \leq \frac{g(x+h)-g(x)}{h} \leq f(x)+\epsilon
\end{aligned}
$$

This is exactly what we needed.
The left handed derivatives are done in essentially the same way.

Theorem (Part II). Let f be a continuous function on $[a, b]$. Suppose that F is continuous on $[a, b]$ and that $F^{\prime}=f$ on (a, b). Then

$$
\int_{a}^{b} f=F(b)-F(a)
$$

Proof: Consider the function g in the previous theorem. Since g is differentiable on $[a, b]$ it is continuous there (including at the end points, where the one-sided deritaives exist). We also know that g and F are differentiable on (a, b), and that there derivatives are equal. Recall that we had (as a consequence of the mean value theorem for derivatives) that F and g differ by a constant. That is, there is a number C such that $g(x)=F(x)$ for all $x \in[a, b]$. Then
$F(b)-F(a)=(g(b)+C)-(g(a)+C)=g(b)-g(a)=\int_{a}^{b} f-\int_{a}^{a} f=\int_{a}^{b} f$.

