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The fundamental theorem of calculus has two parts:

Theorem (Part I). Let f be a continuous function on [a, b] and define a
function g: [a, b]→ R by

g(x) :=
∫ x

a
f.

Then g is differentiable on (a, b), and for every x ∈ (a, b),

g′(x) = f(x).

At the end points, g has a one-sided derivative, and the same formula holds.
That is, the right-handed derivative of g at a is f(a), and the left-handed
derivative of f at b is f(b).

Proof: This proof is surprisingly easy. It just uses the definition of deriva-
tives and the following properties of the integral:

1. If f is continuous on [a, b], then
∫ b
a f exists.

2. If f is continous on [a, b] and c ∈ [a, b], then∫ c

a
f +

∫ b

c
f =

∫ b

a
f.

3. If m ≤ f ≤M on [a, b], then

(b− a)m ≤
∫ b

a
f ≤ (b− a)M.
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Let x be a point in (a, b). (We just treat the case of x ∈ (a, b) since
the endpoints can be treated similarly.) If x ∈ (a, b), we shall show that
g′(x+) = g′(x−) = f(x). Knowing that the two one-sided derivatives exist
and are equal, we can conclude that the derivative exists and has this value.

By definition,

g′(x+) = lim
h→0+

g(x+ h)− g(x)

h
.

Property (1) assures us that g is well defined provided that h < b − x.
Property (2) allows us to simplify the numerator, since it implies that

g(x+ h)− g(x) :=
∫ x+h

a
f −

∫ x

a
f =

∫ x+h

x
f. (1)

This is already great, since we only need to worry about f over the small
interval [x, x+ h]. A picture is helpful here, but I don’t have time to include
one in thise notes. Draw one yourself.

Now recall the definition of a limit. We have to show that given any
ε > 0, there is a δ > 0 such that∣∣∣∣∣g(x+ h)− g(x)

h
− f(x)

∣∣∣∣∣ < ε. (2)

whenever 0 < h < δ. This is where we use the continuity of f at x. We know
from this that there is a δ such that |f(x′)− f(x)| < ε whenever |x′−x| < δ.
This means that

f(x)− ε < f(x′) < f(x) + ε.

for all such x′. We use this same δ our criterion for the limit in equation (2).
Let us verify that this works. Suppose that 0 < h < δ. Then on the interval
[x, x+ h], we know that f is between f(x)− ε and f(x) + ε. By property (3)
of integrals, it follows that

(f(x)− ε)h ≤
∫ x+h

x
f ≤ (f(x) + ε)h.

Since h > 0, we can divide both sides by h to conclude that

f(x)− ε ≤ 1/h
∫ x+h

x
f ≤ f(x) + ε, i.e.,

f(x)− ε ≤ g(x+ h)− g(x)

h
≤ f(x) + ε
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This is exactly what we needed.
The left handed derivatives are done in essentially the same way.

Theorem (Part II). Let f be a continuous function on [a, b]. Suppose
that F is continuous on [a, b] and that F ′ = f on (a, b). Then∫ b

a
f = F (b)− F (a).

Proof: Consider the function g in the previous theorem. Since g is differ-
entiable on [a, b] it is continuous there (including at the end points, where
the one-sided deritaives exist). We also know that g and F are differentiable
on (a, b), and that there derivatives are equal. Recall that we had (as a
consequence of the mean value theorem for derivatives) that F and g differ
by a constant. That is, there is a number C such that g(x) = F (x) for all
x ∈ [a, b]. Then

F (b)− F (a) = (g(b) +C)− (g(a) +C) = g(b)− g(a) =
∫ b

a
f −

∫ a

a
f =

∫ b

a
f.
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