The tangent approximation
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Let f be a function of f. Suppose that we can calculate f(a) and f'(a).
Then the tangent line to the graph of f at a is the line passing through the
point (a, f(a)) whose slope is f’(a). It is given by the formula

la(z) = f'(a)(x —a) + f(a).

It is a theorem that this is the line which best approximates f near a.
Although we won’t try to say exactly what this means, we will explain how
well it does approximate f. The key point is that, for x near a, the difference
between f(x) and ¢,(z) is small even compared to |z — al.

As a simple example, consider the function f(z) = 2. Then f'(a) = 2a
and l,(x) = 2a(x — a) + a® = 2ax — a®. The point is, if we already know a?,
this is easier to compute than 22 and is supposed to be near to x2 if  is near
a. How near? We can compute the difference:

f(@) = la(a] = |2? = 202 + @] = | — af?

Note that if |x — a| < 1, this is small even compared to |z — al.
Here is a precise statement.
Theorem: Suppose that f'(a) exists. Then for every € > 0, there exists
a 0 > 0 such that
|[f(x) = La(2)] < €|z — al
whenever |z — al < 0.
For example, if € is chosen to be .01, the error caused by using /¢,(z) in

place of f(z), will be at most 1% of the the difference between z and a.
Proof: From the definition of derivative:

)t SO I@ @)~ (@)

T—a T — Q r—a €T — Q



By the definition of a limit, we can find 6 > 0 such that

f(x)_f(a)—f/<a><6

r—a

whenever 0 < |z — a|] < §. Now multiply both sides by the positive number
|z — al to see that

() = fla) = f(a)(z — a)| < €|z —al

whenever 0 < |z — a| < d. Note that both sides vanish when x = a, so if we
replace the “less than” sign by a “less than or equal” sign, the statements
remains true for all x with |z —a| < 0. Now if we substitute in the definition
of £,(x), we see that

|[f(x) = La(z)| < e[z — al
whenever |x — a| < d. This proves the theorem.

Let’s work out an example. Let f(z) = \/z, for # > 0. Then if a > 0,
f'(a) = 1/2a7'% so £,(x) = (v — a)/2v/a + v/a. Let’s see if, given € we can
find 6 that works in the above argument. In the calculations below, we shall
frequently use our old friend: A?> — B? = (A + B)(A — B).

@)~ )] = [VE-va- G

- |- (1-572)
: f&gjz “)

(Vz +Va)

This is still pretty messy. We don’t have to be very clever to get something
useful and simple however. Since \/x is positive, if we omit it from the
denominator we will get something bigger. So we conclude:

(x —a)*

|[f(2) = la(z)] < 2(Va)?




In our example, a = 25, and so y/a = 5 and \/53 = 125, so we get

|f (@) = la5(2)] <

(x — 25)?
250

= |z — 25|

:L‘—25'
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Conclusion: if we take 0 := 250¢, then if |x — 25| < 9,

[f(2) = La(z)] < ez — al.

Thus this € is a bound for the relative error
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(which makes sense only if z # a).

Let’s look at some values. The estimates we just did predict that the
relative error p is bounded by .004|z — 25|. Since it is impossible to actually
write down f(x) exactly, I have written f(x) to indicate the approximation

given by my calculator.

x r—a | lu(x) f(z) p 004|x — a
25 0 3
26 1 5.1 5.099019513592784 | 0.980486407216 E-3 4 E-3
24 -1 4.9 4.898979485566356 | 01.020514433644 E-3 4 E-3
25.1 1 5.01 5.009990019950139 0.9980049861 E-4 4 BE-4
24.9 -1 4.99 | 4.9899899799498590 | 1.0020050141 E-4 4 E-4
25.001 | .001 | 5.0001 | 5.00009999900002 0.99998 E-6 4 E-6

I should mention another set of conventions that you will find in our book
and often other places as well. To introduce it, we first write let h := z — a.

Then our expression becomes

fla+h) ~ f(a)h+ f(a),

or better:

fla+h) = f(a) ~ f'(a)h

This is useful because h is small, and the expression displays clearly how our
approximation depends on this small number h.

We could also write Az in place of h. Note that a could be anything, and
could even be regarded as a “variable.” In fact to emphasize this, people tend
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to write = in place of a. Then our goal is to approximate f(x + Azx) — f(x).
Here is the standard definition, using the language of “differentials,” in which
we now write dx in place of Ax.

Definition: Suppose f is differentiable. For any x in the domain of f
and any real number dz,

dy = f'(z)dx and Ay := f(z + dz) — f(x)

Our theorem then says that dy is very near to Ay if dx is small. In fact,
the difference between dy and Ay is small even compared to dz.



