Mathematics 1A, Spring 2010 - A. Ogus

Sample Midterm Exam \#2

Instructions.

Closed book exam - No formula sheets or notes are permitted. Calculators and other electronic devices are not allowed. Turn cell phones off and stow them in backpacks/pockets/purses.
Show work and/or reasoning where indicated.
(1) Calculate $f^{\prime}(x)$, using any method from this course. Show your steps.
(1a) $f(x)=x^{-1} e^{2 x}$
Solution: by the product rule, $f^{\prime}(x)=-x^{-2} e^{2 x}+x^{-1} 2 e^{2 x}=x^{-2} e^{2 x}(2 x-1)$
(1b) $f(x)=x^{\ln (x)}$
Solution: Let's use logarithmic differentiation. $\ln f(x)=\ln x \ln x$, so $f^{\prime}(x) / f(x)=$ $2 \ln x / x$. Then $f^{\prime}(x)=2 x^{\ln x} x^{-1} \ln x$.
(1c) $f(x)=\sqrt{\arcsin (x)}$.
Soilution: This is $1 / 2 \arcsin (x)^{-1 / 2} \arcsin ^{\prime}(x)=1 / 2 \arcsin (x)^{-1 / 2}\left(1-x^{2}\right)^{-1 / 2}$.
(1d) If $x^{4}+x y+2 y^{4}=20$, find $d y / d x$ when $(x, y)=(2,1)$.
Solution: By implicit differentiation: $4 x^{3}+y+x y^{\prime}=-8 y^{3} y^{\prime}$, so at $(2,1)$ we have $32+1+2 y^{\prime}=-8 y^{\prime}$ so $y^{\prime}=-33 / 10$.
(2a) Find the maximum value of $f(x)=x(x-1)^{2}$ on $[-1,2]$, and determine all points in this interval where that value is attained. Show all steps; you will be graded on these steps, not merely on your answer. Solution:
$f(x)=x^{3}-2 x^{2}+x$ so $f^{\prime}(x)=3 x^{2}-4 x+1=(3 x-1)(x-1)$ and $f^{\prime \prime}(x)=6 x-4$. The critical point are at $x=1 / 3$ and $x=1$. Since $f^{\prime \prime}(1)=1>0$ it is a local minimum and $f^{\prime \prime}(1 / 3)=-2$ so it is a local maximum. Then $f(1 / 3)=1 / 3(-2 / 3)^{2}=4 / 27$. But $f(2)=2$, so $(2,2)$ it the unique maximum.
(2b) If x and y are positive numbers and $x y=1$, what is the minimum possible value of $x+2 y$?
Show your steps.
Solution: Since $y=1 / x$, we are trying to minimize $f(x)=x+2 x^{-1}$ for $x>0$. Then $f^{\prime}(x)=1-2 x^{-2}$ and this has a unique zero, when $x=\sqrt{2}$. Since $f^{\prime \prime}(x)=4 x^{-3}>0$, this is a local minimum of f and since it is unique, it is a global minimum. The value of f at this point is $2+2 / \sqrt{2}=2 \sqrt{2}$.
(3) Suppose that f and f^{\prime} are differentiable functions on an interval $(a, b), c \in(a, b)$, and $f^{\prime}(c)=0$. What can one conclude if $f^{\prime \prime}(c)>0$?
Solution: This is vague, but I guess the answer is that f has a local minimum at c. What if $f^{\prime \prime}(c)=0$? Answer: nothing.
(4) Let $f(x)=x^{1 / 3}$. What is the equation for the linearization (also known as the linear approximation) of f at 8 ?
Solution: $f^{\prime}(x)=1 / 3 x^{-2 / 3}$, so when $x=8$ this is $1 / 12$. Thus $\ell(x)=1 / 12(x-8)+2$.
(5) Show that if $x>1$, then $\ln (x)<x-1$.

Solution:

Let $f(x)=(x-1)-\ln x$. Then $f^{\prime}(x)=1-1 / x$, which is positive if $x>1$. Thus f is increasing on $(1, \infty)$. But $f(1)=0$. It follows that $f(x)>0$ if $x>1$, which implies the claim.

