Math 1A, Fall 2009 - M. Christ
 Solutions for Midterm Exam 1

There were three versions of this exam, with slightly different numbers and/or functions. For most problems I'll give a solution for only one of the three versions.
(1a) Use limit rules to evaluate $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$.
Solution. For any $x>0$ which is not equal to 9 ,

$$
\frac{\sqrt{x}-3}{x-9}=\frac{\sqrt{x}-3}{x-9} \frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{x-3}{(x-3)(\sqrt{x}+3)}=\frac{1}{\sqrt{x}+3} .
$$

Thus

$$
\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=\lim _{x \rightarrow 9}=\frac{1}{\sqrt{x}+3}=\frac{\lim _{x \rightarrow 9} 1}{\lim _{x \rightarrow 9}(\sqrt{x}+3)}=\frac{1}{3+3}=\frac{1}{6}
$$

using the sum, ratio, and direct substitution rules for limits. Note that when I used the ratio rule, the limit of the denominator was not 0 .
(1b) Let $f(x)=\sqrt{x}$, with its natural domain. Does $f^{\prime}(9)$ exist?

Solution.

Yes. The definition of the derivative says that $f^{\prime}(9)$ exists if $\lim _{x \rightarrow 9} \frac{f(x)-f(9)}{x-9}$ exists (and is a real number). In problem (1a) we showed that this limit does exist.
(2a) Let $f(x)=\frac{(x-2)(x-4)(x-8)}{3(x-1)(x-2)(x-8)}$, with its natural domain. Find all asymptotes of the graph of f.
Solution. Vertical asymptote at $x=1$. Two horizontal asymptotes at $y=\frac{1}{3}$ as $x \rightarrow \infty$ and as $x \rightarrow-\infty$. (There are no asymptotes at $x=2$ and $x=8$.)
(2b) Find $\lim _{x \rightarrow 0} x^{2} \sin \left(e^{1 / x}\right)$.
Solution. The limit is zero. Let $g(x)=x^{2} \sin \left(e^{1 / x}\right), f(x)=-x^{2}, h(x)=x^{2}$. Then since $\sin (y) \in[-1,1]$ for any real number $y, f(x) \leq g(x) \leq h(x)$ for all $x \neq 0$. We know that $\lim _{x \rightarrow 0} f(x)=0=\lim _{x \rightarrow 0} h(x)$, by the direct substitution property. Therefore the Squeeze Theorem says that $\lim _{x \rightarrow 0} g(x)$ also exists and equals 0 .
(3) Show that there is at least one real number x which satisfies $x^{6}=1+\sin (x)$.

Solution. Define $f(x)=x^{6}-1-\sin (x)$ for all real numbers x. We need to show that $f(x)=0$ for at least one $x . f$ is a continuous function, since sums of continuous functions are continuous, and all the basic functions (including polynomials and sin) are continuous. Consider the interval $[a, b]=[0,2] . f(a)=0-1-0<0$, while $f(b)=2^{6}-1-\sin (2) \geq$ $2^{6}-1-1=62>0$.
Therefore the Intermediate Value Theorem applies and says that $f(x)=0$ for at least one x in $[0,2]$.
(4a) Let $r>0$. How is $\log _{r}(2)$ defined?
Solution. It is the unique real number x which satisfies $r^{x}=2$. (Full credit for that answer.)
(A more complete answer might also include: $\log _{r}$ is the inverse of the function r^{x}. The range of r^{x} is $(0, \infty)$, so the domain of $\log _{r}$ is $(0, \infty)$; thus 2 belongs to its domain.)
(4b) Let $f(x)=\tan (x)$ with domain $\left(-\frac{\pi}{2}, 0\right)$. Does f have an inverse? If so, what are the domain and range of the inverse function?
Solution. For $x \in\left(-\frac{\pi}{2}, 0\right), \cos (x) \neq 0$ so $\tan (x)=\frac{\sin (x)}{\cos (x)}$ is defined. tan is an increasing function which takes on all values in $(-\infty, 0)$ as x varies over $\left(-\frac{\pi}{2}, 0\right)$.
Thus f has an inverse function. Its domain is $(-\infty, 0)$, and its range is $\left(-\frac{\pi}{2}, 0\right)$.
(4c) If some vertical line intersects a graph at more than one point, what does this say about the graph?
Solution. The graph is not the graph of any function.
(4d) Simplify: $\ln (5 e \sqrt{x})$, assuming that $x>0$.
Solution. $\ln (5 e \sqrt{x})=\ln (5)+\ln (e)+\ln (\sqrt{x})=\ln (5)+1+\frac{1}{2} \ln (x)$.
(4e) If the domain of f contains $(-1,1)$, and if f is continuous at 0 , must $f^{\prime}(0)$ exist? Either explain in words why it must exist, or give an example of a function for which it does not exist.
Solution. No. Example: $f(x)=|x| .(f(x)=\sqrt{|x|}$ is also an example. Full credit for any correct example, of course, whether we learned it in this course or not.)
(5a) Let $f(x)=x^{2}$. Find $\delta>0$ such that $|f(x)-36|<\frac{1}{1000}$ whenever $|x-6|<\delta$.
Solution. It will be useful to know that $|f(x)=36|=\left|x^{2}-36\right|=|x-6| \cdot|x+6|$.
Define $\delta=\frac{1}{13,000}$. Note that $\delta<1$. Therefore if $|x-6|<\delta$ then $x \in(5,7)$ and thus $|x+6|<13$.
Therefore if $|x-6|<\delta$ then

$$
|f(x)-36| \leq|x-6| \cdot|x+6| \leq \delta \cdot 13<\frac{13}{13,000}=\frac{1}{1000}
$$

(5b) Show, using the precise definition of a limit, that

$$
\lim _{x \rightarrow \frac{1}{3}}\left(9 x-\frac{1}{x}\right)=0 .
$$

Solution. It will be useful to know that for any $x \neq 0$,

$$
\left|9 x-\frac{1}{x}\right|=\left|\frac{9 x^{2}-1}{x}\right|=\frac{|3 x-1| \cdot|3 x+1|}{|x|}=\frac{3\left|x-\frac{1}{3}\right| \cdot|3 x+1|}{|x|} .
$$

Let any $\varepsilon>0$ be given. Define $\delta=\min \left(\frac{1}{6}, \frac{\varepsilon}{54}\right)$. If $\left|x-\frac{1}{3}\right|<\delta$ then $\frac{1}{6}<x<\frac{1}{2}$, so $1 /|x| \leq 6$, and $|3 x+1| \leq \frac{3}{2}+1=\frac{5}{2}<3$.
Therefore if $0<\left|x-\frac{1}{3}\right|<\delta$ then

$$
\left|9 x-\frac{1}{x}\right|<3 \cdot 6 \cdot 3 \cdot\left|x-\frac{1}{3}\right|<54 \delta .
$$

Since $\delta \leq \varepsilon / 54$, this is $\leq \varepsilon$, and therefore $\left|9 x-\frac{1}{x}\right|<\varepsilon$.
(Full credit would be given for $\delta=\min \left(\frac{1}{6}, \frac{\varepsilon}{3 \cdot 6 \cdot 3}\right)$.)

