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Let S be a finite set. Recall that any permutation σ ∈ Sym(S) can be
written as a product of disjoint cycles:

σ = γ1γ2 · · · γr.

Furthermore this expression is unique up to reordering. (Here we don’t allow
any γi to be the identity permuation.) Recall also that if γ is a cycle of length
` > 0, then γ can be written as a product of `− 1 transpositions.

Definition 1 Let σ be a permuation of a finite set S, and write σ as a product
of disjoint cycles:

σ = γ1γ2 · · · γr.

Then

N(σ) := (`1 − 1) + (`2 − 1) + · · ·+ (`r − 1) = `1 + · · ·+ `r − r,

where `i is the length of γi.

Thus if `i is the length of the cycle γi above, then σ can be written as a
product of N(σ) transpositions. However, such an expression is not unique, and
in fact even the number of transpositions in such an expression is not unique.
However, the following is true.

Theorem 1 Suppose that σ is written as a product of m transpositions

σ = τ1τ2 · · · τm.

Then m ≡ N(σ) (mod 2).

Since congruence is an equivalence relation, it follows that if σ is also written
as a product of m′ transpositions: σ = τ ′1τ

′
2 · · · τ ′m′ , then m ≡ m′ (mod 2).

Theorem 1 follows from the following more suggestive result.

Theorem 2 If α and β are permuations of S, then

N(αβ) ≡ N(α) +N(β) (mod 2).
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Indeed, note that if τ is a transposition, then N(τ) = 1. Hence it follows from
Theorem 2 that

N(σ) = N(τ1τ2 · · · τm) ≡ 1 + 1 + · · ·+ 1 ≡ m (mod 2).

Note that in fact we only needed to apply Theorem 2 when β was a transposition,
but in fact the general case of Theorem 2 follows by induction from this case
anyway. (Hint: write β as a product of transpositions and use the associative
law.)

Let us prepare for the proof of Theorem 2 by means of some calculations.

Lemma 1 If γ1 and γ2 are two cycles with exactly one element in common,
then γ1γ2 is a cycle of length `1 + `2 − 1, where `i is the length of γi.

Proof: Actually I think it is convincing enough to compute a typical example:

(1 2 3 4)(4 5 6 7) = (1 2 3 4 5 6 7).

Lemma 2 If τ is a transposition (a b) and γ is a cycle containing both a and
b, then γτ is a product of disjoint cycles γ1γ2, where `1 + `2 = ` (the length of
γ).

Proof: Again, an example should be convincing:

(1 2 3 4 5 6 7 8)(2 5) = (1 2 6 7 8)(3 4 5)

Proof of Theorem 2: It suffices to prove the theorem when β is a transposition
τ . Since N(τ) = 1, we have to prove that N(ατ) ≡ N(α) + 1 (mod ()2).
Write α as a product of disjoint cycles α = γ1γ2 · · · γr, so by definition, N(α) =
`1 − 1 + · · · `r − 1.

Case 1: τ is disjoint from all the γi.
Then ατ = γ1γ2 · · · γrτ is a product of disjoint cycles, and so by definition:

N(ατ) = `1 − 1 + · · · `r − 1 + (2− 1) = N(α) + 1.

Case 2: τ meets just one of the γi’s, in just one element.
We might as well assume that τ meets γr and no other. Then by Lemma 1,
γrτ is a cycle γ′r of length of `r + 1. Then ατ = γ1γ2 · · · γr−1γ

′
r as a product of

disjoint cycles, so

N(ατ) = `1 − 1 + `2 − 1 + · · · `r−1 − 1 + `′r − 1
= `1 − 1 + `2 − 1 + · · · `r−1 − 1 + `r + 1− 1
= N(α) + 1.
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Case 3: τ meets two of the γi’s. Again we may as well assume that it meets
γr−1 and γr; necessarily it meets each in exactly one element. Then γ′r := γrτ
is a cycle of length `′r = `r + 1, which now contains τ . Hence γ′r−1 := γr−1γ

′
r is

a cycle of length `r−1 + `′r − 1 = `r−1 + `r. Hence ατ = γ′1 · · · γ′r−1 as a product
of disjoint cycles, and

N(ατ) = `′1 − 1 + · · ·+ `′r−1 − 1
= `1 − 1 · · ·+ `r−1 + `r − 1
= `1 − 1 + · · ·+ `r−1 − 1 + `r = N(α) + 1.

Case 4: τ meets one of the γi’s in two elements. Thus, we assume that
τ := (a b) where a and b both occur in γi, and we may as well assume that
i = r. Then γrτ is a product of two disjoint cycles γ′rγ

′
r+1, and `′r + `′r+1 = `r.

Hence
N(ατ) = `1 − 1 + · · ·+ `′r − 1 + `′r+1 − 1

= `1 − 1 + · · ·+ `r − 2 = N(α)− 1.

Since N(α)− 1 ≡ N(α) + 1 (mod 2), the result holds in this case too!

3


