Even and odd permutations

March 7, 2008

Let S be a finite set. Recall that any permutation $\sigma \in \operatorname{Sym}(S)$ can be written as a product of disjoint cycles:

$$
\sigma=\gamma_{1} \gamma_{2} \cdots \gamma_{r}
$$

Furthermore this expression is unique up to reordering. (Here we don't allow any γ_{i} to be the identity permuation.) Recall also that if γ is a cycle of length $\ell>0$, then γ can be written as a product of $\ell-1$ transpositions.

Definition 1 Let σ be a permuation of a finite set S, and write σ as a product of disjoint cycles:

$$
\sigma=\gamma_{1} \gamma_{2} \cdots \gamma_{r}
$$

Then

$$
N(\sigma):=\left(\ell_{1}-1\right)+\left(\ell_{2}-1\right)+\cdots+\left(\ell_{r}-1\right)=\ell_{1}+\cdots+\ell_{r}-r,
$$

where ℓ_{i} is the length of γ_{i}.
Thus if ℓ_{i} is the length of the cycle γ_{i} above, then σ can be written as a product of $N(\sigma)$ transpositions. However, such an expression is not unique, and in fact even the number of transpositions in such an expression is not unique. However, the following is true.

Theorem 1 Suppose that σ is written as a product of m transpositions

$$
\sigma=\tau_{1} \tau_{2} \cdots \tau_{m}
$$

Then $m \equiv N(\sigma) \quad(\bmod 2)$.
Since congruence is an equivalence relation, it follows that if σ is also written as a product of m^{\prime} transpositions: $\sigma=\tau_{1}^{\prime} \tau_{2}^{\prime} \cdots \tau_{m^{\prime}}^{\prime}$, then $m \equiv m^{\prime} \quad(\bmod 2)$.

Theorem 1 follows from the following more suggestive result.
Theorem 2 If α and β are permuations of S, then

$$
N(\alpha \beta) \equiv N(\alpha)+N(\beta) \quad(\bmod 2)
$$

Indeed, note that if τ is a transposition, then $N(\tau)=1$. Hence it follows from Theorem 2 that

$$
N(\sigma)=N\left(\tau_{1} \tau_{2} \cdots \tau_{m}\right) \equiv 1+1+\cdots+1 \equiv m \quad(\bmod 2)
$$

Note that in fact we only needed to apply Theorem 2 when β was a transposition, but in fact the general case of Theorem 2 follows by induction from this case anyway. (Hint: write β as a product of transpositions and use the associative law.)

Let us prepare for the proof of Theorem 2 by means of some calculations.
Lemma 1 If γ_{1} and γ_{2} are two cycles with exactly one element in common, then $\gamma_{1} \gamma_{2}$ is a cycle of length $\ell_{1}+\ell_{2}-1$, where ℓ_{i} is the length of γ_{i}.

Proof: Actually I think it is convincing enough to compute a typical example:

$$
(1234)(4567)=(1234567)
$$

Lemma 2 If τ is a transposition $(a b)$ and γ is a cycle containing both a and b, then $\gamma \tau$ is a product of disjoint cycles $\gamma_{1} \gamma_{2}$, where $\ell_{1}+\ell_{2}=\ell$ (the length of γ).

Proof: Again, an example should be convincing:

$$
(12345678)(25)=(12678)(345)
$$

Proof of Theorem 2: It suffices to prove the theorem when β is a transposition τ. Since $N(\tau)=1$, we have to prove that $N(\alpha \tau) \equiv N(\alpha)+1 \quad(\bmod () 2)$. Write α as a product of disjoint cycles $\alpha=\gamma_{1} \gamma_{2} \cdots \gamma_{r}$, so by definition, $N(\alpha)=$ $\ell_{1}-1+\cdots \ell_{r}-1$.

Case 1: τ is disjoint from all the γ_{i}.
Then $\alpha \tau=\gamma_{1} \gamma_{2} \cdots \gamma_{r} \tau$ is a product of disjoint cycles, and so by definition:

$$
N(\alpha \tau)=\ell_{1}-1+\cdots \ell_{r}-1+(2-1)=N(\alpha)+1
$$

Case 2: τ meets just one of the γ_{i} 's, in just one element.
We might as well assume that τ meets γ_{r} and no other. Then by Lemma 1, $\gamma_{r} \tau$ is a cycle γ_{r}^{\prime} of length of $\ell_{r}+1$. Then $\alpha \tau=\gamma_{1} \gamma_{2} \cdots \gamma_{r-1} \gamma_{r}^{\prime}$ as a product of disjoint cycles, so

$$
\begin{aligned}
N(\alpha \tau) & =\ell_{1}-1+\ell_{2}-1+\cdots \ell_{r-1}-1+\ell_{r}^{\prime}-1 \\
& =\ell_{1}-1+\ell_{2}-1+\cdots \ell_{r-1}-1+\ell_{r}+1-1 \\
& =N(\alpha)+1
\end{aligned}
$$

Case 3: τ meets two of the γ_{i} 's. Again we may as well assume that it meets γ_{r-1} and γ_{r}; necessarily it meets each in exactly one element. Then $\gamma_{r}^{\prime}:=\gamma_{r} \tau$ is a cycle of length $\ell_{r}^{\prime}=\ell_{r}+1$, which now contains τ. Hence $\gamma_{r-1}^{\prime}:=\gamma_{r-1} \gamma_{r}^{\prime}$ is a cycle of length $\ell_{r-1}+\ell_{r}^{\prime}-1=\ell_{r-1}+\ell_{r}$. Hence $\alpha \tau=\gamma_{1}^{\prime} \cdots \gamma_{r-1}^{\prime}$ as a product of disjoint cycles, and

$$
\begin{aligned}
N(\alpha \tau) & =\ell_{1}^{\prime}-1+\cdots+\ell_{r-1}^{\prime}-1 \\
& =\ell_{1}-1 \cdots+\ell_{r-1}+\ell_{r}-1 \\
& =\ell_{1}-1+\cdots+\ell_{r-1}-1+\ell_{r}=N(\alpha)+1
\end{aligned}
$$

Case 4: τ meets one of the γ_{i}^{\prime} 's in two elements. Thus, we assume that $\tau:=\left(\begin{array}{ll}a b\end{array}\right)$ where a and b both occur in γ_{i}, and we may as well assume that $i=r$. Then $\gamma_{r} \tau$ is a product of two disjoint cycles $\gamma_{r}^{\prime} \gamma_{r+1}^{\prime}$, and $\ell_{r}^{\prime}+\ell_{r+1}^{\prime}=\ell_{r}$. Hence

$$
\begin{aligned}
& N(\alpha \tau)=\ell_{1}-1+\cdots+\ell_{r}^{\prime}-1+\ell_{r+1}^{\prime}-1 \\
& \quad=\ell_{1}-1+\cdots+\ell_{r}-2=N(\alpha)-1
\end{aligned}
$$

Since $N(\alpha)-1 \equiv N(\alpha)+1 \quad(\bmod 2)$, the result holds in this case too!

