Even and odd permutations

March 7, 2008

Let S be a finite set. Recall that any permutation $\sigma \in Sym(S)$ can be written as a product of disjoint cycles:

$$\sigma = \gamma_1 \gamma_2 \cdots \gamma_r$$

Furthermore this expression is unique up to reordering. (Here we don't allow any γ_i to be the identity permutaion.) Recall also that if γ is a cycle of length $\ell > 0$, then γ can be written as a product of $\ell - 1$ transpositions.

Definition 1 Let σ be a permutaion of a finite set S, and write σ as a product of disjoint cycles:

$$\sigma = \gamma_1 \gamma_2 \cdots \gamma_r$$

Then

$$N(\sigma) := (\ell_1 - 1) + (\ell_2 - 1) + \dots + (\ell_r - 1) = \ell_1 + \dots + \ell_r - r,$$

where ℓ_i is the length of γ_i .

Thus if ℓ_i is the length of the cycle γ_i above, then σ can be written as a product of $N(\sigma)$ transpositions. However, such an expression is not unique, and in fact even the number of transpositions in such an expression is not unique. However, the following *is* true.

Theorem 1 Suppose that σ is written as a product of m transpositions

$$\sigma = \tau_1 \tau_2 \cdots \tau_m.$$

Then $m \equiv N(\sigma) \pmod{2}$.

Since congruence is an equivalence relation, it follows that if σ is also written as a product of m' transpositions: $\sigma = \tau'_1 \tau'_2 \cdots \tau'_{m'}$, then $m \equiv m' \pmod{2}$.

Theorem 1 follows from the following more suggestive result.

Theorem 2 If α and β are permutaions of S, then

$$N(\alpha\beta) \equiv N(\alpha) + N(\beta) \pmod{2}.$$

Indeed, note that if τ is a transposition, then $N(\tau) = 1$. Hence it follows from Theorem 2 that

$$N(\sigma) = N(\tau_1 \tau_2 \cdots \tau_m) \equiv 1 + 1 + \cdots + 1 \equiv m \pmod{2}.$$

Note that in fact we only needed to apply Theorem 2 when β was a transposition, but in fact the general case of Theorem 2 follows by induction from this case anyway. (Hint: write β as a product of transpositions and use the associative law.)

Let us prepare for the proof of Theorem 2 by means of some calculations.

Lemma 1 If γ_1 and γ_2 are two cycles with exactly one element in common, then $\gamma_1\gamma_2$ is a cycle of length $\ell_1 + \ell_2 - 1$, where ℓ_i is the length of γ_i .

Proof: Actually I think it is convincing enough to compute a typical example:

$$(1\ 2\ 3\ 4)(4\ 5\ 6\ 7) = (1\ 2\ 3\ 4\ 5\ 6\ 7).$$

c	-	-	-	-
L				
L				

Lemma 2 If τ is a transposition (a b) and γ is a cycle containing both a and b, then $\gamma \tau$ is a product of disjoint cycles $\gamma_1 \gamma_2$, where $\ell_1 + \ell_2 = \ell$ (the length of γ).

Proof: Again, an example should be convincing:

$$(1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8)(2 \ 5) = (1 \ 2 \ 6 \ 7 \ 8)(3 \ 4 \ 5)$$

Proof of Theorem 2: It suffices to prove the theorem when β is a transposition τ . Since $N(\tau) = 1$, we have to prove that $N(\alpha \tau) \equiv N(\alpha) + 1 \pmod{()2)}$. Write α as a product of disjoint cycles $\alpha = \gamma_1 \gamma_2 \cdots \gamma_r$, so by definition, $N(\alpha) = \ell_1 - 1 + \cdots + \ell_r - 1$.

Case 1: τ is disjoint from all the γ_i .

Then $\alpha \tau = \gamma_1 \gamma_2 \cdots \gamma_r \tau$ is a product of disjoint cycles, and so by definition:

$$N(\alpha \tau) = \ell_1 - 1 + \dots + \ell_r - 1 + (2 - 1) = N(\alpha) + 1.$$

Case 2: τ meets just one of the γ_i 's, in just one element.

We might as well assume that τ meets γ_r and no other. Then by Lemma 1, $\gamma_r \tau$ is a cycle γ'_r of length of $\ell_r + 1$. Then $\alpha \tau = \gamma_1 \gamma_2 \cdots \gamma_{r-1} \gamma'_r$ as a product of disjoint cycles, so

$$N(\alpha \tau) = \ell_1 - 1 + \ell_2 - 1 + \dots + \ell_{r-1} - 1 + \ell'_r - 1$$

= $\ell_1 - 1 + \ell_2 - 1 + \dots + \ell_{r-1} - 1 + \ell_r + 1 - 1$
= $N(\alpha) + 1.$

Case 3: τ meets two of the γ_i 's. Again we may as well assume that it meets γ_{r-1} and γ_r ; necessarily it meets each in exactly one element. Then $\gamma'_r := \gamma_r \tau$ is a cycle of length $\ell'_r = \ell_r + 1$, which now contains τ . Hence $\gamma'_{r-1} := \gamma_{r-1}\gamma'_r$ is a cycle of length $\ell_{r-1} + \ell'_r - 1 = \ell_{r-1} + \ell_r$. Hence $\alpha \tau = \gamma'_1 \cdots \gamma'_{r-1}$ as a product of disjoint cycles, and

$$N(\alpha \tau) = \ell'_1 - 1 + \dots + \ell'_{r-1} - 1$$

= $\ell_1 - 1 \dots + \ell_{r-1} + \ell_r - 1$
= $\ell_1 - 1 + \dots + \ell_{r-1} - 1 + \ell_r = N(\alpha) + 1.$

Case 4: τ meets one of the γ_i 's in two elements. Thus, we assume that $\tau := (a \ b)$ where a and b both occur in γ_i , and we may as well assume that i = r. Then $\gamma_r \tau$ is a product of two disjoint cycles $\gamma'_r \gamma'_{r+1}$, and $\ell'_r + \ell'_{r+1} = \ell_r$. Hence

$$N(\alpha \tau) = \ell_1 - 1 + \dots + \ell'_r - 1 + \ell'_{r+1} - 1$$

= $\ell_1 - 1 + \dots + \ell_r - 2 = N(\alpha) - 1.$

Since $N(\alpha) - 1 \equiv N(\alpha) + 1 \pmod{2}$, the result holds in this case too!