
R-algebras, homomorphisms, and roots

Here we consider only commutative rings.

Definition 1 Let R be a (commutative) ring. An R-algebra is a ring homo-
morphism αR:R → A. If αA:R → A and αB :R → B are R-algebras, a homo-
morphismof R-algebras from αA to αB is a ring homomorphism θ:A → B such
that θ ◦ αA = αB .

In practice, one usually calls an R-algebra by the name of the codomain, i.e.,
one says an “R-algebra A”instead of αA. If A and B are R-algebras, it is
convenient to use the notations Mor(A,B) or even MorA(B) for the set of
R-algebra homomorphisms A to B.

For example, if R is a ring, then the ring R[X] of polyonomials with coef-
ficients in R has a natural structure of an R-algebra, via the homomorphism
R → R[X] sending an element r to the polynomial (r, 0, 0, · · · , ). Here is one
reason why this is so important.

Theorem 1 Let A be an R-algebra and let a be any element of A. Then there
is a unique homomorphism of R-algebras:

θa:R[X] → A (evaluation at a)

sending X to a. This correspondence induces a natural bijection from the set
A to the set of R-algebra homorphisms from R[X] → A:

A ↔ MorR[X](A).

Proof: This is really just a check of the definitions. Recall that if p :=
(r0, r1, · · ·) is an element of R[X], then

θa(p) := αA(r0) + αA(r1)a + αA(r2)a2 + · · · .

One checks from the definitions that θa is a ring homomorphism, that θa(r, 0, · · ·) =
αA(r), and that θa(X) = a. Finally, it is also clear that θa is uniquely deter-
mined by these propeties.

Notice that if φ:B → B′ is a homomophism of R-algebras, then composition
with φ defines a map of sets:

φ∗:MorA(B) → MorA(B′).

Similarly, if π:A → A′ is a homomorphism of R-algebras, composition with π
defines a map:

π∗:MorA′(B) → MorA(B).

If π is surjective, then π∗ is injective. Indeed, if θ and θ′ are two homomorphisms
A′ → B and θ ◦π = θ′ ◦π, then θ = θ′ if π is surjective. We can even determine
the image of π∗:
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Theorem 2 Let π:A → A′ be a surjective homomorphism of R-algebras, and
let I ⊆ A be the kernel of π. Then the image of π∗ consists of the set of all
homomoprhisms θ:A → B such that I ⊆ Ker(θ).

Proof: If θ is in the image of π, then θ = θ′ ◦ π for some θ′:A′ → B. Hence
if x ∈ I, θ(x) = θ′(π(x)) = 0 since π(x) = 0. On the other, suppose that
I ⊆ Ker(θ). Choose some a′ ∈ A′. Since π is surjective, we can choose some
a ∈ A with π(a) = a′. We would like to define θ′(a′) to be θ(a), but it is not
clear yet that this is independent of the choice of a. But if a1 and a2 are two
such choices, then x := a1−a2 belongs to Ker(π) = I and hence also to Ker(θ),
so θ(a1) = θ(a2). Thus θ′ really is well-defined, and it is easy to check from the
surjectivity of π that θ′ is an R-algebra homomorphism.

Theorem 3 Let p be a polynomial in R[X] and let Ap := R[X]/I(p), where
I(p) is the ideal consisting of all multiples of p. Then for any R-algebra B, there
is a natural bijection:

MorAp
(B) ↔ {b ∈ B : p(b) = 0}.

Proof: This is an immediate consequence of the previous results. Let π:R[X] →
Ap be the natural projection. This is a surjective homomorphism of R-algebras,
and its kernel consists of the the ideal I of multiplies of p. Thus by Theorem 2,

π∗:MorAp
(B) → MorR[X](B).

is injective, and its image consists of those homomoprhisms θ such that I ⊆
Ker(θ). Using Theorem 1 we can identify a homomorphism θ:R[X] → B with
the element b := θ(X). Since I is the set of multiplies of p, I ⊆ Ker(θ) iff
p ∈ Ker(θ) iff θ(p) = 0. But θ(p) = p(b). Thus the element θ lies in the image
of π∗ if and only if the corresponding b ∈ B is a root of p.
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