Linear Algebra Midterm Sample Questions

Write clearly, with complete sentences, explaining your work. You will be graded on clarity, style, and brevity. If you add false statements to a correct argument, you will lose points.

1. Let V be a vector space over a field F.
(a) What is the definition of a linear subspace of V ?
(b) What is the definition of the span of a list $\left(v_{1}, \ldots, v_{n}\right)$ in a vector space V ? Prove that the span of a list in V is the smallest linear subspace of V containing each element of the list.
(c) What is the definition of the dimension of a vector space? Explain why this definition make sense.
2. Let V and W be vector spaces over a field F.
(a) What is the definition of a linear transformation from V to W ?
(b) If $\alpha:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a basis for V and $\beta:=\left(w_{1}, w_{2}, \ldots w_{m}\right)$ is an ordered basis for W, what is the definition of the matrix representation $M_{\beta}^{\alpha}(T)$ of a linear transformation from V to W with respect to the bases α and β ?
(c) Let V be the space of polynomials of degree at most 2 over \mathbf{R} and let $\alpha:=\left(1, x, x^{2}\right)$, an ordered basis for V. Let $T: V \rightarrow V$ be the transformation sending p to $p^{\prime}+2 p$, where p^{\prime} is the derivative of p. Find $M_{\alpha}^{\alpha}(T)$.
3. If V and W are vector spaces, let $\mathcal{L}(V, W)$ denote the set of linear transformations from V to W.
(a) Explain the definition of the sum $S+T$ of two elements S and T of $\mathcal{L}(V, W)$, and in particular show why, with your definition, $S+T \in \mathcal{L}(V, W)$.
(b) Let \mathcal{P} denote the space of polynomials over the field of real numbers. Explain why the map $D: \mathcal{P} \rightarrow \mathcal{P}$ sending f to its derivative is linear. Prove that $\left(I d, D, D^{2}, D^{3}\right)$ is linearly independent in $\mathcal{L}(\mathcal{P}, \mathcal{P})$.
4. Let V be a finite dimensional vector space and let S and T be linear transformations from V to itself. Prove that if $S T=S+T$, then $S T=T S$. Show that this need not be true if V is not finite dimensional. (Hint: compute $\left(S-\mathrm{id}_{V}\right)\left(T-\mathrm{id}_{V}\right)$.)
5. Let V and W be vector spaces over F and let $V \times W$ be the set of pairs (v, w), where $v \in V$ and $w \in W$. Then $V \times W$ can be made into a vector space using the operations of V and W. We use this structure from now on. If $f: V \rightarrow W$ is a function, its graph is the subset of $V \times W$ consisting of those pairs (v, w) such that $w=f(v)$. Show that f is linear if and only if its graph is a linear subspace of $V \times W$.
