Traces of operators and matrices

Let V be a finite dimensional C-vector space and let T be an operator on V. Recall:

$$V = \oplus_{\lambda} GE_{\lambda}(T),$$

where $GE_{\lambda}(T)$ is the generalized λ -eigenspace of T:

$$GE_{\lambda}(T) = Ker((T - \lambda I)^n \text{ where } n = \dim V.$$

The characteristic polynomial f_T is the polynomial

$$f_T(t): \prod_{\lambda} (t-\lambda)^{d_{\lambda}}$$
 where $d_{\lambda} - \dim GE_{\lambda}$.

The Cayley-Hamilton theorem:

$$f_T(T) = 0$$
 as an operator on V.

Goal: compute f_T , without actually computing the generalized eigenspaces, or even the eigenvalues.

We know that $f_T(t)$ is monic:

$$f_T(t) = \prod_{\lambda} (t - \lambda)^{d_{\lambda}} = t^n + a_1 t^{n-1} + \cdots + a_n,$$

for some list of complex numbers a_i .

Turns out: a_1 is easy to compute. a_n is harder but still possible.

Definition 1 If $T \in \mathcal{L}(V)$ and

$$f_T(t) = t^n + a_1 t^{n-1} + \cdots + a_n,$$

is its characteristic polynomial, then

trace
$$(T) := -a_1$$
 and
det $(T) := (-1)^n a_n$

A partial answer Theorem 8.10:

If $\hat{\mathcal{B}}$ is a basis for V such that $A := M_{\mathcal{B}}(T)$ is upper triangular,

$$f_T(t) = \prod_i (t - a_{ii}).$$

However to compute ${\mathcal B}$ we must compute the eigenvalues, which is already difficult.

How does $M_{\mathcal{B}}(T)$ depends on \mathcal{B} ?

Let $\mathcal{B} := (v_1, \ldots v_n)$, $\mathcal{B}' := (v'_1, \ldots v'_n)$ and $\mathcal{B}'' := (v''_1, \ldots v''_n)$ be bases for V. If T_1 and T_2 are operators on V, we had the formula

$$M_{\mathcal{B}''}^{\mathcal{B}}(T_1T_2) = M_{\mathcal{B}''}^{\mathcal{B}'}(T_1)M_{\mathcal{B}'}^{\mathcal{B}}(T_2).$$

Let $S := M_{\mathcal{B}}^{\mathcal{B}'}(I)$. (The *j*th column $C_j(S)$ of S is $M_{\mathcal{B}}(v'_j)$.) Apply the formula to see that

$$M_{\mathcal{B}'}^{\mathcal{B}}(I)M_{\mathcal{B}}^{\mathcal{B}'}(I) = M_{\mathcal{B}'}^{\mathcal{B}'}(I) = I$$

Thus S is invertible and $S^{-1} = M^{\mathcal{B}}_{\mathcal{B}'}(I)$. Furthermore:

$$M_{\mathcal{B}'}^{\mathcal{B}'}(T) = M_{\mathcal{B}'}^{\mathcal{B}}(I)M_{\mathcal{B}}^{\mathcal{B}}(T)M_{\mathcal{B}}^{\mathcal{B}'}(I) = S^{-1}M_{\mathcal{B}}^{\mathcal{B}}(T)S.$$

Example Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ be $T(x_1, x_2) : (x_2, x_1)$. Then in the standard basis $\mathcal{B} = (v_1, v_2), T(v_1) = v_2$ and $T(v_2) = v_1$, so

$$M_{\mathcal{B}}(T) = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

We also have an eigenbasis \mathcal{B}' , with $v'_1 = (1,1)$ and $v'_2 = (1,-1)$, so that

$$M_{\mathcal{B}'}(T) = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

Note that

$$S = M_{\mathcal{B}'}^{\mathcal{B}}(I) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
$$S^{-1} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

The trace

Recall that $\operatorname{trace}(T) = -a_1$, where

$$f_T(t) = \prod_{\lambda} (t - \lambda)^{d_{\lambda}}$$

Multiply this out to get:

$$a_1 = -\sum_{\lambda} d_{\lambda} \lambda$$

Definition 2 If A is an $n \times n$ matrix,

$$\operatorname{trace}(A) = \sum_{i} a_{ii}$$

Theorem 3 If T is an operator on V and \mathcal{B} is any basis for V,

$$\operatorname{trace}(T) = \operatorname{trace}(M_{\mathcal{B}}(T))$$

Note this is true in the example above, since 1 + -1 = 0 + 0. **Proposition 4** If A and B are $n \times n$ matrices,

$$\operatorname{trace}(AB) = \operatorname{trace}(BA)$$

Proof: Let C := AB and C' := BA. Then for each i,

$$c_{ii} = \sum_{k} a_{ik} b_{ki}$$

trace $C = \sum_{i} c_{ii} = \sum_{i} \sum_{k} a_{ik} b_{ki}$
 $c'_{ii} = \sum_{k} b_{ik} a_{ki} = \sum_{k} a_{ki} b_{ik}$
trace $C' = \sum_{i} c'_{ii} = \sum_{i} \sum_{k} a_{ki} b_{ik}$
 $= \sum_{k} \sum_{i} a_{ik} b_{ki} = \text{trace}C.$

Corollary 5 If S is invertible,

$$\operatorname{trace}(S^{-1}AS) = \operatorname{trace}(ASS^{-1}) = \operatorname{trace}(A)$$

Corollary 6 If \mathcal{B} and \mathcal{B}' are two bases for V,

$$trace M_{\mathcal{B}}(T) = trace M_{\mathcal{B}'}(T)$$

This proves the theorem: Let \mathcal{B}' be a basis of generalized eigenvalues.