Traces of operators and matrices

Let V be a finite dimensional **C**-vector space and let T be an operator on V . Recall:

$$
V=\oplus_{\lambda}GE_{\lambda}(T),
$$

where $GE_{\lambda}(T)$ is the generalized λ -eigenspace of T:

$$
GE_{\lambda}(T) = Ker((T - \lambda I)^n \text{ where } n = \dim V.
$$

The characteristic polynomial f_T is the polynomial

$$
f_T(t): \prod_{\lambda} (t - \lambda)^{d_{\lambda}}
$$
 where $d_{\lambda} - \dim GE_{\lambda}$.

The Cayley-Hamilton theorem:

$$
f_T(T) = 0
$$
 as an operator on V.

Goal: compute f_T , without actually computing the generalized eigenspaces, or even the eigenvalues.

We know that $f_T(t)$ is monic:

$$
f_T(t) = \prod_{\lambda} (t - \lambda)^{d_{\lambda}} = t^n + a_1 t^{n-1} + \cdots + a_n,
$$

for some list of complex numbers a_i .

Turns out: a_1 is easy to compute. a_n is harder but still possible.

Definition 1 If $T \in \mathcal{L}(V)$ and

$$
f_T(t) = t^n + a_1 t^{n-1} + \cdots + a_n,
$$

is its characteristic polynomial, then

$$
trace(T) := -a_1 \text{ and}
$$

$$
det(T) := (-1)^n a_n
$$

A partial answer Theorem 8.10:

If $\mathcal B$ is a basis for V such that $A := M_{\mathcal B}(T)$ is upper triangular,

$$
f_T(t) = \prod_i (t - a_{ii}).
$$

However to compute β we must compute the eigenvalues, which is already difficult.

Let $\mathcal{B} := (v_1, \ldots v_n)$, $\mathcal{B}' := (v'_1, \ldots v'_n)$ and $\mathcal{B}'' := (v''_1, \ldots v''_n)$ be bases for V. If T_1 and T_2 are operators on V, we had the formula

$$
M_{\mathcal{B}''}^{\mathcal{B}}(T_1T_2) = M_{\mathcal{B}''}^{\mathcal{B}'}(T_1)M_{\mathcal{B}'}^{\mathcal{B}}(T_2).
$$

Let $S := M_{\mathcal{B}}^{\mathcal{B}'}(I)$. (The jth column $C_j(S)$ of S is $M_{\mathcal{B}}(v'_j)$.) Apply the formula to see that $\frac{1}{2}$ $\frac{1}{2}$

$$
M_{\mathcal{B}'}^{\mathcal{B}}(I)M_{\mathcal{B}}^{\mathcal{B}'}(I) = M_{\mathcal{B}'}^{\mathcal{B}'}(I) = I
$$

Thus S is invertible and $S^{-1} = M_{\mathcal{B}'}^{\mathcal{B}}(I)$. Furthermore:

$$
M_{\mathcal{B}'}^{\mathcal{B}'}(T) = M_{\mathcal{B}'}^{\mathcal{B}}(I)M_{\mathcal{B}}^{\mathcal{B}}(T)M_{\mathcal{B}}^{\mathcal{B}'}(I) = S^{-1}M_{\mathcal{B}}^{\mathcal{B}}(T)S.
$$

Example Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ be $T(x_1, x_2) : (x_2, x_1)$. Then in the standard basis $\mathcal{B} = (v_1, v_2), T(v_1) = v_2$ and $T(v_2) = v_1$, so

$$
M_{\mathcal{B}}(T) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

We also have an eigenbasis \mathcal{B}' , with $v'_1 = (1, 1)$ and $v'_2 = (1, -1)$, so that

$$
M_{\mathcal{B}'}(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

Note that

$$
S = M_{B'}^{B}(I) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
$$

$$
S^{-1} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix}
$$

$$
\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
$$

$$
= \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}
$$

The trace

Recall that $trace(T) = -a_1$, where

$$
f_T(t) = \prod_{\lambda} (t - \lambda)^{d_{\lambda}}
$$

Multiply this out to get:

$$
a_1=-\sum_\lambda d_\lambda\lambda
$$

Definition 2 If A is an $n \times n$ matrix,

$$
\operatorname{trace}(A) = \sum_{i} a_{ii}
$$

Theorem 3 If T is an operator on V and B is any basis for V ,

$$
trace(T) = trace(M_{\mathcal{B}}(T)).
$$

Note this is true in the example above, since $1 + -1 = 0 + 0$. **Proposition 4** If A and B are $n \times n$ matrices,

$$
trace(AB) = trace(BA)
$$

Proof: Let $C := AB$ and $C' := BA$. Then for each i,

$$
c_{ii} = \sum_{k} a_{ik} b_{ki}
$$

trace $C = \sum_{i} c_{ii} = \sum_{i} \sum_{k} a_{ik} b_{ki}$

$$
c'_{ii} = \sum_{k} b_{ik} a_{ki} = \sum_{k} a_{ki} b_{ik}
$$

trace $C' = \sum_{i} c'_{ii} = \sum_{i} \sum_{k} a_{ki} b_{ik}$

$$
= \sum_{k} \sum_{i} a_{ik} b_{ki} = \text{trace}C.
$$

 \Box

Corollary 5 If S is invertible,

$$
trace(S^{-1}AS) = trace(ASS^{-1}) = trace(A)
$$

Corollary 6 If β and β' are two bases for V ,

$$
traceM_{\mathcal{B}}(T) = traceM_{\mathcal{B}'}(T)
$$

This proves the theorem: Let \mathcal{B}' be a basis of generalized eigenvalues.