Polynomials and polynomial functions

Let \mathbf{F} be a field. Recall that $\mathbf{F}^{\mathbf{N}}$ is the vector space of all sequences $a:=\left(a_{0}, a_{1}, \ldots\right)$ with $a_{i} \in \mathbf{F}$, with addition and scalar multiplication defined coordinatewise. For each natural number d, let \mathcal{P}_{d} denote the set of all sequences a such that $a_{i}=0$ for $i>d$. Check that \mathcal{P}_{d} is a linear subspace of $\mathbf{F}^{\mathbf{N}}$, and that $\mathcal{P}_{0} \subset \mathcal{P}_{1} \subset \mathcal{P}_{2} \cdots$. Now let $\mathcal{P}:=\cup\left\{\mathcal{P}_{d}: d \in \mathbf{N}\right\}$, i.e., \mathcal{P} is the set of all a such that there exists some d (possibly depending on a) such that $a_{i}=0$ for all $i>d$. Check that \mathcal{P} is also a linear subspace of $\mathbf{F}^{\mathbf{N}}$.

We can think of a sequence $\left(a_{0}, a_{1}, \cdots\right)$ in \mathcal{P} as specifying the coefficients of a polynomial (with coefficients in the field \mathbf{F}). More specifically:

Definition: Let a be an element of \mathcal{P}, say a in \mathcal{P}_{d}. Then \tilde{a} is the function $\mathbf{F} \rightarrow \mathbf{F}$ such that $\tilde{a}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{d} x^{d}$ for all $x \in \mathbf{F}$.

Note that if $d^{\prime} \geq d$, then a also belongs to $\mathcal{P}_{d^{\prime}}$, and

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{d} x^{d}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{d} x^{d}+\cdots+a_{d^{\prime}} x^{d^{\prime}}
$$

since $a_{i}=0$ for all $i>d$. Thus \tilde{a} is independent of the choice of d. This means that we have a well-defined mapping

$$
\epsilon: \mathcal{P} \rightarrow \mathbf{F}^{\mathbf{F}}, \text { sending each } a \text { to } \epsilon(a):=\tilde{a}
$$

An element $a \in \mathcal{P}$ is called a polynomial; really then a polynomial is just a list of coefficients, all but finitely many of which are zero. Associated to such a list a we have formed a function \tilde{a}, which we call a polynomial function. Now recall that we also have operations on $\mathbf{F}^{\mathbf{F}}$ which make it into a vector space over \mathbf{F}. Fortunately, the next proposition tells us that these operations are compatible with the operations.

Proposition: If $a, b \in \mathcal{P}$ and $c \in \mathbf{F}$, then $\epsilon(a+b)=\epsilon(a)+\epsilon(b)$ and $\epsilon(c a)=c \epsilon(a)$.

Write out the proof of this proposition. It says that addition of polynomial functions can be computed by adding the corresponding coefficients, and similary for multiplication of a polynomial function by a constant.

Axler in his book doesn't really distinguish between the sequence of coefficients a and the corresponding polynomial function \tilde{a}. This is because for him, \mathbf{F} is always either \mathbf{R} or \mathbf{C}, in which case one can recover the coeffients from the polynomial function. However for the field \mathbf{F}_{2}, this is not the case. For example, the polynomial $a:=(0,1,1,0,0, \cdots$,$) gives rise to the same function$ as the polynomial $b:=(0,0,0, \cdots)$. This is because $\tilde{a}(x)=x+x^{2}$, which is 0 if x is any element of \mathbf{F}_{2}.

