Jordan Normal Form

April 26, 2007

Definition: A Jordan block is a square matrix B whose diagonal entries consist of a single scalar λ , whose superdiagonal entires are all 1, and all of whose other entries vanish. For example:

(λ)	1	0	0	•••	0	
0	λ	1	0	•••	0	
0	0	λ	1	•••	0	
	• • •	• • •	• • •	•••	• • •	
$\setminus 0$	0	0	•••	0	λ)

Theorem: Let T be a linear operator on a finite dimensional vector space V. Suppose that the characteristic polynomial of V splits. Then there exists a basis for T such that $[T]_{\beta}$ is a direct sum of Jordan blocks.

The first step in the proof of this theorem is to use the direct sum decomposition of V into generalized eigenspaces K_{λ} . Then it suffices to prove the theorem for the restriction of T to each K_{λ} . On K_{λ} , let $S_{\lambda} := T - \lambda I$. If we can find a basis β of K_{λ} with respect to which S_{λ} is a sum of Jordan blocks, then the same will be true for T. On K_{λ} , there exists an r such that $S_{\lambda}^{r} = 0$. Thus it suffices to consider the special case of operators with this property.

Let V be a finite dimensional vector space over a field F. A linear operator $N: V \to V$ is said to be *nilpotent* if $N^r = 0$ for some positive integer r. Let N be a nilpotent operator on a finite dimensional vector space V. For each i, let R^i be the image of N^i . Each R^i is a linear subspace of V and is N-invariant, and $0 = R^r \subseteq R^{r-1} \cdots \subseteq R^1 \subseteq V$. Since N is nilpotent it is not injective (unless V = 0). Thus the kernel K of N is not zero and dim $R^1 = \dim V - \dim K < \dim V$.

Let (v_1, v_2, \dots, v_s) be a basis for V Then $[N]_\beta$ is a Jordan block if and only if $N(v_1) = 0$, $N(v_2) = v_1$, and $N(v_i) = v_{i-1}$ for all i > 1. This motivates the following definition.

Definition: An *N*-cycle is a sequence (v_1, v_2, \dots, v_s) of nonzero vectors such that $N(v_i) = v_{i-1}$ for all i > 1 and $N(v_1) = 0$.

If (v_1, \dots, v_s) is an N-cycle, then $v_1 = N^{s-1}(v_s)$, so $v_1 \in \mathbb{R}^{s-1}$. Conversely, if $v \in \mathbb{R}^{s-1}$, say $v = \mathbb{R}^{s-1}(x)$, then $(\mathbb{R}^{s-1}(x), \mathbb{R}^{s-2}(x), \dots x)$ is an N-cycle whose initial vector is v. If v belongs to \mathbb{R}^{s-1} but not to \mathbb{R}^s , then s is the length of the longest N-cycle starting with v.

Definition: An N-cycle (v_1, \dots, v_s) is maximal if $v_1 \notin \mathbb{R}^s$.

It is clear that every nonzero element of the kernel K of N is contained in some maximal N-cycle.

Lemma: Let $(\gamma_1, \gamma_2, \dots, \gamma_p)$ be a sequence of *N*-cycles. Then if the corresponding sequence of initial vectors is linearly independent, so is the concatenated sequence $\gamma_1 \cup \gamma_2 \cup \dots \cup \gamma_p$.

Proof: Say $\gamma_i = (v_{i,1}, v_{i,2}, \cdots, v_{i,n_i})$. Our assumption is that the sequence $(v_{1,1}, v_{2,1}, \cdots, v_{p,1})$ is linearly independent, and we want to prove that the entire (multi-indexed) sequece $(v_{i,j})$ is linearly independent. We prove this by induction on the maximum of the n_i 's. If all the n_i 's are 1, there is nothing to prove, since we assumed that the sequence of initial vectors is linearly independent. For the induction step, for each $i \, \text{let } \gamma'_i$ be the (possibly empty) Jordan cycle obtained by omitting the last term. The induction assumption says that the union of these is linearly independent. Suppose that $\sum a_{i,j}v_{i,j} = 0$. Applying N, we deduce that $\sum a_{i,j}Nv_{i,j} = 0$, *i.e.*, that $\sum_{i,j} a_{i,j}v_{i-1,j} = 0$, where here for each j, i ranges between 2 and n_i . This is the sum over the corresponding truncated cycles γ'_i . The induction assumption says that $\cup \gamma'_i$ is linearly independent, so $a_{i,j} = 0$ for $i \geq 2$. Thus the original sum reduces to a linear combination of the initial vectors, which we assumed to be linearly independent. Hence each $a_{1,j} = 0$ as well.

Recall that we have linear subspaces $0 \subseteq R^r \subseteq R^{r-1} \subseteq \cdots V$. Consider the corresponding sequence of subspaces of K.

$$0 = R^r \cap K \subseteq R^{r-1} \cap K \subseteq \dots \subseteq R^1 \cap K \subseteq K.$$

We shall say that a basis α of K is *adapted to* N if for each $i, \alpha \cap R^i$ is a basis of $R^i \cap K$. It is clear that such bases always exist: start with a basis for R^{r-1} , extend it to a basis for R^{r-2} , and continue.

Definition: A sequence of maximal N-cycles $(\gamma_1, \cdots, \gamma_q)$ is *full* if the corresponding sequence of initial vectors (v_1, \cdots, v_q) is a basis of K which is adapted to N.

It is clear that full sequences of N-cycles exist: start with a basis for K which is adapted to N, and for each vector v in the basis, find a maximal cycle starting with v.

Theorem: Every full sequence of maximal N-cycles forms a basis for V.

Proof: Let $(\gamma_1, \gamma_2, \cdots, \gamma_p)$ be a full sequence of maximal N-cycles. By assumption, the corresponding sequence of initial vectors is linearly independent, and hence by the lemma, the concatenation of γ_i 's is linearly independent. It suffices to show that it also spans V. We do this by induction on the smallest r such that $N^r = 0$. If r = 1, then V = K and there is nothing to prove, since we assumed that the initial vectors span K. Let V' := Im(N)and for each *i*, let γ'_i be γ_i with the last element omitted. In fact, $\gamma'_i = N(\gamma_i)$, with zero omitted. Let N' be the restriction of N to V'. Each γ'_i is contained in V' and is a maximal Jordan cycle for N'. Furthermore, γ'_i is empty only if γ_i has length one, which is true only if its initial (and only) vector does not belong to V'. Thus the sequence of initial vectors of γ'_i contains all the initial vectors of the original sequence which belong to V'. Let p' be the number of nonempty γ'_i 's. It follows that the sequence $(\gamma'_1, \cdots, \gamma'_{p'})$ is maximal and full for N'. By the induction assumption, it spans V'. Now let W be the span of the all the γ_i 's. Note that by construction, W contains all of K. Furthermore, the image of W under N contains all the γ'_i 's and hence all of V' = Im(N). But then dim $W = \dim K + \dim Im(N) = \dim V$, and hence W = V.

Remark: For each *i*, let d_i denote the dimension of R^i and let $h_i := d_{i-1} - d_i$. If α is any basis for *K* adapted to *N*, then d_i is the number of elements of α which lie in R^i and so h_i is the number of elements of α which lie in R^{i-1} but not in R^i . Corresponding to each such element there will be a maximal *N*-cycle of length *i*. Thus if β is the basis obtained as above, the corresponding matrix $[N]_{\beta}$ will have exactly h_i Jordan blocks of length *i*.

Let V and V' be two finite dimensional vector spaces over F, and let T be an operator on V and T' an operator on V'. Then T and T' are sometimes said to be *similar* if there exists an isomorphism $Q: V \to V'$ such that $T' \circ Q = Q \circ T$, *i.e.*, $T' = Q \circ T \circ Q^{-1}$.

Theorem: Suppose that $f_T(x)$ and $f_{T'}(x)$ split. Choose bases β for V and β' for V' such that $A := [T]_{\beta}$ and $A' := [T']_{\beta'}$ are direct sums of Jordan blocks. Then T and T' are similar if and only if for each $\lambda \in F$ and each integer s, the number of Jordan blocks of A with eigenvalue λ and length s is the same as the corresponding number for A'.

Proof: Suppose that T and T' are similar, and that Q is an isomorphism $V \to V'$ such that $T' \circ Q = Q \circ T$. It follows that T and T' have teh same characteristic polynomial. For each root λ , let $S_{\lambda} := T - \lambda I_{V}$ and let $S'_{\lambda} := T' - \lambda I_{V'}$. Then it is also true that $S'_{\lambda} \circ Q = Q \circ S_{\lambda}$, and also that $(S'_{\lambda})^{i} \circ Q = Q \circ (S_{\lambda})^{i}$ for all i. Then Q maps $E_{\lambda} := \operatorname{Ker}(S_{\lambda})$ isomorphically to $E'_{\lambda} := \operatorname{Ker}(S'_{\lambda})$ for all λ , and also $R^{i}_{\lambda} := Im(S^{i}_{\lambda})$ isomorphically to $R'^{i}_{\lambda} := Im(S^{i}_{\lambda})$ for all i. Hence it maps $E_{\lambda} \cap R^{i}_{\lambda}$ isomorphically to $E'_{\lambda} \cap R^{i}_{\lambda}$ for all i. But it follows from the remark above that $d^{i-1}_{\lambda} - d^{i}_{\lambda}$ is the number of Jordan blocks in the Jordan normal form for T with eigenvalue λ and length i. Since the same is true for T', we see that these numbers agree.

The converse is easy to prove. If the numbers for A and A' are equal then we can rearrange the basis β' so that the matrices A and A' are in fact equal to each other. The basis β defines an isomorphism $\phi_{\beta}: V \to F^n$ such that $L_A \circ \phi_{\beta} = \phi_{\beta} \circ T$, and β' defines an isomorphism $\phi_{\beta'}: V' \to F^n$ such that $L_{A'} \circ \phi_{\beta'} = \phi_{\beta'} \circ T'$. Now take $Q := \phi_{\beta}'^{-1} \circ \phi_{\beta}: V \to V'$.