Determinants of operators and matrices II

Let V be a finite dimensional \mathbf{C}-vector space and let T be an operator on V. Recall:

The characteristic polynomial f_{T} is

$$
\begin{gathered}
f_{T}(t):=\prod_{\lambda}(t-\lambda)^{d_{\lambda}}=t^{n}+a_{1} t^{n-1}+\cdots a_{n}, \text { where } d_{\lambda}-\operatorname{dim} G E_{\lambda} . \\
\operatorname{det}(T)=\prod_{\lambda} \lambda^{d_{\lambda}}=(-1)^{n} a_{n}
\end{gathered}
$$

Example 1 Cyclic permutations
Let $\mathcal{B}=\left(v_{1}, \ldots, v_{n}\right)$ and let T be the operator sending v_{1} to v_{2}, v_{2} to v_{3}, and so on, but then v_{n} to v_{1}. Then the characterisictic polynomial of T is

$$
\begin{aligned}
& f_{T}(t)=t^{n}-1 \text { and } \\
& \operatorname{det}(T)=(-1)^{n+1}
\end{aligned}
$$

In this example, our linear transformation just permutes the basis. Our next step is to discuss more general cases of this.

Permutations

Definition 2 permutation of the set $1, \ldots, n$ is a bijective function σ from the set $\{1, \ldots, n\}$ to itself. Equivalently, it is a list $(\sigma(1), \ldots, \sigma(n))$ such that each element of $\{1, \ldots, n\}$ occurs exactly once. The set of all permutations of length n is denoted by S_{n}.

Examples in S_{5} :
$(2,3,4,5,1)$ (cycle of length 5)
$(2,4,3,1,5)$ (cycle of length 3)
(2, 4, 5, 1, 3) (cycle of length 3 and disjoint cycle of length 2)
Definition 3 The sign of a permutation σ is $(-1)^{m}$ where m is the number of pairs (i, j) where

$$
1 \leq i<j \leq n \text { but } \sigma(i)>\sigma(j)
$$

Here's an easy way to count: Arrange $(1,2, \ldots, n)$ in one row, and again in a row underneath. $(\sigma(1), \sigma(2), \ldots, \sigma(n))$ in a row below. Draw lines connecting i in the first row to $\sigma(i)$ in the second. Then m is the number of crosses.

Examples:

Theorem 4 If σ and τ are elemnts of S_{n} and $\sigma \tau$ is their composition, then

$$
\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)
$$

Examples
Let's just look at what happens to one typical pair. There are really four possibilities:

A more complicated example:

Example 5 A cycle of length n has $n-1$ crossings, and so its sign is $(-1)^{n-1}$. Note that this is the same as the determinant of the corresponding linear transfomration.

Definition 6 Let A be an $n \times n$ matrix. Then

$$
\operatorname{det} A:=\sum\left\{\operatorname{sgn}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)}: \sigma \in S_{n}\right\}
$$

Example 7 When $n=2$ there are two permuations, and we get

$$
\operatorname{det}(A)=a_{1,1} a_{2,2}-a_{1,2} a_{2,1}
$$

In general there are n ! permuations in S_{n}, a very big number!
It is often useful to think of a matrix A as a bunch of columns: if A is a matrix, let A_{j} be its j th column. Then we can think of det as a function of n columns instead of a function of matrices:

$$
\operatorname{det}(A)=\operatorname{det}\left(A_{1}, A_{2}, \ldots, A_{n}\right)
$$

Theorem 8 Let A and B be $n \times n$ matrices.

1. If A is upper triangular, $\operatorname{det}(A)=\prod_{i} a_{i, i}$.
2. $\operatorname{det}(A)$ is a linear function of each column, (when all the other columns are fixed, and similarly for the rows.
3. If A^{\prime} is obtained from A by interchanging two columns, then $\operatorname{det}\left(A^{\prime}\right)=$ $-\operatorname{det}(A)$.
4. More generally, if A^{\prime} is obtained from A by a permutation σ of the columns, then $\operatorname{det}\left(A^{\prime}\right)=\operatorname{sgn}(\sigma) \operatorname{det}(A)$.
5. If two columns of A are equal, $\operatorname{det}(A)=0$.
6. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
7. $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$

Here are some explanations:

1. If A is uppertriangular $a_{i j}=0$ if $j<i$. Now if $\sigma \in S_{n}$ is not the identity, $\sigma(i)<i$ for some i, and then $a_{i, \sigma(i)}=0$. Thus the only term is the sum

$$
\operatorname{det}(A)=\sum_{\sigma}
$$

is when $\sigma=\mathrm{id}$.
2. This is fairly clear if you think about it. Imagine if $a_{1 j}^{\prime}=c a_{1 j}$ for all j, for example.
3. Suppose for example that A^{\prime} is obtained from A by interchanging the first two columns. Let τ be the permutation interchanging 1 and 2. Then for any j

$$
a_{i, j}^{\prime}=a_{i, \tau(j)}
$$

and for any σ

$$
\begin{aligned}
& a_{i, \sigma(i)}^{\prime}=a_{i, \tau \sigma(i)} \\
& \operatorname{det} A^{\prime}:=\sum_{\sigma} \operatorname{sgn}(\sigma) a_{1, \sigma(1)}^{\prime} a_{2, \sigma(2)}^{\prime} \cdots a_{n, \sigma(n)}^{\prime} \\
&:= \sum_{\sigma} \operatorname{sgn}(\sigma) a_{1, \tau \sigma(1)} a_{2, \tau \sigma(2)} \cdots a_{n, \tau \sigma(n)} \\
&:= \sum_{\sigma}-\operatorname{sgn}(\tau \sigma) a_{1, \tau \sigma(1)} a_{2, \tau \sigma(2)} \cdots a_{n, \tau \sigma(n)} \\
&=-\operatorname{det} A
\end{aligned}
$$

4. Is proved in exactly the same way.
5. Follows from (3) since then $\operatorname{det}(A)=-\operatorname{det}(A)$.
6. Recall that in fact $B_{j}=b_{1, j} e_{1}+\cdots b_{n, j} e_{n}$, where e_{i} is the j th standard basis vector for F^{n} written as a column. Recall also that if A and B are matrices, then the j th column of $A B$, which we write as $(A B) j$, is

$$
(A B)_{j}=A B_{j}=A \sum_{i} b_{i, j} e_{i}=\sum_{i} b_{i, j} A e_{i}=\sum_{i} b_{i, j} A_{i}
$$

So

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det}\left(A B_{1}, A B_{2}, \ldots, A B_{n}\right) \\
& =\operatorname{det}\left(\sum_{i} b_{i, 1} A_{i}, \sum_{i} b_{i, 2} A_{i}, \ldots, \sum_{i} b_{i, n} A_{i}\right)
\end{aligned}
$$

Using the fact that det is linear with respect to the columns over and over again, we can multiply this out:

$$
\operatorname{det}(A B)=\sum_{\sigma} b_{\sigma(1), 1} b_{\sigma(2), 2)} \cdots b_{\sigma(n), n)} \operatorname{det}\left(A_{\sigma(1)}, A_{\sigma(2)}, \ldots, A_{\sigma(n)}\right)
$$

where here the sum is over all functions σ from the set $\{1, \ldots, n\}$ to itself. But by (5), the determinant is zero if σ is not a permutation, and if it is, we just get the determinant of A times the sign of σ. So (miracle!) we end up with

$$
\operatorname{det}(A B)=\sum_{\sigma} b_{\sigma(1), 1} b_{\sigma(2), 2)} \cdots b_{\sigma(n), n)} \operatorname{sgn}(\sigma) \operatorname{det}(A)=\operatorname{det}(B) \operatorname{det}(A)
$$

7.

$$
\begin{aligned}
\operatorname{det} A & :=\sum_{\sigma} \operatorname{sgn}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)} \\
& =\sum_{\sigma} \operatorname{sgn}\left(\sigma^{-1}\right) a_{1, \sigma^{-1}(1)} a_{2, \sigma^{-1}(2)} \cdots a_{n, \sigma^{-1}(n)} \\
& =\sum_{\sigma} \operatorname{sgn}(\sigma) a_{\sigma(1), 1} a_{\sigma(2), 2} \cdots a_{\sigma(n), n} \\
& =\operatorname{det}\left(A^{t}\right)
\end{aligned}
$$

