
Determinants of operators and matrices II

Let V be a finite dimensional C-vector space and let T be an operator on V .
Recall:

The characteristic polynomial fT is

fT (t) :=
∏
λ

(t− λ)dλ = tn + a1t
n−1 + · · · an, where dλ − dimGEλ.

det(T ) =
∏
λ

λdλ = (−1)nan

Example 1 Cyclic permutations

Let B = (v1, . . . , vn) and let T be the operator sending v1 to v2, v2 to v3,
and so on, but then vn to v1. Then the characterisictic polynomial of T is

fT (t) = tn − 1 and

det(T ) = (−1)n+1

In this example, our linear transformation just permutes the basis. Our next
step is to discuss more general cases of this.
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Permutations

Definition 2 A permutation of the set 1, . . . , n is a bijective function σ from
the set {1, . . . , n} to itself. Equivalently, it is a list (σ(1), . . . , σ(n)) such that
each element of {1, . . . , n} occurs exactly once. The set of all permutations of
length n is denoted by Sn.

Examples in S5 :
(2, 3, 4, 5, 1) (cycle of length 5)
(2, 4, 3, 1, 5) (cycle of length 3)
(2, 4, 5, 1, 3) (cycle of length 3 and disjoint cycle of length 2)

Definition 3 The sign of a permutation σ is (−1)m where m is the number of
pairs (i, j) where

1 ≤ i < j ≤ n but σ(i) > σ(j)

Here’s an easy way to count: Arrange (1, 2, . . . , n) in one row, and again in
a row underneath. (σ(1), σ(2), . . . , σ(n)) in a row below. Draw lines connecting
i in the first row to σ(i) in the second. Then m is the number of crosses.

Examples:

1 2 3 4 5

so m = 4 and sgn = +1.
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Theorem 4 If σ and τ are elemnts of Sn and στ is their composition, then

sgn(στ) = sgn(σ)sgn(τ).
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Examples
Let’s just look at what happens to one typical pair. There are really four

possibilities:
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A more complicated example:

1 2 3 4 5

so m = 4 and sgn = +1.

1
�

2

-

3
?

4
-

5
?

so m = 5 and sgn = −1.

1
�

2

-

3
�

4
-

5
-

1 2 3 4 5

so m = 5 and sgn = −1.
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Example 5 A cycle of length n has n− 1 crossings, and so its sign is (−1)n−1.
Note that this is the same as the determinant of the corresponding linear trans-
fomration.
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Definition 6 Let A be an n× n matrix. Then

detA :=
∑
{sgn(σ)a1,σ(1)a2,σ(2) · · · an,σ(n) : σ ∈ Sn}

Example 7 When n = 2 there are two permuations, and we get

det(A) = a1,1a2,2 − a1,2a2,1.

In general there are n! permuations in Sn, a very big number!
It is often useful to think of a matrix A as a bunch of columns: if A is a

matrix, let Aj be its jth column. Then we can think of det as a function of n
columns instead of a function of matrices:

det(A) = det(A1, A2, . . . , An)

Theorem 8 Let A and B be n× n matrices.

1. If A is upper triangular, det(A) =
∏
i ai,i.

2. det(A) is a linear function of each column, (when all the other columns
are fixed, and similarly for the rows.

3. If A′ is obtained from A by interchanging two columns, then det(A′) =
−det(A).

4. More generally, if A′ is obtained from A by a permutation σ of the columns,
then det(A′) = sgn(σ) det(A).

5. If two columns of A are equal, det(A) = 0.

6. det(AB) = det(A) det(B).

7. det(At) = det(A)

Here are some explanations:

1. If A is uppertriangular aij = 0 if j < i. Now if σ ∈ Sn is not the identity,
σ(i) < i for some i, and then ai,σ(i) = 0. Thus the only term is the sum

det(A) =
∑
σ

is when σ = id.

2. This is fairly clear if you think about it. Imagine if a′1j = ca1j for all j,
for example.

3. Suppose for example that A′ is obtained from A by interchanging the first
two columns. Let τ be the permutation interchanging 1 and 2. Then for
any j

a′i,j = ai,τ(j)
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and for any σ
a′i,σ(i) = ai,τσ(i)

detA′ :=
∑
σ

sgn(σ)a′1,σ(1)a
′
2,σ(2) · · · a

′
n,σ(n)

:=
∑
σ

sgn(σ)a1,τσ(1)a2,τσ(2) · · · an,τσ(n)

:=
∑
σ

−sgn(τσ)a1,τσ(1)a2,τσ(2) · · · an,τσ(n)

= −detA

4. Is proved in exactly the same way.

5. Follows from (3) since then det(A) = −det(A).

6. Recall that in fact Bj = b1,je1 + · · · bn,jen, where ei is the jth standard
basis vector for Fn written as a column. Recall also that if A and B are
matrices, then the jth column of AB, which we write as (AB)j, is

(AB)j = ABj = A
∑
i

bi,jei =
∑
i

bi,jAei =
∑
i

bi,jAi

So

det(AB) = det(AB1, AB2, . . . , ABn)
= det(

∑
i

bi,1Ai,
∑
i

bi,2Ai, . . . ,
∑
i

bi,nAi)

Using the fact that det is linear with respect to the columns over and over
again, we can multiply this out:

det(AB) =
∑
σ

bσ(1),1bσ(2),2) · · · bσ(n),n) det(Aσ(1), Aσ(2), . . . , Aσ(n))

where here the sum is over all functions σ from the set {1, . . . , n} to itself.
But by (5), the determinant is zero if σ is not a permutation, and if it is,
we just get the determinant of A times the sign of σ. So (miracle!) we
end up with

det(AB) =
∑
σ

bσ(1),1bσ(2),2) · · · bσ(n),n)sgn(σ) det(A) = det(B) det(A)

7.

detA :=
∑
σ

sgn(σ)a1,σ(1)a2,σ(2) · · · an,σ(n)

=
∑
σ

sgn(σ−1)a1,σ−1(1)a2,σ−1(2) · · · an,σ−1(n)

=
∑
σ

sgn(σ)aσ(1),1aσ(2),2 · · · aσ(n),n

= det(At)
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