Determinants of operators and matrices

Let V be a finite dimensional C-vector space and let T be an operator on V. Recall:

The characteristic polynomial f_T is the polynomial

$$f_T(t): \prod_{\lambda} (t-\lambda)^{d_{\lambda}}$$
 where $d_{\lambda} - \dim GE_{\lambda}$.

The Cayley-Hamilton theorem:

$$f_T(T) = 0$$
 as an operator on V.

Goal: compute f_T , without actually computing the generalized eigenspaces, or even the eigenvalues, just from $M_{\mathcal{B}}(T)$ for any arbitrary basis \mathcal{B} for V.

$$f_T(t) := \prod_{\lambda} (t - \lambda)^{d_{\lambda}} = t^n + a_1 t^{n-1} + \cdots + a_n,$$

for some list of complex numbers a_i .

Definition 1 If $T \in \mathcal{L}(V)$ and

$$f_T(t) = t^n + a_1 t^{n-1} + \cdots + a_n,$$

is its characteristic polynomial, then

$$\operatorname{trace}(T) := -a_1 \ and$$

$$\det(T) := (-1)^n a_n$$

Last time: If $A := M_{\mathcal{B}}(T)$, then

$$\operatorname{trace}(T) = \operatorname{trace}(A) := \sum a_{i,i}$$

Outline:

1. Define the determinant of a matrix, det(A).

2. Check that if A is uppertriangular,

$$\det(A) = \prod a_{ii}.$$

3. Show that if A and B are $n \times n$ matrices,

$$\det(AB) = \det(A) \det(B).$$

- 4. Conclude that $det(S^{-1}AS) = det A$ for every invertible S.
- 5. Conclude that if $A = M_{\mathcal{B}}(T)$, then $\det(A) = \det(T)$.

Step (1) is probably the hardest. How to find the definition? Many approaches. I'll follow the book, more or less. Let's look at cyclic spaces.

Theorem 2 Suppose that V is T-cyclic, so that there is a $v \in V$ with

 $V = \operatorname{span}(v, Tv, T^2v, \dots T^{n-1}v).$

Then $(v, Tv, \ldots, T^{n-1}v)$ is a basis of V, and

 $T^n v = c_0 v + c_1 T v + \dots + c_{n-1} T^{n-1} v$

for a unique list (c_0, \ldots, c_{n-1}) in **C**. Then the characteristic polynomial of T is

$$p(t) = t^n - c_{n-1}t^{n-1} - \cdots - c_1t - c_0.$$

Example 3 Last time we looked at $T(x_1, x_2) := (x_2, x_1)$. Let v := (1, 0). Then (v, Tv) is a basis for V, and $T^2v = v$. Thus $c_0 = 1$ and $c_1 = 0$, the $p(t) = t^2 - 1$.

Proof: The equation for $T^n v$ says that

$$p(T)(v) = 0.$$

It follows that

$$p(T)(T^{i}v) = T^{i}p(T)(v) = 0$$
 for all i

and since the $T^i v$'s span V p(T) = 0. Since the list $(v, Tv, \ldots T^{n-1}v)$ is independent, there is no polynomial of smaller degree that annihilates T. Thus p is the minimal polynomial of T, and since its degree is the dimension of V p is also the characteristic polynomial of T.

Corollary 4 In the cyclic case above, $det(T) = (-1)^{n+1}c_0$.

Example 5 Let $\mathcal{B} = (v_1, \ldots, v_n)$ and let T be the operator sending v_1 to v_2 , v_2 to v_3 , and so on, but then v_n to v_1 . Then the characteristic polynomial of T is

$$f_T(t) = t^n - 1$$
 and $\det(T) = (-1)^{n+1}$

In this example, our linear transformation just *permutes* the basis. Our next step is to discuss more general cases of this.

Permutations

Definition 6 A permutation of the set $1, \ldots, n$ is a bijective function σ from the set $\{1, \ldots, n\}$ to itself. Equivalently, it is a list $(\sigma(1), \ldots, \sigma(n))$ such that each element of $\{1, \ldots, n\}$ occurs exactly once. The set of all permutations of length n is denoted by S_n .

Examples in S_5 : (2,3,4,5,1) (2,4,3,1,5) (2,4,5,1,3) The first of these is

The first of these is cycle of length 5. Note that the second doesn't move 3 or 5, and can be viewed as a cyclic permutation of the set $\{1, 2, 4\}$. The last permutation can be viewed as a the product (composition) of a cyclic permutation of $\{1, 2, 4\}$ and a cyclic permutation of $\{3, 5\}$.

Definition 7 The sign of a permutaion σ is $(-1)^m$ where m is the number of pairs (i, j) where

$$1 \leq i < j \leq n \text{ but } \sigma(i) > \sigma(j)$$

Here's an easy way to count: Arrange (1, 2, ..., n) in one row, and $(\sigma(1), \sigma(2), ..., \sigma(n))$ in a row below. Draw lines connecting *i* in the first row to *i* in the second. Then *m* is the number of crosses.

Examples:

Example 8 A cycle of length n has n-1 crossings, and so its sign is $(-1)^{n-1}$. Note that this is the same as the determinant of the corresponding linear transformation. d

Theorem 9 If $\sigma, \tau \in S_n$, then

$$\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$$

Omit the proof, at least for now.

Definition 10 Let A be an $n \times n$ matrix. Then

$$\det A := \sum \{ \operatorname{sgn}(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \cdots a_{n,\sigma(n)} : \sigma \in S_n \}$$

Example 11 When n = 2 there are two permutaions, and we get

$$\det(A) = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}.$$

Proposition 12 Let A and B be $n \times n$ matrices.

- 1. If A is upper triangular, $det(A) = \prod_i a_{i,i}$.
- 2. If B is obtained from A by interchanging two columns, then det(B) = -det(A).
- 3. If two columns of A are equal, det(A) = 0.
- 4. det(A) is a linear function of each column, (when all the other columns are fixed.)
- 5. $\det(AB) = \det(A) \det(B)$.