Determinants of operators and matrices

Let V be a finite dimensional \mathbf{C}-vector space and let T be an operator on V. Recall:

The characteristic polynomial f_{T} is the polynomial

$$
f_{T}(t): \prod_{\lambda}(t-\lambda)^{d_{\lambda}} \text { where } d_{\lambda}-\operatorname{dim} G E_{\lambda}
$$

The Cayley-Hamilton theorem:

$$
f_{T}(T)=0 \text { as an operator on } V .
$$

Goal: compute f_{T}, without actually computing the generalized eigenspaces, or even the eigenvalues, just from $M_{\mathcal{B}}(T)$ for any arbtirary basis \mathcal{B} for V.

$$
f_{T}(t):=\prod_{\lambda}(t-\lambda)^{d_{\lambda}}=t^{n}+a_{1} t^{n-1}+\cdots a_{n}
$$

for some list of complex numbers a_{i}.
Definition 1 If $T \in \mathcal{L}(V)$ and

$$
f_{T}(t)=t^{n}+a_{1} t^{n-1}+\cdots a_{n}
$$

is its characteristic polynomial, then

$$
\begin{aligned}
\operatorname{trace}(T) & :=-a_{1} \text { and } \\
\operatorname{det}(T) & :=(-1)^{n} a_{n}
\end{aligned}
$$

Last time:
If $A:=M_{\mathcal{B}}(T)$, then

$$
\operatorname{trace}(T)=\operatorname{trace}(A):=\sum a_{i, i}
$$

Outline:

1. Define the determinant of a matrix, $\operatorname{det}(A)$.
2. Check that if A is uppertriangular,

$$
\operatorname{det}(A)=\prod a_{i i}
$$

3. Show that if A and B are $n \times n$ matrices,

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

4. Conclude that $\operatorname{det}\left(S^{-1} A S\right)=\operatorname{det} A$ for every invertible S.
5. Conclude that if $A=M_{\mathcal{B}}(T)$, then $\operatorname{det}(A)=\operatorname{det}(T)$.

Step (1) is probably the hardest. How to find the definition? Many approaches. I'll follow the book, more or less. Let's look at cyclic spaces.
Theorem 2 Suppose that V is T-cyclic, so that there is a $v \in V$ with

$$
V=\operatorname{span}\left(v, T v, T^{2} v, \ldots T^{n-1} v\right)
$$

Then $\left(v, T v, \ldots, T^{n-1} v\right)$ is a basis of V, and

$$
T^{n} v=c_{0} v+c_{1} T v+\cdots+c_{n-1} T^{n-1} v
$$

for a unique list $\left(c_{0}, \ldots, c_{n-1}\right)$ in \mathbf{C}. Then the characteristic polynomial of T is

$$
p(t)=t^{n}-c_{n-1} t^{n-1}-\cdots c_{1} t-c_{0}
$$

Example 3 Last time we looked at $T\left(x_{1}, x_{2}\right):=\left(x_{2}, x_{1}\right)$. Let $v:=(1,0)$. Then $(v, T v)$ is a basis for V, and $T^{2} v=v$. Thus $c_{0}=1$ and $c_{1}=0$, the $p(t)=t^{2}-1$.
Proof: The equation for $T^{n} v$ says that

$$
p(T)(v)=0
$$

It follows that

$$
p(T)\left(T^{i} v\right)=T^{i} p(T)(v)=0 \text { for all } i
$$

and since the $T^{i} v$'s span $V p(T)=0$. Since the list $\left(v, T v, \ldots T^{n-1} v\right)$ is indepenent, there is no polynomial of smaller degree that annihilates T. Thus p is the minimal polynomial of T, and since its degree is the dimension of $V p$ is also the characteristic polyonmial of T.
Corollary 4 In the cyclic case above, $\operatorname{det}(T)=(-1)^{n+1} c_{0}$.
Example 5 Let $\mathcal{B}=\left(v_{1}, \ldots, v_{n}\right)$ and let T be the operator sending v_{1} to v_{2}, v_{2} to v_{3}, and so on, but then v_{n} to v_{1}. Then the characterisictic polynomial of T is

$$
f_{T}(t)=t^{n}-1 \text { and } \operatorname{det}(T)=(-1)^{n+1}
$$

In this example, our linear transformation just permutes the basis. Our next step is to discuss more general cases of this.

Permutations

Definition 6 A permutation of the set $1, \ldots, n$ is a bijective function σ from the set $\{1, \ldots, n\}$ to itself. Equivalently, it is a list $(\sigma(1), \ldots, \sigma(n))$ such that each element of $\{1, \ldots, n\}$ occurs exactly once. The set of all permutations of length n is denoted by S_{n}.

Examples in S_{5} :
$(2,3,4,5,1)$
$(2,4,3,1,5)$
(2, 4, 5, 1, 3)
The first of these is cycle of length 5 . Note that the second doesn't move 3 or 5 , and can be viewed as a cyclic permutation of the set $\{1,2,4\}$. The last permuation can be viewed as a the product (composition) of a cyclic permutation of $\{1,2,4\}$ and a cyclic permutation of $\{3,5\}$.

Definition 7 The sign of a permuation σ is $(-1)^{m}$ where m is the number of pairs (i, j) where

$$
1 \leq i<j \leq n \text { but } \sigma(i)>\sigma(j)
$$

Here's an easy way to count: Arrange $(1,2, \ldots, n)$ in one row, and $(\sigma(1), \sigma(2), \ldots, \sigma(n))$ in a row below. Draw lines connecting i in the first row to i in the second. Then m is the number of crosses.

Examples:

Example 8 A cycle of length n has $n-1$ crossings, and so its sign is $(-1)^{n-1}$. Note that this is the same as the determinant of the corresponding linear transfomration. d

Theorem 9 If $\sigma, \tau \in S_{n}$, then

$$
\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)
$$

Omit the proof, at least for now.
Definition 10 Let A be an $n \times n$ matrix. Then

$$
\operatorname{det} A:=\sum\left\{\operatorname{sgn}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)}: \sigma \in S_{n}\right\}
$$

Example 11 When $n=2$ there are two permuations, and we get

$$
\operatorname{det}(A)=a_{1,1} a_{2,2}-a_{1,2} a_{2,1}
$$

Proposition 12 Let A and B be $n \times n$ matrices.

1. If A is upper triangular, $\operatorname{det}(A)=\prod_{i} a_{i, i}$.
2. If B is obtained from A by interchanging two columns, then $\operatorname{det}(B)=$ $-\operatorname{det}(A)$.
3. If two columns of A are equal, $\operatorname{det}(A)=0$.
4. $\operatorname{det}(A)$ is a linear function of each column, (when all the other columns are fixed.)
5. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
