
ANALYTIC HYPOELLIPTICITY IN DIMENSION TWO

MICHAEL CHRIST

Abstract. A simple geometric condition, previously known to be sufficient for
analytic hypoellipticity of sums of squares of two vector fields in R

2, is proved to
be necessary for generic vector fields and for various special cases, and to be both
necessary and sufficient for a closely related family of operators.
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1. Introduction

Consider a linear partial differential operator L, representable as a sum of squares∑
j X

2
j of finitely many real vector fields with real analytic coefficients. Under what

conditions is L analytic hypoelliptic? Many examples and some partial results are

known, but the techniques presently available fall far short of resolving the question.

In this paper a nearly complete treatment will be given of the simplest possible case,

that of two vector fields in R
2. The main results are:
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• Formulation of a conjectured necessary and sufficient condition for analytic hy-

poellipticity.

• Proof of sufficiency of this condition.

• Complete reduction of the question of necessity to an eigenvalue problem for

certain ordinary differential operators.

• Solution of generic eigenvalue problems, and hence proof of the conjecture for

generic vector fields.

• Treatment of certain examples.

• Formulation and proof of a necessary and sufficient condition for microlocal ana-

lytic hypoellipticity of (X1 + iX2)◦ (X1− iX2), under a natural pseudoconvexity

hypothesis.

• Introduction of a new geometric invariant, a rational number q, associated to a

pair of vector fields in R
2. This invariant is not one of the usual ones defined in

terms of Lie brackets of the vector fields.

One upshot of this analysis is that analytic hypoellipticity is rare.

Definition. Let {X1, X2}, {Y1, Y2} be two pairs of real vector fields with real analytic

coefficients, defined in a neighborhood of a point p. We say that

span{X1, X2} ≡ span{Y1, Y2}

in a neighborhood U of p if each Xj may be expressed as a linear combination, with

analytic coefficients, of the Yi, and conversely each Yi may be so expressed in terms

of the Xj, in U .

Let X1, X2 be real vector fields with Cω coefficients, defined in a neighborhood of

p ∈ R
2. Suppose that the Lie algebra generated by them spans the tangent space at

p.

Conjecture 1.1. L is analytic hypoelliptic in some neighborhood of p if and only if

there exists a system of coordinates (x, t) with origin at p, in which

span{X1, X2} ≡ span{∂x, xm−1∂t}(1.1)

in some neighborhood of the origin, for some m ≥ 1.

That (1.1) implies analytic hypoellipticity is very well known in the elliptic case

m = 1 and symplectic case m = 2. If a point p0 is fixed, then within the class of

all pairs of Cω vector fields for which X1, X2, [X1, X2] are linearly dependent at p0

but which satisfy the bracket hypothesis at p0 to some fixed order, the condition of

Conjecture 1.1 is violated generically. On the other hand, for any pair of vector fields
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satisfying the bracket hypothesis, the set of points p ∈ R
2 at which the condition of

Conjecture 1.1 fails to hold is discrete.

Theorem 1.2. Suppose that for some m ≥ 1 there exist coordinates (x, t) in a neigh-

borhood U of 0 in which span{X1, X2} ≡ span{∂x, xm−1∂t}. Then X2
1 +X2

2 is analytic

hypoelliptic in U .

This is a special case of a theorem of Grušin [13]. We include a proof in Section 7

in order to show how it follows from the same point of view, and from a subset of the

machinery, that we will develop in demonstrating nonhypoellipticity in other cases.

With this result in hand, our aim is to prove that analytic hypoellipticity fails in all

nonelementary cases.

A few definitions are required before our main results can be properly formulated.

The Lie algebra generated by X1, X2 is always assumed to span the tangent space.

By a normalized homogeneous polynomial of degree m − 1 we will mean a function

Q(x, z) of the form

Q(x, z) = xm−1 +
m−3∑
j=0

cjz
m−1−jxj,(1.2)

for some m ≥ 1, where each cj ∈ R.1

Definition. Two normalized homogeneous polynomials Q,P of degree m − 1 are

equivalent if there exists a nonzero real constant c such that for all (x, t),

P (x, t) = Q(x, ct).

Define m = m(p) to be the type of the set {X1, X2} at p. This invariant is 1 if the

vector fields are linearly independent at p, and otherwise is defined to be the smallest

integer such that X1, X2 together with all of their iterated Lie brackets having m or

fewer factors span the tangent space to R
2 at p. Denote by Q

+ the set of all positive

rational numbers.

The following lemma will be proved in Section 2.

Lemma 1.3. Suppose that X1, X2 are real vector fields with Cω coefficients defined

near p ∈ R
2. Let m ≥ 1 be their type at p. Suppose that there do not exist coordinates

(x, t) with origin at p such that span{X1, X2} ≡ span{∂x, xm−1∂t} in a neighborhood

of 0. Then there exist q ∈ Q
+, coordinates (x, t) with origin at p, and an analytic

1If m < 3 then the sum over j is taken to be empty.
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function Θ̃(x, t) of the form

Θ̃(x, t) = xm−1 +
m−3∑
j=0

βj(t)x
j

such that near 0,

span{X1, X2} ≡ span{∂x, Θ̃(x, t)∂t}

with the following properties: Each βj ∈ Cω is real-valued, βj(0) = 0, each βj(t) =

cjt
(m−j−1)q(1 +O(|t|δ)) for some δ > 0, and at least one coefficient cj is nonzero.

The quantity q is independent of the coordinate system used and choices made in its

definition. The polynomial Q(x, z) = xm−1 +
∑m−3

j=0 cjz
m−j−1xj is likewise invariant,

modulo the equivalence relation defined above.

Note that necessarily cj = 0 whenever the exponent (m− j − 1)q is not an integer.

To a pair (L, p), where L = X2
1 +X2

2 and p ∈ R
2, we associate a family of ordinary

differential operators

Lz = −∂2
x +Q2(x, z), (x, z) ∈ R× C(1.3)

depending polynomially on the complex parameter z, where Q is a member of

the equivalence class of normalized homogeneous polynomials associated to L via

Lemma 1.3. We say that two subsets S, S ′ of C are equivalent if there exists a

nonzero real number γ such that S ′ = γS = {γζ : ζ ∈ S}, and denote by [S] the

equivalence class of S.

Definition.

NE(L, p) =
[
{z ∈ C : there exists 0 6= f ∈ S(R) satisfying Lzf ≡ 0}

]
.(1.4)

Thus NE(L, p) is an equivalence class of subsets of C, which depends only on the

equivalence class of Q. We shall speak of it as if it were a genuine set, rather than an

equivalence class. When we are discussing a family of ordinary differential operators

Lz of the form (1.3), not necessarily associated to any partial differential operator,

we define E(Q) = {z ∈ C : there exists 0 6= f ∈ S(R) satisfying Lzf ≡ 0}; this is a

set, not an equivalence class.

It is a general principle that, at least for certain classes of partial differential

operators, analytic hypoellipticity is linked to global eigenvalue problems. In the

present context this link may be formulated rigorously, as follows.

Theorem 1.4. Suppose that L is a sum of squares of two real, Cω vector fields in

R
2 satisfying the bracket hypothesis. If NE(L, p) is nonempty, then L is not analytic

hypoelliptic in any neighborhood of p.
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Conjecture 1.5. If Q is a normalized homogeneous polynomial of degree m−1 ≥ 1,

then E(Q) = ∅ if and only if Q(x, z) ≡ xm−1.

Three pieces of evidence will be offered to support this conjecture. Firstly, in

Section 5 the analogous assertion for a family of ordinary differential operators that

is formally very similar to Lz will be formulated and proved. Secondly, representative

special cases, as listed in Proposition 1.7, will be treated. Thirdly, the conjecture will

be proved to be valid for generic Q.

The following notion of genericity is natural in this discussion. Recall that a

subset E of C
d is said to be pluripolar if there exists a nonconstant plurisubharmonic

function h : C
d 7→ [−∞,∞], satisfying h ≡ −∞ on E. A subset of R

d is said

to be pluripolar if it is pluripolar as a subset of C
d. We identify the set of all

normalized homogeneous polynomials Q of degree m− 1 with R
m−2 ⊂ C

m−2 via the

correspondence ζ 7→ Qζ(x, z) = xm−1 +
∑m−3

j=0 ζj+1z
m−1−jxj. In Section 5 it will be

shown that Conjecture 1.5 is valid for generic Q, in this sense. This and Theorem 1.4

together have the following consequence.

Theorem 1.6. For each m ≥ 3, there exists a pluripolar set Bm ⊂ R
m−2 such that

whenever the pair {X1, X2} is of type m at p and some normalized homogeneous

polynomial Q associated to L belongs to R
m−2\Bm, L fails to be analytic hypoelliptic

in any neighborhood of p.

The following is a list of examples for which it is relatively easy to show that E(Q)

is indeed nonempty.

Proposition 1.7. Let Q(x, z) = xm−1 − zkxm−k−1. If at least one of the following

conditions holds, then E(Q) 6= ∅, and consequently for any positive integer r and for

either choice of the ± sign,

L = ∂2
x +

(
[xm−1 ± trxm−k−1]∂t

)2

is not analytic hypoelliptic in any neighborhood of 0 :

• m/k is not an integer

• m is odd

• k is even

• m is divisible by 4.

We turn now to the analysis of the closely related operators

L = (X1 + iX2)(X1 − iX2) + c1X1 + c2X2 + c3

where the cj are Cω, complex valued coefficients; the lower order terms c1X1 +c2X2 +

c3 play no essential role. These are lower-dimensional analogues of the operators
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∂̄b∂̄
∗
b which arise on three-dimensional CR manifolds, and it is natural to impose a

supplemental hypothesis.

Definition. {X1, X2} is a pseudoconvex pair in a neighborhood of p ∈ R
2 if either

X1, X2 span R
2 at p, or they are dependent at p and there exist a real, smooth vector

field T transverse to span{X1, X2} at p, and smooth coefficients h, b1, b2 such that

[X1, X2] ≡ hT + b1X1 + b2X2 and h does not change sign in some neighborhood of p.

This condition is clearly independent of T and of the choice of basis for span{X1, X2}.
However, choosing T does not uniquely determine the coefficients h, bj.

If X1, X2 are linearly independent at p then L is elliptic, hence analytic hypoel-

liptic, near p. In the linearly dependent case, assuming the bracket hypothesis to

be satisfied, let (x, t) be a coordinate system with the properties of Lemma 1.3. Let

(ξ, τ) be Fourier variables dual to (x, t). The characteristic variety Σ of L is near

0 ∈ R
2 a trivial line bundle over the analytic variety V = {(x, t) ∈ R

2 : Θ̃(x, t) = 0}
consisting of all points in the base space at which X1, X2 are dependent 2. Restricting

attention to a neighborhood of 0 in which V is connected, Σ splits in a unique way

as a union of two half line bundles Σ±, where each half line has vertex at ξ = τ = 0.

It will be shown in Section 8 that exactly one of these two, denoted Σ+, has a conic

neighborhood Γ+ in which the principal symbols σ1 of the vector fields satisfy

σ1(i[X1, X2]) = µ+ a1σ1(iX1) + a2σ1(iX2)

for some functions µ, a1, a2 such that µ ≤ 0. From this it is straightforward to

deduce, following the method of Kohn [15] and exploiting the bracket hypothesis and

G̊arding’s inequality, that L is microlocally C∞ hypoelliptic in Γ+.

Our final result characterizes microlocal analytic hypoellipticity of L in Γ+. Denote

by WFa(u) the analytic wave front set, as defined in [20].

Theorem 1.8. Assume X1, X2 are linearly dependent at p. Under the hypotheses of

finite type and pseudoconvexity,

WFa(u) ∩ Γ+ ⊂ WFa(Lu) ∩ Γ+ for all distributions u

if and only if there exist m ≥ 2 and coordinates (x, t) with origin at p such that

span{X1, X2} ≡ span{∂x, xm−1∂t}

in a neighborhood of 0.

2The hypotheses of pseudoconvexity and finite type force V to have real dimension one.
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Assuming pseudoconvexity, L will not be microlocally analytic hypoelliptic in any

conic neighborhood of Σ−, at least in the special case where L = (X1+iX2)(X1−iX2).

Indeed, the theorem of Trepreau [25] asserts that (X1− iX2) is not microlocally ana-

lytic hypoelliptic there, hence the composition cannot be. The proof of Theorem 1.8

will be outlined in Section 8.

The principal results of this paper were announced in [4]. The invariant q is already

ubiquitous in our estimates, but in certain special cases has a deeper significance in

terms of Gevrey class hypoellipticity, outlined in [4].

The technique used here to reduce analytic (non)hypoellipticity to eigenvalue prob-

lems for ordinary differential equations is identical to that used by the author in

establishing a counterexample to global analytic regularity [3]; only the details of the

formulas must be changed. Furthermore, various lemmas are contained, at least im-

plicitly, in earlier works [5],[6],[8]. Therefore this paper is not entirely self-contained.

2. Coordinates and canonical forms

In this section we prove Lemma 1.3. Assume that X1, X2 are linearly dependent

at p ∈ R
2. The Lie bracket hypothesis ensures that at least one of X1, X2 does not

vanish at p, so there exists a Cω coordinate system (x, t) with origin at p in which

span{X1, X2} ≡ span{∂x, a(x, t)∂t} for some a ∈ Cω. By the Weierstraß preparation

theorem, this span is in turn equal to the span of ∂x and Θ̃(x, t)∂t, for some Θ̃ ∈ Cω

of the form

Θ̃(x, t) = xm−1 +
m−2∑
j=0

βj(t)x
j

for some m ≥ 1, where each βj ∈ Cω is real-valued and βj(0) = 0. Matters may

be further reduced to the case where βm−2 ≡ 0 by a change of variables (x, t) 7→
(x− (m− 1)−1βm−2(t), t), and we shall always do so. Thus

Θ̃(x, t) = xm−1 +
m−3∑
j=0

βj(t)x
j.(2.1)

From the expression for Θ̃ one finds that the quantity m defined in this way equals

the type as defined in Section 1.

Define τj to be the order of vanishing of βj at t = 0, that is, βj(t) = djt
τj +O(tτj+1)

for some dj 6= 0.



8 MICHAEL CHRIST

Definition.

q =

{
∞ if each βj vanishes identically

minj τj/(m− 1− j) otherwise.

The lowest order part of Θ̃ will be denoted by Θ.

Definition. If q <∞,

Θ(x, t) = xm−1 +
m−3∑
j=0

cjt
(m−1−j)qxj(2.2)

where {
cj = 0 if (m− 1− j)q > τj

βj(t) = cjt
(m−j−1)q(1 +O(t)) if (m− 1− j)q = τj.

If q =∞ then Θ(x, t) ≡ Θ̃(x, t) ≡ xm−1. In either case, the normalized homogeneous

polynomial Q associated to L is

Q(x, z) = xm−1 +
m−3∑
j=0

cjz
m−1−jxj.

If m = 2 then necessarily q =∞, and L is analytic hypoelliptic by the well known

theorems on the symplectic case.

To complete the proof of Lemma 1.3, it remains only to show that q,Q are invariant

in the required sense. Assume that {X1, X2} is of finite type, but is linearly dependent

at the origin. Let (x, t), Θ̃, q and Θ be as defined above. Denote by (y, s) some

other system of coordinates, with the same origin as (x, t). We regard y, s both as

coordinates, and as functions of (x, t).

The type m at 0 is an invariant, being intrinsically defined as 1 if X1, X2 are

independent at 0, and otherwise as the minimal length of any Lie bracket of X1, X2

that is not in their span at 0. Suppose that the span of {X1, X2} equals the span of

{∂y, Φ̃(y, s)∂s} in a neighborhood of 0, and that Φ̃ = ym−1 +
∑

j≤m−3 γj(s)y
j where

each γj(0) = 0. Then Φ̃(y, s) = h(y, s)Θ̃(x, t) for some analytic function h that does

not vanish at 0. Our task is to show that the polynomial Φ associated to Φ̃ as in

(2.2) is identical to Θ.

Observe that s = ct+O(t2, xt, xm) for some c 6= 0. Indeed, consider any monomial

D = V1V2 . . . Vn where each Vi has smooth coefficients and belongs to the span of

X1, X2 at every point of a neighborhood of 0. To avoid confusion of notation define

a function f by f(x, t) = s. If n < m then D(f) must vanish at the origin, as is

seen by writing each Vi as a linear combination of ∂y and of Φ̃(y, s)∂s. Choosing D
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to equal ∂nx in turn for each n < m forces s = f(x, t) to have the required form for

some constant c. Since the differential of f cannot vanish, c must be nonzero.

The situation is symmetric, so we have likewise that t = cs + O(s2, ys, ym) for

some nonzero c. A further consequence is that x = ay + O(s, ys, y2) for some a 6= 0.

Consider first the case where x = ay+ bsr +O(y2, ys, sr+1) for some r ≥ 1 and b 6= 0.

Consider the subcase where r < q. To each monomial yαsβ assign weight α+r−1β.

Expand h · Θ̃ as a formal Taylor series in powers of y, s at 0, and consider the

weights of those monomials in this expansion that might have nonzero coefficients.

For 0 ≤ j ≤ m− 3,

xm−j−1 = (ay + bsr +O(y2, ys, sr+1))m−j−1.

When this is expanded, no terms of weight < m − 1 − j arise, and the sum of

all terms of weight equal to m − 1 − j is (ay + bsr)m−j−1. Since βj(t) = O(tjq),

each monomial in its expansion has weight > jq/r, and hence each monomial in the

expansion of βj(t)x
m−j−1 has weight ≥ (m− 1 − j) + jq/r, which is strictly greater

than m − 1. Consequently the same goes for the expansion of h · βj(t)xm−j−1, and

similar reasoning gives the same conclusion for (h − h(0)) · xm−1. Finally xm−1 =

(ay + bsr)m−1 plus monomials of weights strictly greater than m − 1, and hence

h · xm−1 = h(0)(ay + bsr)m−1 plus monomials of weights > m − 1. Thus in the

Taylor expansion of Φ̃ = hΘ̃, no terms of weight < m − 1 occur, and the sum of

all monomials of weight m− 1 is exactly h(0)(ay + bsr)m−1. Therefore if we expand

Φ̃ instead in powers of y with coefficients depending on s, the coefficient of ym−2

must equal (m − 1)am−2bh(0)sr + O(sr+1). The numerical factor (m − 1)am−2bh(0)

is nonzero, and therefore Φ̃ cannot be a normalized polynomial of degree m − 1 in

(y, s), a contradiction. Thus r cannot be less than q.

If r = q, the same reasoning leads to the conclusion that again, no monomials of

weights< m−1 occur, and that the sum of all monomials of weightm−1 is h(0)Θ(ay+

bsq, cs). The coefficient of ym−2 in this polynomial is still (m− 1)am−2bh(0)sq, so the

same contradiction is reached.

The only remaining cases are where either r > q, or x = ay + O(y2, ys, sN) for all

N . Define the weight of any monomial yαsβ now to be α + q−1β. Then the same

reasoning as above leads to the conclusion that no monomials of weight < m − 1

occur with nonzero coefficients in the Taylor expansion of Φ̃, and moreover that the

sum of all terms of weight m− 1 equals h(0)Θ(ay, cs).

Writing Φ̃(y, s) = ym−1 +
∑

j≤m−3 γj(s)y
j, it follows that γj(s) = O(s(m−1−j)q) for

all j. Therefore if q̃ denotes the quantity obtained by applying the definition of q in
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the coordinates (y, s), we find that q̃ ≥ q. The situation is symmetric, so likewise

q ≤ q̃.

3. Analytic preliminaries

Many works establishing the failure of various operators L to be analytic hypoel-

liptic have been based on the construction of one-parameter families of solutions, or

approximate solutions, of Lu = 0, which violate certain a priori inequalities implied

by analytic hypoellipticity. The proof of Theorem 1.4 takes an alternative course

introduced in [3]; it is a proof by contradiction, rather than by contraposition. We

suppose L to satisfy the hypotheses of the theorem, and to be analytic hypoelliptic.

A general principle based on the closed graph theorem, Lemma 3.1, asserts that if L

is analytic hypoelliptic and satisfies mild auxiliary hypotheses then for each analytic

datum F there exists a solution G of LG = F near a point x0, satisfying certain

bounds in terms of F .

Instead of constructing approximate solutions, we will prescribe a particular one-

parameter family of data Fλ, and will consider the exact solutions Gλ of LGλ = Fλ
guaranteed by Lemma 3.1. These solutions are not constructed by comparing L to

some model operator and using an Ansatz plus correction terms, or by other means,

and consequently little is known about them at the outset of the analysis. The

equation LGλ = Fλ and the a priori bounds of Lemma 3.1 will be shown to imply

stronger bounds, from which it will be deduced that Gλ is in fact approximated

in a certain region by the solution of a related model equation. By combining this

approximation with the a priori bounds we will deduce that Gλ must have an isolated

singularity at a point zλ which tends to 0 as λ→∞, and which takes the form ζλ−r

where r > 0 is determined by the invariants m, q and ζ is any solution of an associated

nonlinear eigenvalue problem, the existence of such a solution being a hypothesis of

Theorem 1.4. This will contradict the uniformity of the region Ũ in Lemma 3.1.

The following lemma is the starting point. Results of this type originate in work of

Olĕınik and Radkevič [19]; see the proof of Theorem 1 of [19], or that of Lemma 4.1

of [3] A different kind of result in the same spirit was introduced by Métivier [18].

Lemma 3.1. Let L be a locally solvable, C∞ hypoelliptic linear partial differential

operator. Suppose that L is analytic hypoelliptic in some neighborhood of 0. Then

there exist open sets U ⊂ R
2 and Ũ ⊂ C

2 containing 0 such that for any N there
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exist C,M <∞ such that for every λ ≥ 1, there exists Gλ ∈ C∞(U) satisfying

LGλ = Fλ

‖Gλ‖CN (U) ≤ CλM

Gλ extends to a holomorphic function in Ũ ,

and

|Gλ(x, t)| ≤ CλMeCλ
m| Im(x,t)| for all (x, t) ∈ Ũ .

Fix now any operator L that satisfies the hypotheses of Theorem 1.4. Adopt

coordinates (x, t) as described in Lemma 1.3. Let m be the type at p = 0. Assume

that L is not elliptic at 0, and moreover that q <∞, which implies that m ≥ 3. To

simplify notation let E = E(Q) = NE(L, 0). Let E1/q be the set of all q-th roots of

elements of E(Q); recall that q is rational.

Write

L = P (x, t, ∂x, Θ̃(x, t)∂t)

where P is a Cω function of (x, t) and is an elliptic polynomial of degree 2 with

respect to ∂x, Θ̃∂t. More concretely,

L =
(
a1,1∂x + a1,2Θ̃∂t

)2
+
(
a2,1∂x + a2,2Θ̃∂t

)2

for certain real valued, Cω coefficients ai,j, where the two by two matrix with entries

ai,j(x, t) is nonsingular for every (x, t) sufficiently close to 0.

Fix an entire holomorphic function Ψ of one complex variable, not identically zero,

satisfying Ψ(z) = O(exp(C|z|m)) for all z ∈ C and Ψ(z) = O(exp(−|z|m)) for all z

in some conic neighborhood of R; such functions exist for each m [11]. When m is

even, it suffices to set Ψ(z) = exp(−Czm).

Denote by a, b ∈ R constants to be chosen in the course of the proof of Theorem 1.4,

and set ψ(x) = eiaxΨ(x− b). For each large λ ∈ R
+ set

Fλ(x, t) = eiλ
mtψ(λx).

Suppose L to be analytic hypoelliptic in some neighborhood of the origin. As is

well known, the bracket hypotheses implies that L satisfies a subelliptic estimate

and hence is locally solvable. Invoke Lemma 3.1 to obtain solutions Gλ(x, t) of

LGλ = Fλ in some fixed neighborhood of the origin in C
2, for all positive real λ, with

|Gλ(x, t)| ≤ C exp(Cλm) in that neighborhood as λ→ +∞.

Set

vλ(x, t) = e−iλ
mtGλ(x, t),
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and

y = λx, s = λ1/qt.(3.1)

The bound C exp(Cλm) is also satisfied by vλ, and hence by Cauchy’s inequalities is

satisfied by each of its partial derivatives, with constants C depending on the order

of the derivative but not on λ. The equation satisfied by vλ is

(e−iλ
mt ◦ L ◦ eiλmt)vλ(x, t) = ψ(λx) = ψ(y).

Lemma 3.2.

λm−1Θ̃(λ−1y, λ−1/qs) = Θ(y, s) +Rλ(y, s)

where for each ε > 0 there exist δ > 0 and C <∞ such that for all sufficiently large

λ ∈ R
+, for all |y| ≤ λ1−ε and s in any fixed complex neighborhood of 0, for any

α, β ≥ 0,

|∂αy ∂βsRλ(y, s)| ≤

{
Cλ−δ(1 + |y|)m−1−α if m− 1− α ≥ 0

Cλ−δ if m− 1− α < 0.

This follows directly from the fact that Θ̃ = Θ plus terms of higher weight.

Define

Bλ = λ−2e−iλ
mt ◦ L ◦ eiλmt.

Thus

Bλ = λ−2P
(
λ−1y, λ−1/qs, λ∂y, Θ̃(λ−1y, λ−1/qs)(iλm + λ1/q∂s)

)
= P

(
λ−1y, λ−1/qs, ∂y, λ

−1Θ̃(λ−1y, λ−1/qs)(iλm + λ1/q∂s)
)

= P
(
λ−1y, λ−1/qs, ∂y, λ

−m(Θ +Rλ)(y, s)(iλ
m + λ1/q∂s)

)
= P

(
λ−1y, λ−1/qs, ∂y, i(Θ +Rλ)(1− iλ−p∂s)

)
where

p = m− q−1.(3.2)

Since q−1 equals (m − 1 − j)/τj for some 0 ≤ j ≤ m − 3, and since each τj ≥ 1, we

have q−1 ≤ m− 1− j ≤ m− 1 and hence3 p ≥ 1. Setting

uλ(y, s) = λ2vλ(x, t)(3.3)

we arrive at the equation

Bλuλ(y, s) = ψ(y).(3.4)

3In the particular case treated in [3], p was equal to 1. The main difference between the proof of
Theorem 1.4 and the analysis of [3] is merely that λ is systematically replaced by λp.
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Define

As = P (0, 0, ∂y, iΘ(y, s)).(3.5)

Our plan is essentially to analyze the equation Bλuλ = ψ by a Neumann series

argument, writing formally B−1
λ =

∑∞
0 (−1)j[A−1

s (Bλ − As)]jA−1
s . Thus we require

bounds on both A−1
s and Bλ − As.

The remainder of this section summarizes properties of A−1
s . The operator As

may be regarded in either of two ways, as an ordinary differential operator, acting on

functions of y and depending on the parameter s ∈ C, or as acting on functions of both

variables (y, s). For the present we view it in the former light. E1/q = NE(L, 0)1/q

is thus the usual set of nonlinear eigenvalues for the family of ordinary differential

operators ζ 7→ Aζ .

Set 〈x〉 = (1 + |x|2)1/2 for any x ∈ C. For ρ ∈ R and k ∈ {0, 1, 2} consider

the Sobolev space Hk
ρ = Hk

ρ(R) of (equivalence classes of) measurable functions

f : R 7→ C for which the following norms are finite:

‖f‖2
H0
ρ

=

∫
R
|f(x)|2 〈x〉−2(m−1) eρ|x|

m

dx

‖f‖2
H1
ρ

=

∫
R

(
〈x〉−2(m−1)|∂xf |2 + |f |2

)
eρ|x|

m

dx

‖f‖2
H2
ρ

=

∫
R

(
〈x〉−2(m−1)|∂2

xf |2 + |∂xf |2 + 〈x〉2(m−1)|f |2
)
eρ|x|

m

dx.

Likewise for any open set D ⊂ C define the spaces Hk
ρ(R × D) to consist of all

(equivalence classes of) functions of (x, z) ∈ R×D that are holomorphic with respect

to z, for which the following norms are finite:

‖f‖2
H0
ρ

=

∫∫
R×D
|f(x)|2 〈x〉−2(m−1) eρ|x|

m

dx dzdz̄

‖f‖2
H1
ρ

=

∫∫
R×D

(
〈x〉−2(m−1)|∂xf |2 + |f |2

)
eρ|x|

m

dx dzdz̄

‖f‖2
H2
ρ

=

∫∫
R×D

(
〈x〉−2(m−1)|∂2

xf |2 + |∂xf |2 + 〈x〉2(m−1)|f |2
)
eρ|x|

m

dx dzdz̄.

Lemma 3.3. For any normalized homogeneous polynomial Q having real coefficients,

the set E(Q) is discrete, and E(Q) ∩ R = ∅ = (E(Q)1/q) ∩ R.

Proof. That E(Q)∩R = ∅ follows from positivity of the ordinary differential operator,

for ζ ∈ R. Indeed, for any f in the Schwartz class,∫
R
(−∂2

xf +Q2(x, ζ)f) · f̄ =

∫
R
[|f ′|2 +Q(x, ζ)2|f |2] dx ≥ cζ‖f‖2

L2(R),
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because Q has real coefficients and does not vanish identically as a function of x for

any ζ. Hence E ∩ R = ∅. The same reasoning applies to the set E1/q of nonlinear

eigenvalues associated to the family of operators Az, because Θ(x, z) is likewise real

valued whenever x, z are real.

As was proved in [5] for similar families of operators, E(Q) is equal to the set of all

zeros of an entire holomorphic function; see also Section 6 below. Since E(Q) 6= C,

E(Q) must be discrete.

Lemma 3.4. For each compact set K ⊂ C\E1/q there exists r > 0 such that for

every ρ ∈ [−r, r] and ζ ∈ K, Aζ : H2
ρ 7→ H0

ρ is an isomorphism, whose inverse is

bounded uniformly in ζ ∈ K, |ρ| ≤ r.

Proof. This follows from the method of [3], once it is shown that the (two dimensional)

nullspace of Aζ contains no functions that are O(exp(−δ|x|m)) for some δ > 0, since

any function in the nullspace of Aζ either decays at such a rate as |x| → ∞, or tends

to ∞ in modulus as x → +∞ or as x → −∞. The hypothesis that K does not

intersect E1/q means that ∂2
x −Θ(x, ζ)2 has no such solutions, for any ζ ∈ K.

To relate Aζ to this operator, write Aζ = α∂2
x + iβ(∂x ◦ Θ(x, ζ) + Θ(x, ζ)∂x) −

γΘ(x, ζ)2 where α, β, γ ∈ R, α, γ are positive, β2 < αγ, and Θ denotes both a function

and the operator defined by multiplication by that function. Fix a polynomial R(x, z),

with real coefficients, satisfying ∂R/∂x = Q(x, z), and consider

eiβR(x,ζ)/α ◦ Aζ ◦ e−iβR(x,ζ)/α = α∂2
x + (α−1β2 − γ)Θ(x, ζ)2.

The coefficient α−1β2 − γ is negative. Dilating both variables x, ζ by appropriate

factors and multiplying the operator by a constant reduces it to ∂2
x −Θ(x, ζ)2.

Now the factor exp(iβR(x, ζ)/α) may not be a bounded function of x when ζ is not

real, but since R has real coefficients and β/α is real, this factor and its inverse are

O(exp(C|x|m−2)) for ζ in any compact set and x ∈ R. Therefore since ∂2
x −Θ(x, ζ)2

has no solutions bounded by exp(−δ|x|m) as x → ±∞, no matter how small the

exponent δ, neither has Aζ .

The proofs of the remaining lemmas of this section are essentially identical to those

in Section 3 of [3], and will not be repeated here. Define Ψa,b(x) = exp(iax)Ψ(x− b).

Lemma 3.5. Suppose that Ψ is a Schwartz function that does not vanish identically.

For each ζ0 ∈ E1/q, for any circle Γ centered at z0 whose closure contains no other

points of E1/q, there exist σ ∈ {0, 1, 2, . . . }, a, b ∈ R and ϕ ∈ C∞0 (R) such that∫
R

∮
Γ

ϕ(x)A−1
ζ Ψa,b(x) ζσdζ dx 6= 0.
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The proof relies on the fact that the span of all functions Ψa,b is dense in L2(R).

Otherwise it is essentially the same as the proof of Lemma 3.2 of [3].

For ζ, τ ∈ C define

Aζ,τ = P (0, 0, ∂x, iτΘ(x, ζ))

Then for 0 6= τ in a small conic neighborhood of R,

Aζ,τ = P (0, 0, ∂x, τ
1/miΘ(τ 1/mx, τ 1/mqζ))

= τ 2/mP (0, 0, ∂w, iΘ(w, τ 1/mqζ))

where w = τ 1/mx.

Lemma 3.6. If τ belongs to a sufficiently small conic neighborhood of R then for

any ζ ∈ C, Aζ,τ annihilates some nonzero Schwartz class function if and only if

τ 1/mqζ ∈ E1/q. If τ 1/mqζ /∈ E1/q then Aζ,τ : H2
ρ 7→ H0

ρ is invertible, for all sufficiently

small |ρ|. This holds uniformly for any compact set of such (ζ, τ).

Lemma 3.7. There exists a conic neighborhood of R that is disjoint from E1/q.

4. Necessity: Reduction to eigenvalue problems

This section contains the core of the proof of Theorem 1.4, which asserts that

analytic hypoellipticity fails to hold whenever a set of eigenvalues is nonempty. Recall

that Bλuλ = ψ, and

|uλ|+ |∇uλ|+ |∇2uλ| ≤ λM exp(Cλm| Im(t)|) ≤ exp(C0λ
p)(4.1)

for all |y| ≤ cλ and |s| ≤ C1, for some C0 <∞, where (y, s) ∈ R×C and C1 may be

taken to be as large as we wish provided that λ and C0 are sufficiently large. Here

∇ denotes the gradient in both variables y, s.

Assume that E1/q is nonempty, as hypothesized in Theorem 1.4, and fix any ζ0 ∈
E1/q having strictly negative imaginary part. E = Ē because the coefficients of Q are

real, and E1/q ∩R = ∅, so such a point exists. Define Γ = {|s− ζ0| = r} to be a circle

centered at ζ0, contained in the open lower half plane, such that the intersection of

E1/q with the closed disk bounded by Γ contains only the point ζ0.

Consider (y, s) ∈ R × Γ, and write s = ζ0 + reiθ. When acting on restrictions to

R× Γ of functions holomorphic with respect to s, Bλ takes the form

Bλ = P
(
λ−1y, λ−1/q(ζ0 + reiθ), ∂y, i[Θ +Rλ](1− iλ−p(−ir−1e−iθ∂θ))

)
where Θ + Rλ is evaluated at (y, ζ0 + reiθ) = (y, s). Denote by B∗λ the transpose of

Bλ in L2(R×Γ, dydθ), where functions of s ∈ Γ are identified with periodic functions
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of θ, |θ| ≤ π. Thus

B∗λ = P ∗
(
λ−1y, λ−1/qs,−∂y, i(1− iλ−p(ir−1∂θ ◦ e−iθ)) ◦ [Θ +Rλ]

)
where

P ∗(x, t,−∂x,−∂t ◦ Θ̃) =
(
−∂x ◦ a1,1 − ∂t ◦ Θ̃a1,2

)2
+
(
−∂x ◦ a2,1 − ∂t ◦ Θ̃a2,2

)2
,

and where ai,j denotes also the operator defined by multiplication by the function

ai,j.

Let σ, ϕ be as in Lemma 3.5. The proofs of the next two lemmas will be discussed

at the end of this section.

Lemma 4.1. There exist ρ, δ, ε, C ∈ R
+ such that for each sufficiently large λ ∈ R

+

there exists f : R× Γ 7→ C, supported where |y| ≤ λ1−ε, satisfying∫∫
R×Γ

|B∗λf − sσ(∂s/∂θ)ϕ(y)|2eρ|y|m dy dθ ≤ e−δλ
p

(4.2) ∫∫
R×Γ

(
|f |2 + |∇f |2

)
eρ|y|

m

dy dθ ≤ C(4.3) ∫∫
R×Γ

|f(y, θ)− sσ(∂s/∂θ)A−1
s ϕ(y)|2eρ|y|m dy dθ ≤ Cλ−δ(4.4)

where s = ζ0 + reiθ.

The next lemma is conditional in nature; we will soon see that uλ cannot satisfy

its conclusion, hence must not satisfy its hypotheses.

Lemma 4.2. Suppose that Bλuλ = ψ and that uλ satisfies the bound (4.1). Then

for any C1 <∞ and µ, ε, % > 0 there exists C <∞ such that for all sufficiently large

λ and all |s| ≤ C1,∫
|y|≤λ1−ε

[
|uλ(y, s)|2 + |∇uλ(y, s)|2

]
e−%|y|

m

dy ≤ eµλ
p

.(4.5)

Theorem 1.3 may now be proved, as follows. Suppose that L were analytic hypoel-

liptic in some neighborhood of the origin. Define Fλ as in Section 3, solve LGλ = Fλ
as in Lemma 3.1, and define first uλ and then vλ as was done following Lemmas 3.1

and 3.2, respectively. Then Lemma 4.2 yields a strong bound for uλ. Let f be

an approximate solution for the adjoint operator B∗λ, satisfying the conclusions of

Lemma 4.1. Define

ω =

∫
R

∮
Γ

ϕ(y)uλ(y, s)s
σ ds dy.
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Then ω = 0 since uλ is holomorphic with respect to s. We will prove that

ω = c0 +O(λ−δ) as λ→ +∞(4.6)

for some c0 6= 0 and δ > 0, thus arriving at a contradiction.

Choosing µ in Lemma 4.2 to be less than δ in Lemma 4.1, and % in Lemma 4.2 to

be less than ρ in Lemma 4.1,

ω =

∫∫
R×Γ

[ϕ(y)sσ(∂s/∂θ)]uλ(y, s) dθ dy

=

∫∫
R×Γ

(B∗λf)(y, s)uλ(y, s) dθ dy +O(e−ελ
p

)

for some ε > 0, by (4.2) and (4.5). Because f has compact support with respect to

y and Γ has no boundary, it is permissible to integrate by parts to rewrite the last

line as

ω =

∫∫
R×Γ

f(y, s)Bλuλ(y, s) dθ dy +O(e−ελ
p

).

Note that for each s ∈ C, As is its own transpose. Therefore

ω =

∫∫
R×Γ

f(y, s)ψ(y) dθ dy +O(e−ελ
p

)

=

∫∫
R×Γ

[
sσ(∂s/∂θ)A−1

s ϕ(y)
]
ψ(y) dθ dy +O(λ−δ)

=

∮
Γ

(∫
R
A−1
s ϕ(y) · (AsA−1

s ψ)(y) dy
)
sσ ds+O(λ−δ)

=

∮
Γ

∫
R
ϕ(y)A−1

s ψ(y) dysσ ds+O(λ−δ)

= c0 +O(λ−δ)

where c0 6= 0 by Lemma 3.5.

We next prove Lemma 4.1. It is convenient for B∗λ to be globally defined, on the

Cartesian product of R with a complex neighborhood of Γ. This can be accomplished

as in the first paragraph of the proof of Lemma 5.1 of [3]: Fix a constant ε0 > 0

satisfying

(1− ε0)m > p = m− q−1.(4.7)

Extend the coefficients ai,j(λ
−1y, λ−1/qs) to ãi,j(λ

−1y, λ−1/qs) so that ãi,j(λ
−1y, λ−1/qs)

is identically equal to ai,j(λ
−1y, λ−1/qs) when |y| ≤ λ1−ε0 and is equal to ai,j(0, λ

−1/qs)

when |y| ≥ 2λ1−ε0 , and so that for λ1−ε0 ≤ |y| ≤ 2λ1−ε0 ,

ãi,j(λ
−1y, λ−1/qs)− ai,j(λ−1y, λ−1/qs) = O(λ−1y) = O(λ−ε0)
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and

∂βs ∂
α
y ãi,j = O(λ−α−β/q) for all α, β ≥ 0.

Similarly, Rλ may be extended so that

|∂αy ∂βsRλ| ≤ Cλ−ε0(1 + |y|)max(0,m−1−α)

for all |y| ≤ λ1−ε0 , |s| ≤ C.

Let Λ ∈ R
+ be a large constant to be chosen below, and given any large λ, construct

concentric open annuli Ω0 ⊃ Ω1 ⊃ · · · ⊃ ΩN+1 = Ω ⊃ Γ so that

1. E1/q ∩ Ω0 = ∅,
2. The three sets Ω0,Ω1,Ω are all independent of λ,

3. N ≥ cΛ−1λp, and

4. distance (∂Ωj,Ωj+1) ≥ Λλ−p for all j.

Set φ(y, s) = sσ(∂s/∂θ)ϕ(y) = isσ(s− ζ0)ϕ(y).

Decompose

B∗λ = As +K + E

where

As = P (0, 0, ∂y, iΘ(y, s)),

As +K = P ∗(λ−1y, λ−1/qs,−∂y, iΘ + iRλ).

Thus the remainder E represents all contributions of ∂s. As and K will be regarded

both as ordinary differential operators depending holomorphically on the parameter

s, and as operators acting on functions of (y, s) that are holomorphic with respect to

s.

For all sufficiently small ρ > 0, As : H2
ρ(R) 7→ H0

ρ(R) is an isomorphism, uniformly

for all s ∈ Ω0, by Lemma 3.4. Since A−1
s depends holomorphically on s ∈ C\E1/q, it

follows that As : H2
ρ(R×U) 7→ H0

ρ(R×U) is also an isomorphism for every open set

U ⊂ Ω0, uniformly in ρ, U provided that ρ is sufficiently small.

By Cauchy’s inequality, ∂s : Hk
ρ(R × Ωj) 7→ Hk

ρ(R × Ωj+1) has norm O(Λ−1λp),

uniformly in all parameters, because the distance between the boundaries is at least

Λλ−p, so

λ−p∂s : Hk
ρ(R× Ωj) 7→ Hk

ρ(R× Ωj+1) has norm ≤ CΛ−1 for all j, λ.

Moreover, the norm is O(λ−p) for j = 0, since the distance from ∂Ω0 to ∂Ω1 is inde-

pendent of λ. From this, from the definitions of the norms, and from straightforward

computation there follows the first conclusion of the following lemma.
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Lemma 4.3. The remainder terms K, E satisfy the following bounds.

E : H2
ρ(R× Ωj) 7→ H0

ρ(R× Ωj+1) is O(Λ−1 + λ−ε)

for some ε > 0, as λ→ +∞. For j = 0, it is O(λ−ε). Secondly,

K : H2
ρ(R× Ωj) 7→ H0

ρ(R× Ωj) is O(λ−ε)

for some ε > 0, as λ → +∞. These bounds hold for all |ρ| ≤ ρ0 � 1, uniformly in

λ, j.

The second conclusion follows from the bounds of Lemma 3.2 on Rλ and its deriva-

tives, and the presence of negative powers of λ in the expressions λ−1y, λ−1/qs.

Fix ρ > 0 sufficiently small that Lemma 3.4 applies for all ζ ∈ Ω0. As an approxi-

mate solution to B∗λf ≈ φ define

f =
N∑
j=0

(−1)j[A−1
s (K + E)]jA−1

s φ.

Then

B∗λf − φ = ±[(K + E)A−1
s ]N+1φ.

Lemma 4.3 implies

‖[(K + E)A−1
s ]jφ‖H0

ρ(R×Ωj) ≤ Cjλ−εΛ1−j(4.8)

for all j ≥ 1, and

‖[A−1
s (K + E)]jA−1

s φ‖H2
ρ(R×Ωj) ≤ Cjλ−εΛ1−j.(4.9)

Thus if Λ is chosen to be greater than 2C for the constants C in (4.8) and (4.9), the

fact that N ≥ cΛ−1λp may be used to conclude that

‖B∗λf − φ‖H0
ρ(R×Ω) ≤ C(C/Λ)N ≤ Ce−δλ

p

for some δ > 0. (4.3) follows by summing over j, if Λ is chosen to be sufficiently

large. And

f − A−1
s φ =

N∑
j=1

(−1)j[A−1
s (K + E)]jA−1

s φ = O(λ−δ)

in H2
ρ(R × Ω) norm. Specializing to s ∈ Γ and invoking Cauchy’s inequality to

majorize the L2(Γ) norm by that of L2(Ω), this is (4.4).

This f cannot be expected to have compact support. So fix a cutoff function

η ∈ C∞0 [−1, 1] that is ≡ 1 for |y| ≤ 1/2, and define f̃(y, s) = η(λ−1+ε0y)f(y, s). Then

f̃ has all the required properties if ρ is replaced by ρ/2 and ε0 is sufficiently small.

In particular, f̃ is supported where |y| ≤ λ1−ε0 , in which region the coefficients of
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the modified operator B∗λ agree with those of the original operator Bλ. In each of

the three conclusions of Lemma 4.1, the contribution of f̃ − f , in the L2 norm with

respect to the weight exp(ρ|y|m/2), is O(exp(−cλ(1−ε0)m)) by the bound (4.4) for

f,∇f with respect to the weight exp(ρ|y|m). Since (1− ε0)m > p, this last bound is

� exp(−λp) for large λ.

The proof of Theorem 1.4 is now complete modulo the proof of Lemma 4.2, which

is outlined in Section 9.

5. Nonlinear eigenvalue problems

Assume that Q(x, z) = xm−1 +
∑m−3

j=0 cjz
m−1−jxj where each cj ∈ R, x ∈ R, z ∈ C,

and m ≥ 2. Let Lz = −∂2
x + Q(x, z)2, and recall that E(Q) denotes the set of all

nonlinear eigenvalues of the family of operators Lz. This section contains various

results connected with Conjecture 1.5, which says that E(Q) = ∅ if and only if

Q(x, z) ≡ xm−1.

Lemma 5.1. If Q(x, z) ≡ xm−1 then E(Q) = ∅.

This is implied by other results, for L = ∂2
x + x2(m−1)∂2

t is analytic hypoelliptic by

Theorem 1.2, which by Theorem 1.4 precludes the existence of eigenvalues.

Proof. Lz does not depend on z, and we have already remarked that E(Q) ∩ R is

always empty.

Before discussing the proofs of Theorem 1.6 and Proposition 1.7, we introduce a

closely related class of nonlinear eigenvalue problems for which we are able to prove

the analogue of Conjecture 1.5. Let Q be any normalized homogeneous polynomial,

with real coefficients, of odd degree m− 1. Define

Lz = (∂x +Q(x, z)) ◦ (−∂x +Q(x, z)),

E ′(Q) = {z ∈ C : there exists 0 6= f ∈ S such that Lzf = 0}.

Theorem 5.2. Let Q be a normalized homogeneous polynomial of odd degree m− 1,

with real coefficients. Then E ′(Q) = ∅ if and only if Q(x, z) ≡ xm−1.

Proof. Introduce

P (x, z) =

∫ x

0

Q(y, z) dy.

The function

ψ−z (x) = eP (x,z)

∫ x

−∞
e−2P (y,z) dy
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satisfies Lzψ
−
z ≡ 0, and ψ−z tends rapidly to 0 as x → −∞. On the other hand,

exp(P (x, z)) is a solution of Lz whose modulus tends rapidly to +∞ as x → −∞.

Therefore since Lz has only a two-dimensional nullspace, each solution of Lz either

tends rapidly to ∞ in modulus as x → −∞, or is a scalar multiple of ψ−z . Thus

z ∈ E ′(Q) if and only if ψ−z (x) behaves as a Schwartz function as x→ +∞. Defining

W (z) =

∫
R

exp(−2P (x, z)) dx,

one has

E ′(Q) = {z ∈ C : W (z) = 0}.(5.1)

Indeed, if W (z) 6= 0, then ψ−z (x) ∼ W (z) exp(P (x, z)) tends to ∞ in modulus as

x → +∞. If W (z) = 0 then ψ−z (x) = − exp(P (x, z))
∫∞
x

exp(−2P (y, z))dy, which

tends to 0 as x → +∞. If Q(x, z) = (x − cz)m−1 then a change of the contour of

integration reveals that W (z) = c1 exp(c2z
m) for some constants cj, so W has no

zeros.

Since P is a polynomial of even degree with positive leading coefficient independent

of z, W is clearly an entire holomorphic function. For any z ∈ C,

|W (z)| ≤
∫

R
e−2xm/meC(|z|m−1|x|+|z||x|m−1) dx

≤
∫

R
e−x

m/meC|z|
m

dx

= C ′eC|z|
m

,

so W is of finite order, and its order does not exceed m. Any entire function of finite

order with no zeros must be of the form exp(R(z)) for some polynomial R, so in order

to prove that W must have zeros, it suffices merely to obtain sufficient information

on the asymptotic behavior of W as R 3 z → +∞ to rule out W = eR.

Restrict attention for the remainder of the proof to the case where z ∈ R
+. Sub-

stituting x = zy yields

W (z) = z

∫
R
e−2zmP (y,1) dy.

Define

η = max
x:Q(x,1)=0

−P (x, 1) = max
y∈R
−P (y, 1).

Let x1, . . . xN be those real points at which Q(xj, 1) = 0 and −P (xj, 1) = η. Since

P has even degree, real coefficients, and negative leading coefficient, −P has at least

one global maximum, so there exists at least one such point xj.
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These points determine the asymptotic behavior of W (z) as z → +∞. To compute

the asymptotics choose 0 < δ < 1
2

mini,j |xi − xj|. Then for some ε > 0,∫
R\∪j [xj−δ,xj+δ]

e−2zmP (y,1) dy = O(e2(η−ε)zm)

by straightforward majorization.

For each j, let kj be the smallest integer for which ∂kjP (y, 1)/∂ykj , evaluated at

y = xj, is nonzero. Since −P (y, 1) has a local maximum at xj, each kj must be even,

and the derivative P (kj)(xj, 1) is strictly positive. By the method of real stationary

phase, ∫ xj+δ

xj−δ
e−2zmP (y,1) dy = e−2ηzm

(
c(kj)(z

mP (kj)(xj, 1))−1/kj +O(z−2m/kj)
)
,

where each c(kj) is strictly positive. Defining k = max kj, we find that as R
+ 3 z →

+∞,

W (z) = ce−2ηzmz1−m/k(1 +O(z−ε))(5.2)

for some c, ε > 0. Thus the logarithm of W , restricted to R
+, cannot be a polynomial

unless 1 −m/k = 0. In that event k = m, that is, y 7→ P (y, 1) has a zero of order

m at some xj. Since P is a polynomial of degree m, this is only possible if P (y, 1)

takes the form c(y − xj)m. Thus because of the normalizations already imposed on

Q, Q(y, 1) ≡ ym−1.

Our next result concerns the ordinary differential operators Lz = −∂2
x+Q(x, z)2, for

generic Q. Generalize the setting by permitting the coefficients of Q to be complex,

and the coefficient of xm−2 to be nonzero.4 The definitions of Lz and of E(Q) still

make sense.

4A normalization was carried out in Section 2 to reduce the study of analytic hypoellipticity to
the case cm−2 = 0. A term cm−2zx

m−2 can likewise be eliminated in the eigenvalue theory, as
follows: Suppose that Q(x, z) = xm−1 +

∑m−2
j=0 cjz

m−1−jxj where each cj ∈ R, x ∈ R, z ∈ C,
and m ≥ 2. Define Q̃(x, z) = Q(x − (m − 1)−1cm−2z, z), and let L̃z be the associated family of
Schrödinger operators. If Lζfζ = 0 then fζ extends to an entire holomorphic function of x ∈ C,
and if moreover fζ(x) → 0 as R 3 x → ±∞, then R 3 x 7→ f(x + b) defines a Schwartz function,
for any b ∈ C [10]. Thus f̃(x) = fζ(x− (m− 1)−1cm−2ζ) is a Schwartz function annihilated by L̃ζ .
Therefore there is a one to one correspondence between E(Q) and E(Q̃).
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Proposition 5.3. Suppose that for some n ≥ 1, for each 0 ≤ j ≤ m − 2 there is

given an entire holomorphic function gj : C
n 7→ C. Set

Qζ(x, z) = xm−1 +
m−2∑
j=0

gj(ζ)zm−1−jxj,

Lζz = −∂2
x +Qζ(x, z)2,

and

Eζ = {z ∈ C : there exists 0 6= f ∈ S(R) such that Lζzf = 0}.

Suppose that there exists ζ0 ∈ C
n for which Eζ0 6= ∅. Then

Eζ 6= ∅ for generic ζ,

in the sense that the set of ζ ∈ C
n for which Eζ = ∅ is pluripolar.5

For the normalized homogeneous polynomial Q(x, z) = xm−1 − zm−1, E(Q) is

already known [8] to be nonempty. Therefore, taking n = m−2 and defining gm−2 ≡ 0

and gj(ζ) = ζj for all 0 ≤ j ≤ m− 3 where ζ = (ζ0, . . . ζm−3) ∈ C
m−2, we obtain the

following corollary.

Proposition 5.4. The set of all c = (c0, . . . cm−3) ∈ R
m−2 for which E(Q) = ∅ for

Q = xm−1 +
∑

j≤m−3 cjz
m−1−jxj is pluripolar.

Combining Proposition 5.4 with Theorem 1.4, we deduce Theorem 1.6 as well.

We turn to the detailed analysis of the nonlinear eigenvalue problem for Lz =

−∂2
x + Q(x, z)2, assuming always that Q is normalized, homogeneous, and has real

coefficients. Define P (x, z) =
∫ x

0
Q(y, z) dy.

Lemma 5.5. Suppose that m is even. For each z ∈ C there exist unique entire holo-

morphic functions x 7→ ψ±z (x), depending holomorphically on z and on the coefficients

cj of Q for fixed m, satisfying

Lzψ±z = 0

and {
ψ+
z (x) = e−P (x,z)( x)−(m−1)/2(1 +O(|x|−1)) as R 3 x→ +∞

ψ−z (x) = e−P (x,z)(−x)−(m−1)/2(1 +O(|x|−1)) as R 3 x→ −∞.
(5.3)

Any solution f of Lzf = 0 on the real axis either tends to∞ in modulus as x→ +∞,

or is a scalar multiple of ψ+
z . Likewise any solution either tends to ∞ in modulus as

5I am indebted for this device to a paper of D. Barrett [2]; it is a general idea in spectral theory
[1].
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x → −∞, or is a scalar multiple of ψ−z . For any Q, the asymptotics (5.3) remain

valid for all x in some conic neighborhood of R.

If m is odd then all assertions remain valid if the asymptotics for ψ−z are changed

to

ψ−z (x) = e+P (x,z)(−x)−(m−1)/2(1 +O(|x|−1)) as R 3 x→ −∞.

For each Q there exists C <∞ such that

|ψ+
z (x)|+ |∂xψ+

z (x)| ≤ C exp(C|z|m) for all x ≥ 0

and

|ψ−z (x)|+ |∂xψ−z (x)| ≤ C exp(C|z|m) for all x ≤ 0.

Lemma 5.6. Let Q be fixed. There exists C < ∞ such that for all z ∈ C and all

x ≥ C + C|z|, for k = 0, 1,∣∣∂kxψ+
z (x)− (−1)ke−P (x,z)x−(m−1)/2Q(x, z)k

∣∣ ≤ C
∣∣e−P (x,z)|x|−(m−3)/2Q(x, z)k

∣∣.
The corresponding bound holds for ψ−z (x) for all x ≤ −C − C|z|.

These two lemmas are proved as in [5] and as in the proofs of Lemmas 6.1 and

6.4 below, by rewriting the ordinary differential equation as a first order system,

diagonalizing the system modulo a coefficient matrix that is suitably small for large

|x|, and solving an integral equation. Holomorphic dependence on the coefficients cj
is not addressed in Lemmas 6.1 and 6.4, but follows directly from their proofs.

Central to our analysis is the Wronskian

W (z) = Det

(
ψ+
z ψ−z

∂xψ
+
z ∂xψ

−
z

)
(0).(5.4)

The function W in the proof of Theorem 5.2 may be interpreted as such a Wronskian.

Corollary 5.7. W has the following properties.

1. W depends holomorphically on z and on the coefficients cj of Q.

2. z ∈ E(Q) if and only if W (z) = 0.

3. For each Q there exists a constant C such that |W (z)| ≤ C exp(C|z|m) for all

z ∈ C.

Proof. The first two conclusions follow directly from Lemma 5.5. The third requires

a small additional argument in order to pass from upper bounds on ψ±z at ±C|z|,
respectively, to bounds at 0. Assume |z| to be large, Lemma 5.5 guarantees that

ψ+
z and its first derivative are O(exp(C|z|m)) at x = C|z|, if C is chosen to be

sufficiently large. On the interval [−C|z|, C|z|], the potential Q2(x, z) is O(|z|2(m−1)).
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Therefore |∂2
xψ

+
z | ≤ C|z|2(m−1)|ψ+

z | on this interval. A simple comparison argument

then gives ψ+
z = O(exp(C|z|m)) at x = 0, and likewise for its first derivative. The

same reasoning applies to ψ−z , yielding the desired bound on the Wronskian.

Proof of Proposition 5.3. By the first two conclusions of the preceding lemma, there

exists an entire holomorphic function W (z, ζ) such that for each ζ ∈ C
n, Eζ =

{z ∈ C : W (z, ζ) = 0}. Thus the exceptional set of all ζ for which there exist no

nonlinear eigenvalues z equals the set of all ζ for which z 7→ W (z, ζ) has no zeros.

By hypothesis, there exists at least one ζ0 for which W (z, ζ0) has at least one zero.

Therefore the set of all ζ ∈ C
n for which there are no zeros is pluripolar [1].

6. Analysis of special cases

This section is devoted to the proof of Proposition 1.7. Let Q(x, z) = xm−1 −
zkxm−k−1. W (z) is an entire holomorphic function of zk, so

W(ζ) = W (ζ1/k)

is independent of the choice of k-th root, and hence is also entire holomorphic. By

Corollary 5.7, |W(z)| ≤ C exp(C|z|m/k) for all z ∈ C.

There are now two difficulties. Firstly, a superficial examination of [5],[8] might

lead one to expect a lower bound |W (z)| ≥ c exp(c|z|m) for all z ∈ R, but this is

false6 for Q = x2 + z2. Secondly, whereas the strategy in [5] and other closely related

works was to show that W is an entire function of nonintegral order and hence must

have zeros, it turns out that for the class of examples contemplated in Proposition

1.7, W is indeed an entire function of the expected order m/k, but this order may

be integral. In that case a more refined analysis is required; this same point arose in

the proof of Theorem 5.2 above.

Factor

Q(x, z) = xm−1−k(xk − zk).
As in the proof of Theorem 5.2, the zeros of R 3 x 7→ Q(x, z) are the key to the

asymptotic behavior of W (z), for zk ∈ R. Assume always that zk ∈ R. Then

x 7→ Q(x, z) has two zeros when k is odd, and has either one zero or three, depending

on the sign of zk, when k is even.

The differential equation is ∂2
xψ
±
z = Q(x, z)2ψ±z . Its solutions ψ±z are real valued for

real x, zk. The asymptotics (5.3) imply that ψ+
z (x) is positive and ∂xψ

+
z (x) negative

for all sufficiently large x ∈ R
+, and the differential equation then implies that ψ+

z

6For Q = x2 + z2, W is a polynomially bounded function on the real axis, as follows from the
proof of Lemma 6.4 below, but satisfies the lower bound c exp(c|z|3) on the imaginary axis (by the
proof of Lemma 6.1).
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is a positive, convex, decreasing function of x on the whole real axis. Likewise ψ−z is

positive, convex, and increasing. Consequently

W (z) = ψ+
z (0)∂xψ

−
z (0)− ψ−z (0)∂xψ

+
z (0) > ψ+

z (0)∂xψ
−
z (0).(6.1)

Thus in order to derive a lower bound for W (z), it suffices to derive lower bounds for

ψ+
z and for ∂xψ

−
z at 0. We have P (x, z) = m−1xm − (m− k)−1zkxm−k, so

P (z, z) = (m−1 − (m− k)−1)zm = −c0z
m

where c0 > 0.

Lemma 6.1. There exists c > 0 such that

ψ+
z (z) ≥ exp(czm)

for all sufficiently large z ∈ R
+. If k is even, so that Q(−z, z) = 0, then likewise

∂xψ
−
z (−z) ≥ exp(czm)

for all sufficiently large z ∈ R
+.

Since ψ+
z (z) < ψ+

z (0) and ∂xψ
−
z (−z) < ∂xψ

−
z (0) by monotonicity, these same

bounds hold at x = 0, as well. In particular, the lemma implies thatW (z) ≥ exp(czm)

as z → +∞, when k is even. More generally, it implies such a lower bound for W

whenever we can show that for some finite exponent N , ∂xψ
−
z (0) ≥ z−N as z → +∞.

Proof of Lemma 6.1. The analysis of ψ−z (−z) for even k is completely parallel to the

analysis for ψ+
z (z), so we treat only the latter. Set

σ = (m− 2)/2.

We will prove that for all sufficiently large ρ ∈ R
+, for all x ≥ z + ρz−σ, for k = 0, 1,

∂kxψ
+
z (x) = (−1)kQ(x, z)k−

1
2 e−P (x,z)(1 + o(1)) as ρ→ +∞,(6.2)

uniformly in x, z for all sufficiently large z ∈ R
+. Since |P (z+ρz−σ, z)−P (z, z)| ≤ Cρ

uniformly for z ≥ 1, since Q(z + ρz−σ, z) ≥ cz−N for some finite N , and since ψ+
z is

a decreasing function of x, this would imply that

ψ+
z (z) ≥ ψ+

z (z + ρz−σ) ≥ exp(czm)

for some c > 0 as z → +∞, as desired.

To simplify notation in the proof, write ψ = ψ+
z , Q(x), P (x) for Q(x, z), P (x, z),

and write f ′ for ∂f/∂x. To prove (6.2) set

u =

(
ψ

ψ′

)
, A =

(
0 1

Q2 0

)
(6.3)
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so that u′ = Au. Set

S =

(
1 1

Q− 1
2
Q′/Q −Q− 1

2
Q′/Q

)
for x > z,

in which region Q is always nonzero.

If ρ is chosen to be sufficiently large, then for all sufficiently large z and all x ≥
z + ρz−σ, 0 < Q′(x, z)/Q2(x, z) ≤ ε(ρ) where ε(ρ)→ 0 as ρ→ +∞; this calculation

is contained in the proof of Lemma 6.2 below. We assume always that x ≥ z+ ρz−σ,

where ρ is sufficiently large. S is then clearly invertible, and

S−1 = −1

2
Q−1

(
−Q− 1

2
Q′/Q −1

−Q+ 1
2
Q′/Q 1

)
.

This formal matrix calculation and others below may be found in [6], and the details

will not be reproduced here.

The column vector v satisfies the first order system of equations

v′ = (B + E)v,(6.4)

where

B =

(
Q− 1

2
Q′/Q 0

0 −Q− 1
2
Q′/Q

)
and E is a continuous matrix valued function satisfying

|E| ≤ C(Q′)2/|Q|3 + C|Q′′|/Q2.(6.5)

That is, each entry of E satisfies this upper bound, uniformly in x, z for x ≥ z+ρz−σ

for any fixed ρ, assuming always that z ≥ 1.

Set

w =

(
0

Q−1/2e−P

)
,

and

Λ(x) =

(
Q−1/2eP 0

0 Q−1/2e−P

)
so that Λ′ = BΛ. Define the integral operator

Tf(x) =

∫ ∞
x

Λ(x)Λ−1(y)(Ef)(y) dy,(6.6)

acting on functions f defined on [z + ρz−σ,∞) and taking values in the space of

column vectors with two (real) entries.
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If v satisfies the integral equation

v(x) = w(x)− Tv(x)(6.7)

then it satisfies the differential equation v′ = (B + E)v. Indeed,

v′(x) = (w − Tv)′(x) = w′(x)−
∫ ∞
x

Λ′(x)Λ−1(y)(Ev)(y) dy + (Ev)(x)

= (Bw)(x)−
∫ ∞
x

B(x)Λ(x)Λ−1(y)(Ev)(y) dy + (Ev)(x)

= Bw(x)−B(x)(Tv)(x) + (Ev)(x)

= Bv(x) + Ev(x).

Denote by ε(ρ, z) any quantity that tends to zero as min(ρ, z)→∞; this quantity

is permitted to change from one line to the next.

Lemma 6.2. The remainder coefficient matrix E satisfies∫ ∞
z+z−σ

|E(y)| dy ≤ C <∞,

uniformly as z → +∞. Moreover∫ ∞
z+ρz−σ

|E(y)| dy ≤ ε(ρ, z).

Proof. Write A ∼ B to mean that A,B are positive quantities whose ratio is bounded

above and below by positive constants independent of z, provided that z is sufficiently

large. Assume always that x ≥ z � 1. Then

|Q(x, z)| ∼ xm−2(x− z)

|Q′(x, z)| ≤ Cxm−2

|Q′′(x, z)| ≤ Cxm−3,

where all derivatives indicated are taken with respect to x. Recalling the pointwise

bound (6.5) for E, we obtain∫ ∞
2z

|E(x, z)| dx ≤ C

∫ ∞
2z

[
x2(m−2)−3(m−1) + xm−3−2(m−1)

]
dx ≤ Cz−m.
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Likewise∫ 2z

z+ρz−σ
|E(x, z)| dx ≤ C

∫ 2z

z+ρz−σ

[
x2(m−2)−3(m−2)(x− z)−3 + xm−3−2(m−2)(x− z)−2

]
dx

≤ Cz2−m
∫ 2z

z+ρz−σ
(x− z)−3 dx+ Cz1−m

∫ 2z

z+ρz−σ
(x− z)−2 dx

≤ Cz2−m(ρz−σ)−2 + Cz1−m(ρz−σ)−1

= Cρ−2z0 + Cρ−1z1−m+m
2
−1

≤ ε(ρ, z).

For each x ≥ z + z−σ introduce the norm

‖f‖∗,x = sup
y≥x

Q1/2(y)eP (y)|f(y)|(6.8)

on the space of all continuous 2 dimensional column vector valued functions on [x,∞).

Lemma 6.3. For each ρ ≥ 1, for all x ≥ z + ρz−σ,

‖Tf‖∗,x ≤ Cρ‖f‖∗,x

for all f for which the right hand side is finite, uniformly for all z ≥ 1 and uniformly

in x. Moreover Cρ → 0 as ρ→ +∞.

Proof. Suppose that ‖f‖∗,x ≤ 1. Then

|Tf(x)|

≤
∫ ∞
x

∣∣(Q−1/2(x)eP (x)Q1/2(y)e−P (y) 0

0 Q1/2(x)e−P (x)Q−1/2(y)eP (y)

)∣∣
· |E(y)|Q−1/2(y)e−P (y) dy

≤ Q−1/2(x)e−P (x)

∫ ∞
x

|E(y)|dy

≤ CQ−1/2(x)e−P (x)

by Lemma 6.2, because e−P and Q−1/2 are both decreasing functions of x for x ≥
z.

If ρ is chosen to be sufficiently large, then we find that the map f 7→ w − Tf is a

strict contraction on the space of all continuous functions on [z+ ρz−σ,∞) for which

‖f‖∗,[z+ρz−σ ] is finite. Therefore by the contraction mapping principle, there exists a
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unique solution of the integral equation (6.7) for which this norm is finite. We define

v to be that solution.

It follows from the same reasoning together with the second conclusion of Lemma

6.2 that

|(v − w)(y)| ≤ ε(ρ)Q−1/2(y)e−P (y)(6.9)

for all y ≥ z + ρz−σ, where ε(ρ)→ 0 as ρ→∞.

Defining u = Sv, u satisfies the differential equation u′ = Au. Thus

u = Sv =

(
Q−1/2e−P (1 + ε(ρ))

Q+1/2e−P (1 + ε(ρ))

)
for all x ≥ z+ρz−σ, since |Q′|/Q2 → 0 as ρ→∞ in that region, uniformly for z ≥ 1.

ψ+
z is defined (for large z ∈ R

+) in terms of u by equation (6.3). In particular,

ψ+
z (x) = Q−1/2(x, z)e−P (x,z)(1 + ε(ρ))

for x ≥ z + ρz−σ. At x = z + ρz−σ, this is bounded below by ecz
m

for some c > 0, as

z → +∞. This concludes the proof of Lemma 6.1.

Lemma 6.4. If k is odd then there exist C,N ∈ R
+ such that for all z ≥ 1,

C−1z−N ≤ ψ−z (0) ≤ CzN ,

and the same holds for ∂xψ
−
z (0).

Proof. Consider first the case where m is even. Let B,E,W, S,Λ be as defined in the

proof of Lemma 6.1. Then v′ = (B + E)v. Redefine

Tf(x) =

∫ x

−∞
Λ(x)Λ−1(y)(Ev)(y) dy

and denote by v a putative solution of the integral equation

v = w + Tv.

Redefine

σ = k/(m− k).

We again have ∫ −ρz−σ
−∞

|E(x, z)| dx ≤ Cε(ρ, z).
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Indeed, for z ≥ 1 and x ≤ 0,

|Q(x, z)| ∼ |x|m−k−1(|x|k + zk)

|Q′(x, z)| ≤ C|x|m−k−2(|x|k + zk)

|Q′′(x, z)| ≤ C|x|m−k−3(|x|k + zk).

Thus ∫ −z
−∞
|E(x, z)| dx ≤ C

∫ −z
−∞

[
|x|2(m−2)−3(m−1) + |x|m−3−2(m−1)

]
dx ≤ Cz−m,

while the integral of |E(x, z)| over [−z,−ρz−σ] is majorized by

C

∫ −ρz−σ
−z

[
z2k−3k|x|2(m−k−2)−3(m−k−1) + zk−2k|x|m−k−3−2(m−k−1)

]
dx

≤ Cz−k
∫ −ρz−σ
−z

|x|−m+k−1 dx

≤ Cz−k(ρz−σ)k−m

= Cρk−m.

Redefine

‖f‖∗,x = sup
y≤x
|Q|1/2(y)eP (y)|f(y)|.

Because k is odd, |Q|−1/2e−P is a monotone increasing function on (−∞, 0]. Therefore

for x ≤ 0, for any f with finite ∗, x norm,

|Tf(x)| ≤ ‖f‖∗,x
∫ x

−∞

[
|Q|−1/2(y)e−P (y) + |Q|1/2(x)eP (x)|Q|−1(y)e−2P (y)

]
|E(y)| dy

≤ ‖f‖∗,x|Q|−1/2(x)e−P (x)

∫ x

−∞
|E(y)| dy.

Thus for x ≤ −ρz−σ,

‖Tf‖∗,x ≤ ε(ρ, z)‖f‖∗,x.
Consequently, when ρ, z are both sufficiently large, T is a strict contraction on the

space of all continuous two dimensional column vector valued functions f having

finite ∗,−ρz−σ norms, and so there exists a unique solution with finite norm, v, of

the integral equation v = w + Tv. Moreover ‖v − w‖∗,−ρz−σ ≤ ε(ρ, z).

Defining u = Sv, we have

u =

(
ψ−z
∂xψ

−
z

)
.
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The equation v = w+Tv and bound on Tv = v−w bound obtained in the preceding

paragraph imply that

u =

(
|Q|−1/2e−P · (1 + ε(ρ, z))

|Q|+1/2e−P · (1 + ε(ρ, z))

)
for x ≤ −ρz−σ. At x = −ρz−σ, |Q| ∼ zk|x|m−k−1 ∼ zk−[(m−k−1)k/(m−k)] = zk/(m−k) =

zσ. For −ρz−σ ≤ x ≤ 0 we have Q(x) = O(zσ), so for all such x, |P (x, z)| =

|
∫ x

0
Q(y, z)dy| = O(1). Thus

C−1z−σ/2 ≤ ψ−z (−ρz−σ) ≤ Cz−σ/2,

C−1z+σ/2 ≤ ∂xψ
−
z (−ρz−σ) ≤ Cz+σ/2.

For x ∈ [−ρz−σ, 0] we have a differential inequality

|(ψ−z )′′(x)| ≤ Cz2σψ−z (x).

From a simple comparison argument and the upper bounds for ψ−z and its first de-

rivative at −ρz−σ, it follows that ψ−z (0) = O(z−σ/2) and ∂xψ
−
z (0) = O(zσ/2). On the

other hand, convexity of ψ−z implies that

∂xψ
−
z (0) > ∂xψ

−
z (−ρz−σ) ≥ C−1zσ/2.

The case of odd m is treated in the same way, except that the formulas are changed

as in Lemma 5.5, with P replaced by −P throughout.

Corollary 6.5. For every m ≥ 2 and k ≥ 1, W is an entire holomorphic function

of order exactly m.

Proof. If k is even then

ψ+
z (0) ≥ ψ+

z (z) ≥ ecz
m

,(6.10)

while

∂xψ
−
z (0) ≥ ∂xψ

−
z (−z) ≥ ecz

m

and hence

W (z) > ecz
m

for all large z ∈ R
+. Since |W (z)| ≤ C exp(C|z|m) for all z ∈ C, W has order exactly

m.

If k is odd then (6.10) remains valid, while the lower bound of Lemma 6.4 implies

that as R 3 z → +∞,

W (z) > ψ+
z (0)∂xψ

−
z (0) ≥ C−1z−Necz

m

> eδz
m

for some δ > 0.
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Lemma 6.6. If k is even then there exist C,N ∈ R
+ such that whenever zk ∈ R

−

and |z| sufficiently large,

C−1|z|−N ≤ |W (z)| ≤ C|z|N .

Proof. For x ∈ R and zk ∈ R
−, for k even, |Q(x, z)| ∼ |x|m−k−1(|x|k + |z|k). Both ψ±z

may therefore be treated as was ψ−z in Lemma 6.4, for x ≥ 0 in the case of the plus

sign, and for x ≤ 0 in the case of the minus sign.

Lemma 6.7. For any m ≥ 2 and k ≥ 1,

|W (z)| ≤ C|z|N

for all |z| ≥ 1 such that zk ∈ iR.

Proof. When zk ∈ iR and x ∈ R, |Q(x, z)| ∼ |x|m−k−1(|x|k + |z|k). Now |e−P (x)| ≡
e−x

m/m, so the ∗, x norms are slightly different though they are defined by the same

formal expressions. |e−P | and |Q| are still monotone. The proof is thus nearly iden-

tical to that of Lemma 6.4.

With these lemmas in hand we now prove Proposition 1.7. Any entire holomorphic

function F of finite, strictly positive order either has infinitely many zeros, or takes

the form exp(R) for some polynomial R whose degree equals the order of F . From

Corollary 6.5 we know that in all cases of Proposition 1.7, W is an entire function of

order exactly m/k. Hence if m/k is not an integer, W must have zeros.

Note that whenever k is odd,W is an even function, since ∂2
x and (xm−1−ζxm−k−1)2

are invariant under the substitution (x, ζ) 7→ (−x,−ζ). Consequently if W had no

zeros and hence equalled exp(R) for some polynomial, R would also have to be even,

and hence R would have to have even degree, so m/k would be forced to be even.

Suppose m is odd. If k is even, then m/k is not integral, so W has zeros. If k is

odd, then m/k is odd, and hence by the preceding paragraph, W must have zeros.

Suppose k is even. By Lemma 6.6, |W(ζ)| and its reciprocal have at most polyno-

mial growth as R
− 3 ζ → −∞, while |W(ζ)| ≥ exp(cζm/k) as R

+ 3 ζ → +∞. There

exists no polynomial R of degree m/k such that exp(R(ζ)) behaves in this way, so

W cannot have a polynomial logarithm, hence must have zeros.

Suppose m is divisible by 4. By the preceding paragraph it suffices to examine

the case where k is odd. Then the order m/k of W is also divisible by 4. Suppose

W = exp(R) where R is a polynomial. Then since |W(ζ)| ≥ exp(c|ζ|m/k) for large

ζ ∈ R
+, we have Re(R(ζ)) ≥ c|ζ|m/k for large ζ ∈ R

+, for some c > 0. Since the

degree m/k of R is divisible by 4, this forces Re(R(ζ)) ≥ |ζ|m/k/2 whenever ζ ∈ iR
has sufficiently large modulus. This contradicts Lemma 6.7. The proof of Proposition

1.7 is therefore complete.
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7. Sufficiency

In this section we outline a proof of Theorem 1.2. The method is a straightforward

combination of the FBI transform with a subset of the machinery used in Section 4

to prove the negative results.

Define an FBI transform of any compactly supported function by

Fu(x, t; ξ, τ) =

∫
R2

ei[(x−y)ξ+(t−s)τ ]−|τ |(x−y)2−|τ |(t−s)2 u(y, s) dy ds.(7.1)

It will always be assumed that |ξ| ≤ |τ |. For any point p = (x0, t0; ξ0, τ0) ∈ T ∗R2

with |ξ0| < |τ0|, p belongs to the complement of WFa(u), the analytic wave front set

of u, if and only if there exist ε > 0 and a conic neighborhood Γ of p such that

|Fu(x, t; ξ, τ)| ≤ C exp(−ε|τ |)(7.2)

for all (x, t; ξ, τ) ∈ Γ [20]. Fix a coordinate system in which the span of {X1, X2}
coincides with the span of {∂x, xm−1∂t}. Suppose that Lu ∈ Cω in some neighbor-

hood U of 0; we wish to prove that u ∈ Cω in the intersection of U with a fixed

neighborhood U0 of 0. Analyticity at other points follows by ellipticity where x 6= 0,

and by a change of coordinates to reduce the case x = 0 to x = t = 0. Since L is C∞

hypoelliptic, u ∈ C∞ near 0.

The analytic wave front set of u is contained in the union of the characteristic

variety Σ of L with the analytic wave front set of Lu [20],[14]. In our coordinates, Σ

is simply {(x, t, ξ, τ) : x = ξ = 0}. Thus in order to prove that u ∈ Cω(U ∩ U0), it

suffices to prove that (7.2) holds for all (x′, t′) in any fixed compact subset of U ∩U0

and for all (ξ, τ) satisfying |ξ| ≤ |τ |.
Fix any (ξ, τ) satisfying |ξ| ≤ |τ | and a point (x′, t′) near 0. Define a differen-

tial operator Lτ , acting with respect to the variables (x, t) and depending on the

parameters (t′, τ), by

Lτ = (e(t′,τ))
−1 ◦ L∗ ◦ e(t′,τ)

where e(t′,τ)(x, t) = exp(i(t′ − t)τ − |τ |(t′ − t)2) and L∗ denotes the transpose of L.

The notation Lτ is misleading because the operator depends on t′ as well, but the

dependence on τ is of greater importance.

The following lemma is analogous to Lemma 4.1. Denote by Dδ the open disk in

C of radius δ, centered at the origin.

Lemma 7.1. For any sufficiently small δ > 0 there exist C, ε ∈ R
+ such that for

each (x′, t′) ∈ R
2 satisfying |(x′, t′)| ≤ δ/8 and for each (ξ, τ) ∈ R

2 satisfying |ξ| ≤
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|τ |, there exists a function g = g(x′,t′,ξ,τ)(x, t) defined for (x, t) ∈ (−δ, δ) × Dδ and

holomorphic with respect to t, satisfying the equation

Lτg(x, t) = ei(x
′−x)ξ−|τ |(x′−x)2 +O(e−ε|τ |)(7.3)

with the bounds

|g(x, t)| ≤ Ce−ε|τ | for all |x| ≥ δ/4 and t ∈ Dδ(7.4)

|g(x, t)| ≤ C for all (x, t) ∈ [−δ, δ]×Dδ.(7.5)

Proof of Theorem 1.2. Granting the lemma, and supposing that Lu ∈ Cω near 0,

there exist δ and a C∞ function v supported in (−δ, δ)×(−2δ, 2δ), such that Lv ≡ Lu

for all (x, t) ∈ R
2 satisfying |x| ≤ δ/2 and |t| ≤ δ. Consider any (ξ, τ) satisfying

|ξ| ≤ |τ |, and suppose for simplicity of notation that τ > 0. Consider likewise any

(x′, t′) ∈ R
2 sufficiently close to the origin. Then writing g = g(x′,t′,ξ,τ),

Fv(x′, t′; ξ, τ) =

∫∫
v(x, t)ei(x

′−x)ξ−τ(x′−x)2ei(t
′−t)τ−τ(t′−t)2 dx dt

=

∫∫
vei(t

′−t)τ−τ(t′−t)2Lτg +O(e−ετ )

=

∫∫
v · L∗

(
ei(t

′−t)τ−τ(t′−t)2g
)

+O(e−ετ )

=

∫∫
Lv · ei(t′−t)τ−τ(t′−t)2g +O(e−ετ ).

Replace the two dimensional contour of integration by the contour in R × C para-

metrized by (x, t) 7→ (x, t + ih(x, t)) where h is smooth, takes values in (−1/2, 0], is

identically equal to zero where |(x, t)| ≥ δ/2, and is strictly negative but small where

|(x, t)| < δ/2. Since Lv is a holomorphic function of t where |(x, t)| < δ/2, we obtain

Fv(x′, t′; ξ, τ) = O(e−ετ )

+

∫∫
Lv(x, t+ ih(x, t))ei(t

′−t−ih(x,t))τ−τ(t′−t−ih(x,t))2g(x, t+ ih(x, t)) J(x, t) dx dt

where J(x, t) = 1 + i∂h/∂t.

Where |(x, t)| ≤ δ/2, both Lv(x, tih) and g(x, t + ih) are bounded uniformly in

(x′, t′; ξ, τ), while the real part of i(t′ − t − ih(x, t))τ − τ(t′ − t − ih(x, t))2 equals

[h(x, t) − h(x, t)2]τ , which is ≤ −ετ for some ε > 0, provided that (x′, t′) lies in a

sufficiently small neighborhood of 0 that is independent of ξ, τ . Thus the exponential

factor in the integral is O(exp(−ετ)), hence so is the integrand.
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Where |x| ≥ δ/4, both Lv and the exponential factor are still O(1), and g is

O(exp(−ετ)). Lastly, where |t| ≥ δ/4, the exponential factor is O(exp(−ετ)) and

Lv, g are O(1). Thus Fv(x′, t′; ξ, τ) = O(exp(−ετ)), as desired.

The proof of Lemma 7.1 is parallel to that of Lemma 4.1, with one essential differ-

ence: the real part of Θ̃(x, t)2 is nonnegative for all (x, t) in some neighborhood of 0

in R×C if (and only if) Θ(x, t) ≡ xm−1. Consequently the proof of Lemma 4.1 may

be executed in a fixed neighborhood of 0 with respect to the t coordinate, rather than

in a neighborhood that shrinks to {0} as τ → ∞. This in turn allows us to carry

out the Neumann series to cτ terms, rather than to cτ p/m terms, resulting in an error

that is O(exp(−ετ)), rather than merely O(exp(−ετ p/m)) where p/m = 1− (mq)−1.

Denote by D any open disk in C centered at the origin. The Sobolev spaces

appropriate for the Neumann series argument in the present context are as follows:

‖f‖2
H0
ρ,τ (R×D) =

∫∫
R×D
|f(x)|2 (1 + τ 2/mx2)−(m−1) eτρη(x) dx dtdt̄

‖f‖2
H1
ρ,τ (R×D) =

∫∫
R×D

(
(1 + τ 2/mx2)−(m−1)|∂xf |2 + τ 2/m|f |2

)
eτρη(x) dx dtdt̄

‖f‖2
H2
ρ,τ (R×D) =

∫∫
R×D

(
(1 + τ 2/mx2)−(m−1)|∂2

xf |2 + τ 2/m|∂xf |2

+ τ 4/m(1 + τ 2/mx2)(m−1)|f |2
)
eτρη(x) dx dtdt̄,

where η ∈ C∞0 is nonnegative, η(x) ≡ 0 for all |x| ≤ δ/8 and η(x) > 0 for all

|x| ≥ δ/4. The parameter ρ is to be chosen to be positive but sufficiently small, and

is independent of τ .

In order to work in these spaces we must modify L so that its coefficients are defined

for all (x, t) in the Cartesian product of R with a complex neighborhood of 0, and are

holomorphic with respect to t. Θ̃(x, t) is identically equal to xm−1 near 0, so we extend

it to equal xm−1 everywhere. L takes the form (a1,1∂x+a1,2Θ̃∂t)
2 +(a2,1∂x+a2,2Θ̃∂t)

2

near 0, so it suffices to extend the coefficients ai,j to R×C so that they are independent

of x outside a small neighborhood of the origin, and so that the coefficient matrix (ai,j)

is real and invertible everywhere on the product of R with a small real neighborhood

of 0, and depends holomorphically on t in R×Dδ for some δ > 0.

After conjugation, ∂t takes the form

e−1
(t′,τ) ◦ ∂t ◦ e(t′,τ) = ∂t − iτ + 2(t′ − t)τ = −iτ(1 + 2i(t′ − t)) + ∂t.
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Write

L∗ = P (x, t, ∂x, Θ̃∂t) = (a1,1∂x + a1,2Θ̃∂t)
2 + (a2,1∂x + a2,2Θ̃∂t)

2 + b1∂x + b2Θ̃∂t + b3

where the coefficients ai,j and bi are real and analytic. Then the conjugated operator

Lτ takes the form

Lτ = P (x, t, ∂x, [−iτ(1 + 2i(t′ − t)) + ∂t]Θ̃).

Define the ordinary differential operators

At = P (x, t, ∂x, [−iτ(1 + 2i(t′ − t))]Θ̃).

which depend on the parameters t, t′, τ . Define an operator A, acting on functions of

(x, t) ∈ R×D that are holomorphic with respect to t in a small disk D ⊂ C centered

at 0, by letting At act with respect to the variable x, for each t.

Lemma 7.2. For all t, t′ ∈ C and ρ ∈ R sufficiently close to 0 and all sufficiently

large τ ∈ R
+, the map

At : H2
ρ,τ (R) 7→ H0

ρ,τ (R)

is invertible, uniformly in t, t′, τ . For all sufficiently small t′, δ, ρ and sufficiently large

τ , the map

A : H2
ρ,τ (R×Dδ) 7→ H0

ρ,τ (R×Dδ)

is invertible, uniformly in t′, δ, τ .

Proof. The main point is the inequality

‖φ‖2
H2

0,τ (R) ≤ C‖Atφ‖2
H0

0,τ (R) for all φ ∈ C2
0(R).(7.6)

To prove this, consider

−Re

∫
R
Atφ · φ̄ ≥ c

∫
R
|∂xφ|2 + τ 2x2(m−1)|φ|2 − C

∫
R
|φ| ·

(
|∂xφ|+ τ |xm−1φ|+ |φ|

)
for some c, C ∈ R

+, provided that |t− t′| is sufficiently small. Since

τ 2/m

∫
R
|φ|2 ≤ C

∫
R
|∂xφ|2 + τ 2x2(m−1)|φ|2,

the last inequality plus Cauchy-Schwarz lead to

−Re

∫
R
Atφ · φ̄ ≥ c′

∫
R
|∂xφ|2 + τ 2/m

(
1 + τ 1/m|x|

)2(m−1)|φ|2
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for some c′ > 0, provided that τ is sufficiently large. Applying Cauchy-Schwarz to

the left hand side yields

∫
R
|∂xφ|2 + τ 2/m

(
1 + τ 1/m|x|

)2(m−1)|φ|2 ≤ C

∫
R
|Atφ|2τ−2/m

(
1 + τ 1/m|x|

)−2(m−1)

≤ Cτ 2/m‖Atφ‖2
H0

0,τ
.

(7.7)

In order to prove (7.6), it remains only to bound the H0
0,τ norm of ∂2

xφ by the H0
0,τ

norm of Atφ. The operator At is a quadratic polynomial, with Cω coefficients, in ∂x
and τΘ̃. The result of applying any monomial of degree two or less, excepting only

∂2
x, to φ has already been estimated in the H0

0,τ norm in (7.7). The missing term

∂2
x may be expressed as a linear combination, with Cω coefficients, of At and all the

other monomials. Therefore the H0
0,τ norm of ∂2

xφ is majorized by

‖∂2
xφ‖2

H0
0,τ
∼
∫

R
(1 + τ 1/m|x|)−2(m−1)|∂2

xφ|2 dx

≤ C‖Atφ‖2
H0

0,τ
+ C

∫
R
τ 2/m|∂xφ|2 + Cτ 4/m

(
1 + τ 1/m|x|

)2(m−1)|φ|2

≤ C‖Atφ‖2
H0

0,τ
.

Thus we obtain the inequality (7.6) for ρ = 0. The case of small |ρ| follows from

the case ρ = 0 by conjugating with eρτη(x), as in the final paragraph of the proof of

Lemma 3.1 of [3].

The spaces Hk
ρ,τ are defined so that At is automatically a bounded operator from

H2 to H0. Inequality (7.6) implies that At has closed range; the same analysis applies

to its transpose and consequently invertibility of At follows from a duality argument

as in the proof of Lemma 3.1 of [3]. Since At depends holomorphically on t and is

invertible uniformly in t, A−1
t also depends holomorphically on t. Therefore as an

operator from H2
ρ,τ (R × Dδ) to H0

ρ,τ (R × Dδ), A may be inverted by applying the

inverse of At in the x variable for each value of t.

With Lemma 7.2 in hand, imitating the proof of Lemma 4.1 leads directly to the

conclusions of Lemma 7.1, hence to Theorem 1.2.

8. Microlocal analytic hypoellipticity for factored operators

Let X1, X2 be vector fields defined in a neighborhood of p = 0, satisfying the

hypotheses of Theorem 1.8. Assume that X1, X2 are linearly dependent at the point

0. Suppose that L = (X1 + iX2)(X1 − iX2) + c1X1 + c2X2 + c3 where cj ∈ Cω are

complex valued.
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Let (x, t) be a system of coordinates with the properties of Lemma 1.3. Writing

X1 = a1,1∂x + a1,2Θ̃∂t and X2 = a2,1∂x + a2,2Θ̃∂t,

[X1, X2] = Det(a)(∂xΘ̃)∂t +O(X1, X2)

where Det(a) is the determinant of the matrix a = (ai,j). This determinant is real

valued and nonvanishing near 0 in R
2; by replacing t by −t if necessary, we may

require it to be negative.

Let (ξ, τ) be coordinates dual to (x, t). Near 0, decompose the characteristic variety

Σ of L as the disjoint union Σ+ ∪ Σ−, where Σ+ = Σ ∩ {τ > 0}. Note that the fiber

of Σ over 0 is {(ξ, τ) : ξ = 0}.

Lemma 8.1. Assume that {X1, X2} is a pseudoconvex pair near 0. Then the func-

tion ∂xΘ is everywhere nonnegative, in some neighborhood of 0, and the type m at 0

is even.

Proof. The pseudoconvexity hypothesis is

∂xΘ̃ = h+ bΘ̃,(8.1)

where h, b are smooth functions and h does not change sign. Consider first the case

where h ≥ 0.

Expand ∂xΘ̃ and Θ̃ in Taylor series, and assign weights 1, q−1 respectively to x, t,

as in Section 2. Only monomials with weights ≥ m−2 arise in the expansion of ∂xΘ̃,

and the sum of all monomials having weight m − 2 is equal to ∂xΘ. Any smooth

multiple of Θ̃ itself involves only terms of weights m− 1 and greater. Thus h = ∂xΘ

modulo terms of weight > (m− 2). Consequently for any (y, s),

∂xΘ(y, s) = lim
ε→0

ε−(m−2)∂xΘ̃(εy, ε1/qs)

= lim
ε→0

ε−(m−2)∂xΘ̃(εy, ε1/qs)− ε−(m−2)b(εy, ε1/qs)θ̃(εy, ε1/qs)

= lim
ε→0

ε−(m−2)h(εy, ε1/qs)

is a limit of nonnegative quantities, hence must be nonnegative.

In the case h ≤ 0, the same reasoning leads to the conclusion that ∂xΘ(x, t) ≤ 0

for all (x, t) ∈ R
2. This is impossible, since ∂xΘ(x, 0) ≡ (m − 1)xm−2. Likewise

nonnegativity of ∂xΘ forces m to be even, for otherwise (m − 1)xm−2 would change

sign.

The principal symbol of the commutator satisfies

σ1(i[X1, X2]) = −Det(a)(∂xΘ̃)τ +O(σ1(iX1), σ1(iX2)).
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Thus modulo the span of the symbols of X1, X2, this is nonnegative when τ ≥ 0. The

function Θ̃ cannot vanish identically along any line segment where the t coordinate

is constant, by the bracket hypothesis. Therefore arbitrarily close to any point where

Θ̃(x, t) = 0 there exist points where Θ̃ 6= 0 but the ratio |∂xΘ̃/Θ̃| is arbitrarily

large. For (x, t, ξ, τ) ∈ Σ− one has τ < 0, so by the pseudoconvexity hypothesis,

−τ∂xΘ̃(x, t) ≥ 0 modulo a bounded multiple of |τΘ̃(x, t)|, so τ∂xΘ̃(x, t) must be

negative, even modulo any bounded multiple of |τΘ̃(x, t)|, wherever the ratio |∂xΘ̃/Θ̃|
is sufficiently large. Consequently Σ− has no conic neighborhood in which τ∂xΘ̃ is

nonpositive modulo the span of the symbols of X1, X2, so the half line bundle Σ+ is

uniquely specified by the existence of such a neighborhood.

Consider first the case where span{X1, X2} ≡ span{∂x, xm−1∂t}, in which microlo-

cal analytic hypoellipticity is to be proved by the same method as in Section 7. Then

Θ̃(x, t) ≡ xm−1. Let Lτ be the operator defined by conjugating the transpose of L

as in Section 7. The ordinary differential operators At of that section should now be

replaced by

At =
[
(a1,1 − ia2,1)∂x + (a1,2 − ia2,2)iτ(−1− 2i(t′ − t))Θ̃

]
◦
[
(a1,1 + ia2,1)∂x + (a1,2 + ia2,2)iτ(−1− 2i(t′ − t))Θ̃

]
+O(∂x, τΘ̃, 1)

where the coefficients in the term O(∂x, τΘ̃, 1) are Cω and are bounded uniformly

in t, x, t′, τ . Here the coefficients ai,j are still functions of (x, t); we do not freeze

coefficients as was done in Section 4. The principal part of At is −Y Y ∗, where

Y = (a1,1 − ia2,1)∂x − (a1,2 − ia2,2)iτΘ̃

and for any operator T , we now denote by T ∗ the formal adjoint of T , with respect to

the usual Hilbert space structure of L2(R), rather than the transpose. The coefficients

ai,j are real valued for (x, t) ∈ R
2. Therefore for (x, t) ∈ R× C,

−At = Y ◦ Y ∗ +O(∂x, τΘ̃, 1) +O(| Im(t)|)O(∂x, τΘ̃)2,

that is, −At − Y Y ∗ is a quadratic polynomial, with real analytic coefficients, in

∂x, τΘ̃, 1 where 1 denotes the identity operator, and the coefficients of all monomials

of degree 2 in ∂x, τΘ̃ are O(| Im(t)|).
For any φ ∈ C2

0(R),∫
R
Y Y ∗φ · φ̄ = ‖Y ∗φ‖2

L2(R) = ‖Y φ‖2
L2(R) +

∫
R
[Y, Y ∗]φ · φ̄,

and

[Y, Y ∗] = −2τ Det(a)(∂xΘ̃) +O(∂x, τΘ̃, 1),
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where norms without subscripts are L2(R, dx) norms. By the pseudoconvexity hy-

pothesis and the sign conventions Det(a) < 0 and ∂xΘ̃ ≥ 0, the right hand side equals

a nonnegative function, modulo an operator that is O(∂x, τΘ̃, 1). Therefore

2

∫
R
Y Y ∗φ · φ̄ ≥ ‖Y φ‖2 + ‖Y ∗φ‖2 − C

∫
R
|φ|(|∂xφ|+ τ |xm−1φ|+ |φ|),

which for large τ is

≥ c

∫
R
|∂xφ|2 + τ 2/m

(
1 + (τ 1/m|x|)

)2(m−1)|φ|2 − C
∫

R
|φ|(|∂xφ|+ τ |xm−1φ|+ |φ|),

by Cauchy-Schwarz. Replacing Y Y ∗ by −At introduces additional terms, but all

these are majorized by

ε‖φ‖2
H2

0,τ
+ ε

∫
R
|∂xφ|2 + τ 2/m

(
1 + (τ 1/m|x|)

)2(m−1)|φ|2

+ C

∫
R
|φ|(|∂xφ|+ τ |xm−1φ|+ |φ|)

where ε may be made as small as desired by taking t, t′ to be sufficiently small.

For τ > 0 sufficiently large and t, t′ sufficiently small we thus obtain

−Re

∫
R
Atφ · φ̄ ≥ c

∫
R
|∂xφ|2 + τ 2x2(m−1)|φ|2 − C

∫
R
|φ|(|∂xφ|+ τ |xm−1φ|+ |φ|).

As in the proof of Lemma 7.2, this leads to the conclusion that for all sufficiently

large τ and for all complex t, t′ and real ρ sufficiently close to 0, At maps H2
ρ,τ (R)

invertibly to H0
ρ,τ (R), uniformly in all parameters. Reasoning just as in the proofs of

Lemma 7.1 and Theorem 1.2 establishes the microlocal analytic hypoellipticity of L

in Γ+, when Θ̃ is divisible by xm−1.

Consider next the case where Θ̃(0) = 0 and Θ̃ is not divisible by xm−1, where it is

to be shown that L cannot be microlocally analytic hypoelliptic. The first obstacle

to imitating the proof of Theorem 1.4 is that under our hypotheses, (X1 + iX2) is

not locally solvable near 0, whence neither is (X1 + iX2)(X1 − iX2), so we cannot

hope to solve the equation LGλ = Fλ for arbitrary Fλ as was possible in Lemma 3.1.

As a substitute, fix a bounded C∞ auxiliary function n(ξ, τ) which (i) is supported

in the conic neighborhood {τ < 0, |xi| < −τ} of the ray {ξ = 0, τ < 0}, (ii) is

identically equal to 1 in a smaller conic neighborhood minus some compact set, and

whose inverse Fourier transform (iii) is Cω except at the origin, and (iv) agrees with
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a Schwartz function away from the origin.7 Define the Fourier multiplier operator

(Bf )̂ (ξ, τ) = n(ξ, τ)f̂(ξ, τ).

Lemma 8.2. Let {X1, X2} satisfy the bracket and pseudoconvexity hypotheses. Then

there exists a neighborhood U of 0 such that for all f ∈ L2(U) there exist v, g ∈ L2(U)

satisfying Lg + Bv = f in U , such that the L2(U) norms of g, v are bounded by a

fixed constant times the norm of f .

Proof (sketch). L is elliptic outside Σ and is subelliptic in a conic neighborhood of

Σ+, because of the bracket and pseudoconvexity hypotheses, as follows from the

reasoning of Kohn [15]. On the other hand, the pseudodifferential operator B is

elliptic in a conic neighborhood of Σ−. This is all that is needed for the proof of the

nearly identical Lemma 7.2 of [9] to apply.

Defining Fλ as in Lemma 3.1, solve LGλ = Fλ + Bvλ with vλ = O(1) in L2 norm.

Proceeding as in Sections 3 and 4 with the notations and definitions introduced there,

e−iλ
mtGλ satisfies a conjugated equation, with right hand side e−iλ

mtFλ + e−iλ
mtBvλ.

We are interested in this equation in the region where Im(t) < 0 and | Im(t)| =

λ−1/q| Im(s)| ∼ λ−1/q, and hence | exp(−iλmt)| = O(exp(−cλm−q−1
)) for some c > 0.

Because Bvλ ∈ L2(U) uniformly in λ and because the Fourier transform of Bvλ is

supported where τ < 0 and |ξ| < |τ |, Bvλ extends to a holomorphic function of t

near 0 in the half space {Im(t) < 0}, and each partial derivative of Bvλ, with respect

to (x, t), is O(λN) there for some finite N ; this follows by writing Bvλ as the inverse

Fourier transform of its Fourier transform, and noting that the resulting integral

converges absolutely for Im(t) < 0. Therefore

e−iλ
mtBvλ = O(exp(−cλm−q−1

)) = O(exp(−cλp))

in this region, for some c > 0, as λ→ +∞.

The situation is therefore the same as in Sections 3 and 4, except for the presence

of an extra term of magnitude O(exp(−cλp)) on the right hand side of the conjugated

equation for exp(−iλmt)Gλ(x, t). Such a term has no effect in the argument imme-

diately following Lemma 4.2, nor in the proof of Lemma 4.2 outlined in Section 9.

In other respects the analysis of L = (X1 + iX2)(X1 − iX2) + c1X1 + c2X2 + c3 is

identical to that for X2
1 + X2

2 , modulo minor changes in formulas. In this case the

existence of eigenvalues was established for all Q in Theorem 5.2, so it follows in full

generality that L cannot be analytic hypoelliptic if Θ̃ is not divisible by xm−1.

7Such functions n may be constructed using the cutoff functions of Andersson and Hörmander,
which are discussed in [14].



ANALYTIC HYPOELLIPTICITY IN DIMENSION TWO 43

9. Proof of Lemma 4.2

In this section we outline the proof of the remaining step in the reduction of analytic

hypoellipticity, for sums of squares of two vector fields in R
2, to eigenvalue problems

for ordinary differential operators. The proof is a straightforward adaptation of

that given for the corresponding Lemma 4.3 of [3], with certain systematic changes

in formulas. We will therefore give the definitions, notations, and statements of

sublemmas, armed with which the determined reader will be able to construct a full

proof by following the exposition of [3] line by line.

Recall the conjugated operator

Bλ = P
(
λ−1y, λ−1/q(ζ0 + reiθ), ∂y, i[Θ +Rλ](1− iλ−p∂s)

)
,

where p = m− q−1 and q <∞. Assume that

Bλuλ = ψ +O(e−δλ
p

)

for all large λ ∈ R
+. The extra term O(exp(−δλp)) on the right is absent in

Lemma 4.2, but occurs in the analogue needed for the proof of Theorem 1.8. This

equation holds for all (y, s) ∈ R×C satisfying |y| ≤ cλ and C−1 ≤ − Im(s) ≤ C, for

some c > 0 and for any C ∈ R
+, where δ depends on C. By (4.1) we know that uλ

and all its partial derivatives of order ≤ 2 are bounded by exp(Bλp), for some large

constant B, for all (y, s) in this same region. What is desired is essentially a bound

uλ = O(exp(µλp)), for arbitrarily small µ > 0, in the smaller region where |y| ≤ λ1−ε0

and s belongs to a neighborhood of ζ0.

The proof requires the selection of auxiliary constants A0, ν, N, σ0, . . . σN , A, γ sat-

isfying various constraints. These depend on B, µ, ζ0, but not on λ. Let A0 be a large

constant to be chosen later, and set C0 = 2|ζ0|.

Lemma 9.1. There exist 0 < ν < µ, N <∞, and 3C0 > σ0 > σ1 > · · · > σN > 2C0

such that
1
2
µ < A0 − (N + 1)ν < µ

and

(s− iσj)(1 + r)1/qm /∈ E1/q(9.1)

for all s ∈ R, 0 ≤ j ≤ N and r ∈ R
+ satisfying

(A0 − jν) ≥ r ≥ (A0 − (j + 1)ν).

A small twist needed to adapt the proof of the corresponding lemma in [3] may be

found in [24].
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The constants γ,A will be required to satisfy finitely many constraints, to be

encountered in the course of the proof, all of the two forms

γ and γ · A are sufficiently small(9.2)

γ · A2 is sufficiently large(9.3)

relative to various quantities depending on B, µ, ζ0, ν, N, σ0, . . . σN . Any finite collec-

tion of such constraints is satisfied by some pair γ,A ∈ R
+; we assume henceforth

that γ,A do satisfy them.

The first constraint on γ,A is that

(s− iσj)
[
1 + r − i2γ(s− iσj)

]1/mq
/∈ E1/q(9.4)

for all s ∈ R satisfying |s| ≤ 4A, all 0 ≤ j ≤ N , and all r ∈ Ij where

Ij = [A0 − (j + 1)ν, A0 − jν].

This follows from (9.1), using Lemma 3.7 together with constraints (9.2) and (9.3),

as shown in [3].

Extend the coefficients of Bλ so as to be globally defined with respect to y, as was

done in the proof of Lemma 4.1. Define

fσ(y, s) = e−γλ
p(s−iσ)2uλ(y, s− iσ)η(A−1s)

where η ∈ C∞0 (R) is supported in (−4, 4) and is identically equal to 1 on [−2, 2]. Set

Lσ = e−γλ
p(s−iσ)2 ◦Bλ ◦ eγλ

p(s−iσ)2

= P
(
λ−1y, λ−1/q(ζ0 + reiθ), ∂y, i[Θ +Rλ](1− 2iγ(s− iσ)− iλ−p∂s)

)
,

Then

Lσfσ = Ψσ where Ψσ(y, s) = e−γλ
p(s−iσ)2ψ(y) +O(e−δλ

p

)e−γλ
p(s−iσ)2

for all s ∈ R satisfying |s| ≤ 2A, provided that σ ≥ C−1. For |s| > 2A the cutoff

function γ comes into play, but the factor exp(−γλp(s−iσ)2) is O(exp(λp[C−γA2])),

with C dependent only on quantities fixed before γ,A are chosen. Thus both Ψσ and

fσ are O(exp(−C2λ
p)) where |s| ≥ A/2, for any desired C2 <∞, provided that γA2

is chosen to be sufficiently large. The same holds for their partial derivatives of first

and second orders with respect to y, s.

Define the partial Fourier transform

f̂σ(y, ξ) =

∫
R
fσ(y, s)e−isξ ds

for all ξ ∈ R.
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Lemma 9.2. For any constant A0 < ∞, for all sufficiently large λ, for all |ξ| ≤
A0λ

p, |y| ≤ λ1−ε0 and 0 ≤ σ, σ′ ≤ 3C0,

f̂σ(y, ξ) = e(σ−σ′)ξf̂σ′(y, ξ) +O(e−λ
p

).

This is proved by shifting the contour of integration with respect to s in the defini-

tion of the partial Fourier transform. For |s| ≥ A the integrand is not holomorphic,

resulting in an error term that is O(exp(−δγA2λp + Cλp)) for some δ > 0, which is

negligible if γA2 is sufficiently large.

Lemma 9.3. There exists a large constant A0 such that for all sufficiently large λ

and all |y| ≤ λ1−ε0, for all | Im(ζ0)|/2 ≤ σ ≤ 3C0,∫
|ξ|≥A0λp

(
|f̂σ(y, ξ)|2 + |∂yf̂σ(y, ξ)|2

)
dξ ≤ e−2λp .

This is proved by combining the preceding lemma with the weak boundO(exp(Bλp))

for uλ, choosing A0 sufficiently large to overwhelm the factor exp(Bλp).

For functions ϕ of y ∈ [−λ1−ε0 , λ1−ε0 ] define the dual norms

‖ϕ‖2
Hρ =

∫
|y|≤λ1−ε0

|ϕ(y)|2〈y〉−2(m−1)e+ρ|y|m dy,

‖ϕ‖2
H∗ρ

=

∫
|y|≤λ1−ε0

|ϕ(y)|2〈y〉+2(m−1)e−ρ|y|
m

dy

where ρ > 0 is fixed and small. Denote by f̂(ξ) the function y 7→ f̂(y, ξ).

Lemma 9.4. There exists δ > 0 such that for all sufficiently large λ, for all 0 ≤ j ≤
N , whenever λ−pξ ∈ Ij,

‖f̂σj(ξ)‖2
H∗ρ
≤ e−δλ

p

∫
|η|≤A0λp

‖f̂σj(η)‖2
H∗ρ
dη + e−δλ

p

.

Lemma 4.2 follows from this result and Lemmas 9.3 and 9.2 by an induction on j

as in [3], so it remains only to prove Lemma 9.4. This requires a final sublemma.

Denote by L
∗
σ the formal transpose of Lσ with respect to the pairing

〈f, g〉 =

∫∫
|y|≤λ1−ε0
|s|≤A

f(y, s)g(y, s) dy ds,

ignoring all boundary terms arising from integration by parts in the formal identity

〈Lσf, g〉 = 〈f, L
∗
σg〉.

Lemma 9.5. There exist δ > 0 and an open set C ⊃ Ω ⊃ {s ∈ R : |s| ≤ A} such

that for all sufficiently large λ and sufficiently small ρ > 0, for all 0 ≤ j ≤ N ,
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ξ ∈ λ−pIj and ϕ ∈ L2(R) supported in [−λ1−ε0 , λ1−ε0 ], there exist g, E defined on

[−λ1−ε0 , λ1−ε0 ]× Ω satisfying

eisξL∗σj(e
−isξg)(y, s) = ϕ(y) + E(y, s) in [−λ1−ε0 , λ1−ε0 ]× [−A,A],

‖g(·, s)‖H2
ρ
≤ C‖ϕ‖H0

ρ
for all s ∈ Ω

‖E(·, s)‖H0
ρ
≤ Ce−δλ

p‖ϕ‖H0
ρ

for all s ∈ Ω.

The norms Hk
ρ are those of Hk

ρ([−λ1−ε0 , λ1−ε0 ]), defined as in Section 3 except that

the integration with respect to y extends only over [−λ1−ε0 , λ1−ε0 ], rather than over

the entire real line. The proof of this lemma is very similar to that of Lemma 4.1;

the relation (9.4) together with Lemma 3.6 guarantee that those ordinary differential

operators arising in the analysis are indeed invertible. Lemma 9.4 is then deduced by

a duality argument like that used in Section 4 to deduce Theorem 1.4 from Lemma 4.1,

shifting the contour of integration with respect to s to majorize the principal term

resulting after integration by parts, as in the proof of Lemma 6.4 of [3].

10. Comments

1. Denote by Σ the characteristic variety of L, that is, the set of all points in the

cotangent bundle where the principal symbol of L vanishes. In our analysis there is

no essential distinction between the four coefficients Θ̃:

• x(x2 + t2), for which Σ is a (smooth) symplectic manifold,

• x(x2 − t2), for which Σ is a singular variety with normal crossings,

• x(x2 − t3), for which Σ is more singular, and

• x2 + t2, for which Σ consists of the single fiber {x = t = ξ = 0},
and no distinction whatsoever between the first two examples. Yet in terms of sym-

plectic geometry, the four characteristic varieties have little in common.8

2. One of the principal hypotheses in the work of Tartakoff [21],[22] and of Treves

[23] giving sufficient conditions for analytic hypoellipticity is that the characteristic

variety be symplectic. Treves had conjectured that analytic hypoellipticity should

fail to hold (for, say, any X2
1 +X2

2 ) whenever the characteristic variety Σ contains a

smooth nonconstant curve γ that is orthogonal to the tangent space of Σ with respect

to the symplectic form, at each point of γ. For the case of two linearly independent

vector fields in R
3, any null bicharacteristic for some nonvanishing vector field in

the span of X1, X2 that lies above the set of points in R
3 where X1, X2, [X1, X2]

are linearly dependent is such a curve γ, and the conjecture has been established

8This accords with a remark of Métivier [16]: “Il ne faut sans doute pas vouloir relier trop
rigidement le condition “Σ symplectique” à l’hypoellipticité analytique.”
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[7] in this case. More recently, the conjecture has also been confirmed for a three

dimensional example in which the only such curve γ is a fiber of the cotangent bundle

[24].

Himonas and Treves asked for examples of operators not analytic hypoelliptic, yet

not possessing any such curves γ. The history of this question is a bit obscure; Olĕınik

and Radkevič had already published by 1973 [19] examples of analytic nonhypoelliptic

operators with characteristic varieties Σ that are symplectic and hence possess no

such curves γ, but had not explicitly discussed the symplectic geometric nature of

Σ. Much later it was observed that our examples ∂2
x + (xk(x2 + y2)∂t)

2 likewise

have symplectic characteristic varieties {x = ξ = 0}, and by Proposition 1.7 are not

analytic hypoelliptic for k = 1 or k even. Special cases of the examples of Olĕınik

and Radkevič were subsequently rediscovered by Hanges and Himonas, who observed

that their characteristic varieties are symplectic.9

3. Our results should generalize to sums of squares of any finite number of vector

fields in R
2. The necessary and sufficient condition for analytic hypoellipticity should

be the existence of a coordinate system in which span{Xj} ≡ span{∂x, xm−1∂t}, that

is, both ∂x and xm−1∂t may be expressed as linear combinations, with Cω coefficients,

of the Xj, and conversely.

4. In Proposition 1.7 we have singled out certain examples for which Conjecture 1.5

can be proved relatively easily. With more labor, similar reasoning should apply to

other special cases, as well, but the conjecture can be formulated more generally by

allowing the coefficients of Q to be arbitrary complex numbers, and then neither the

ad hoc proof of Proposition 1.7 nor the method of proof of Theorem 5.2 appear likely

to lead to a proof in full generality.

A more promising approach is related to the phenomenon of Stokes lines. A so-

lution ψ+
z having the required asymptotics as x → +∞ has this behavior in a conic

neighborhood of R
+, but not for x in all of C; the Stokes lines separate disjoint sec-

tors in the complex plane in which the solution has distinct asymptotics. Whenever a

(normalized, homogeneous) polynomial Q(x, z) is not identically equal to xm−1, then

x 7→ Q(x, z) has for each z at least two distinct zeros in the complex plane. As in

the proof of Theorem 5.2, these zeros should govern the asymptotic behavior of W (z)

as |z| → ∞. One could attempt to show that there exist zeros wi(z) and disjoint

sectors Γi, for i = 1, 2, such that the asymptotic behavior of the Wronskian W (z) as

9A higher order example is L = L1 ◦ L2, where the Lj are chosen to have characteristic varieties
Σj such that Σ2 ⊂ Σ1, Σ1 is symplectic, and L2 is not analytic hypoelliptic. Then L is not analytic
hypoelliptic, and its characteristic variety is Σ1. An explicit example is (∂2

x + x2k∂2
t ) ◦ (∂2

x + (x2 +
t2)∂2

t ).
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z tends to infinity through Γi is governed by wi(z); more precisely, that for z ∈ Γi,

W (z) ∼ exp(ciz
m)zγi(1 + O(|z|−δ) for some exponents γi. If one could show further

that c1 6= c2, then W could not have a polynomial logarithm and hence would have

zeros. One advantage of this approach is that it requires no analysis of the exponents

γi (let alone of higher order terms in the asymptotic expansions). Some of the ideas

of Yu [26] should be useful here.

5. The fact that ordinary differential operators play such a prominent role in our

analysis is a feature of the particular class of low-dimensional partial differential

operators under consideration. Globally elliptic operators in more than one variable

play the corresponding role in other situations.

6. In its present form, the method employed here is too primitive to apply to the

general case of two independent vector fields in R
3.
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