Convolution, Curvature
and a bit of

Combinatorics

Michael Christ
University of California, Berkeley



Lecture given at Kiel satellite conference, Au-
gust 1998

1-1



Main T heorem

Definitions.
e Measure p in R™, n > 2:

/fd,u: /C)lf(t,tQ,t3,...t")dt.

e Q= (py ,qol) where

n-+1 _n+1 n
> 0 T Ty

Po —

e Q¥ = dual point.

Theorem. Convolution with u maps LP(R%)
to LI(RY) <« (p~ 1,47 1) belongs to closed
convex hull of

{Q? Q*7 (07 O)? (17 1)}7
except perhaps at Q, Q*.

Vg™

Operator is of restricted weak type <— (p~
belongs to closed convex hull.



acg) = o ~tm),
so by Sobolev embedding L2 is mapped into
LY with ¢~ =2-1 =2, This is not optimal,
even for p = 2, in any dimension.

History

Littman 1973: Dimension 2.

Oberlin 1987: Dimension 3.

Carbery-Christ: Showed Oberlin’'s result opti-
mal for n = 3; proved necessity for all n. Asked
whether sufficient.

Oberlin 1997: Dimension 4 (except for some
boundary points).

Method used: Analytic family of operators.
e .2 — L2 for worse operators at one endpoint.
e " — L° for better operators at other end.

Relied on numerology: special exponents such
as 2,4 arise in low dimensions.




Asymptotically, for large n, this is half of the
true gain for p = 2; for p near 1 or oo it leads
to a very inferior result.

Work of many authors on related problems is
relevant, including Greenleaf, Phong, Seeger,
Stein ...

The better operators in Oberlin’'s 4D proof in-
volve measures living on 2D manifolds. Half of
ambient dimension ...

Cancellation/orthogonality played major role in
analysis.
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Features of Problem

e NO good numerology for n large.

e Symmetry: all points on curve are “isomorphic”. Op-
erator is translation-invariant.

e Operators are positive. No cancellation.

e Higher-order curvature comes into play.

Examples showing necessity:
1) E = ball of radius §. T'(xg) ~ 6 on a curved
d—tube.

2) E = rectangle of dimensions (8,52, ...,8%).
T(xg) ~ d on inner half of E.

3) Dual to 1): E = curved é—tube; T(xg) ~ 1
on ball of radius 9.



The Plan

It suffices to prove that if
T(xg) ~ «
on a set F', then
|F| < Ca 0| E|%0/Po.
Define 5 by

BIE| = ol F].

Then equivalently we want

B| > ca™TD/2 (g/a)n"1

Strategy:

e Enumerate points of E.
e Count points of FE.

e Account for duplications.




Proof of main Theorem is quite different. Es-
sentially combinatorial; no cancellation. In-
spired by Bourgain, Wolff, Schlag; but differ-
ent.

It's a counting problem; of course points are
“counted” according to Lebesgue measure.
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Notation (Here 1 <k < o0):

h(s) = (s,52,...,5")
t = (t17°°-tk)
®p(t) = h(t1) — h(t2) — -+ (1) T Th(ty)

Definition. A parameter space tower is a finite
sequence of measurable sets €2; C [0, 1)7 such
that
(t1,...,t) € Q= (t1,...tp_1) € Q_1
€21] > 8,
and such that there exists xg € FE such that for
all even k
t€Qp=Nsel[-1,1]:(ts) € 241} > coB
xo+ PL(2,) CE
and the same holds for odd k£ with o, E replaced
respectively by g3, F'.




Near-Tautology

Lemma. T here always exists a parameter space
tower €21,...S2o,.

Proof:
e For €21 this is Bourgain’'s bush construction.

e Successive Qj are obtained by descending in-
duction on j, using a pruning operation.

This has nothing to do with curvature.



Crummy Lower Bound for |F|

Define

(1434 ...(n—-1) if n is even
T'n — 2444+ .- 4+ (n—-1) if n is odd.

Lemma. |E|> ca®(nt1)/2.(8/q)m
Proof for n even: Let W(t) = zg+ ().

e F DO VWV,(R2,), and

W (2] 2%/9 OV, /8t| dt.

e [ he Jacobian is

Oy /0t] = c [] It — ¢
i<j
and simple estimations exploiting the tower struc-
ture of €2,, conclude the proof.



Factor of n! comes from upper bound on multiplicity
(except for set of parameters t of measure zero).

For n odd we use 2,41 but only those points ¢ whose
first coordinate has a fixed value.

For n = 2,3 this proves the theorem (also for 8 > ca). A
small extra trick makes it work for n = 4, but for about
n — 6 and larger it's less easy to fix.

For the particular configurations that arise in analyz-
ing this construction for the extremal examples, the set
WV, (€2,) does satisfy the desired lower measure bound.
The problematic cases turn out to be irrelevant ones
where E is actually much larger than needed; the prob-
lem is to prove it.

(I don't know how close I come to proving that the

known extremals are essentially the only worst cases.)



Modified Strategy

Device: Use also W (€2;,) for k > n.
Drawback: W, is not finite-to-one.

Solution: E D W, (typical n-dimensional slice)



What remains is merely an elaboration of the
scheme I've described, but in terms of num-
ber of written words it's actually the bulk of
the argument. Because it's a bit particular I'll
describe the rest only in vague terms.

I need all £k between n and 2n — 2.

Insert picture

We have choice of how to slice.
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Good Parameter Sets, k> n
(Oversimplified)

Assume [ K a.

Definition: band structure on {1,2,...k} is a
partition into nonempty disjoint subsets, called
bands.

In each band, one index is designated as free;
others are bound to the free index, except that
for bands having exactly 2 indices, the second
index is quasi-free (and is quasi-bound to the
associated free index).
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For odd k there are very similar requirements.
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Main Organizational Lemma

It is always possible to find

e an index n < k<2n—2 and a set w C 2,

and to assign a

e band structure to set of all indices 1 < 3 < k such that
(for even k):

(i) The number of free indices plus the number of
quasi-free indices equals n.

(il) |w| > ca®/?ph/2

(iii) For all i # 7,

t; —t;| > d
[t — 5] >

unless one of 4,5 is bound or quasi-bound to the
other, or both are bound to the same index.

(iv) If ¢ is bound to j then |t; — t;| < da.
(v) If i is quasi-bound to j then ¢g8 < |t; — t;| < da.

(vi) &' is sufficiently small relative to § to satisfy the
Jacobian lemma below.
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Parameter Space Slicing

e N ={m1,...,mp} dendnotes set of all free or
quasi-free indices.

o 7= (tmys--.,tmy,) € R™.

e For each bound index ¢ < k, B(i) = unique
free index to which ¢ is bound.

e Make change of variables

s = (t; — tp))ign € RF "

e Regard t as a function of (7, s).
e Slices of w: Hold s constant.

e Define

Gs(1) = Wi (i(r,5)) .
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Jacobian Lemma

Lemma. For each § € RT, there exist §,c €
R+ such that for all indices k and parame-
ter sets w possessing the structure described
above, whenever t(r,s) € w

0Gs /07| > ca™m=D/2(8/a)M

where M = number of quasi-free indices.

Applying this lemma to a typical slice leads to
B > ca?TD/2(8/0)M+3

and the main organizational lemma guarantees
that

k
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Note that lemma gives a uniform lower bound
for the Jacobian.

I use Bezout's lemma to control maximal num-
ber of preimages for generic point in target
space RZ. This ought to be avoided.

This is one of those things which takes a lot
of words to say but is essentially trivial. (i) If
there are too many free plus quasi-free indices,
then one drops the last index. (ii) If many in-
dices are either far apart or close together then
all is OK. In bad case where they’re in between
we redefine what is meant by ‘far apart” by a
large constant factor, getting more free plus
quasi-free indices. Then we repeat.
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A Cautionary Note

Suppose u € C? satisfies

02y
OxOy

Question. Is it true that for any «,3 and any
parameter space tower 24, <25,

/ u(z,y)| dzdy > ca®B? ?
Q5

> 1 on [0, 1]°.

(¢ is permitted to depend on u but not on
047/67 Qj)

Proposition.

e T here exists u € C'°° for which the answer is
NO.

e There exist u € C?, sequences «a,3 — 0, and
sets €2; such that

|, 1uCe )l dedy < ca®5 / 109(1/a).
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If one were to attempt to apply this general
method to other similar operators, one would
arrive at a family of questions of the following
type. Here I state the simplest nontrivial one.

The proposition is part of ongoing work with
A. Carbery and J. Wright.

This also helps to explain why I use explicit
form of Jacobians (Vandermonde determinants)
in proving theorem, rather than merely exploit-
ing lower bounds for partial derivatives of Ja-
cobians.

e If one asks for a uniform lower bound for
all u satisfying 82u/dz8y > 1 then for g < «a,
the integral is > ¢32a3/log(8~1). This is best
possible modulo the log factor.
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Deficiency

More ambitious goal: optimal smoothing esti-
mates P — L1

Problem: For s > 0, cancellation plays essen-
tial role.

Expectation: This method won't settle the
case s > 0, but perhaps it can be combined
with endpoint results for ¢ = p plus interpola-
tion and/or analytic family of operators to get
full picture.

Core of method should be quite generally appli-

cable; does not require convolution operators,
NOr curves.

15



Optimal g = p smoothing estimates are presently
known only for dimension 2.
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Related Work of Carbery-C-Wright

Theorem. Suppose 9%u/dzdy > 1 on [0,1]2.
Then

{(z,y) : lu(z, )| < 6} < C61/2\/log(1/8).

e T he constant C is universal; it is independent of any
upper bound on higher derivatives of w.

e Example —(z —y)?/2 shows exponent is best possible.
We don’'t know whether the log is needed.

e [ his estimate is equivalent to having

/ ul > e B2/ 1og(|E|™)
E

for all small sets E.

There are generalizations to higher-order deriva-
tives and higher dimensions, and there are o0s-

cillatory integral estimates of van der Corput

type in the same spirit, for all dimensions.
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Related to Combinatorial Problems

Let ¥ = set where |u| < §
and E; ={y: (z,y) € E}.

02w /0zx0y > 1

=

For any polygonal Jordan curve ~ with sides
parallel to axes and all corners in E, Area of
region enclosed is < § times number of corners
=

Any rectangle with sides parallel to axes and
all corners in E has area <9

=

|EzNEy| <6§/|lz— 2| for all z, 2

=

|E| < c61/2,/log(1/6).
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Proof goes via a sequence of implications:

Thus the proof has an combinatorial aspect, as
well. It seems to be an open problem whether
the rectangle condition implies the measure es-
timate with no logarithmic factor.
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Counterexample

The condition
By NE| <d8/|x—
does not imply

E| < c51/2.

The construction is based on the
Kakeya/Besicovitch set.
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