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Main Theorem

Definitions.
• Measure µ in R

n, n ≥ 2:∫
f dµ =

∫ 1

0
f(t, t2, t3, . . . tn) dt.

• Q = (p−1
0 , q−1

0 ) where

p0 =
n+ 1

2
, q0 =

n+ 1

2
·

n

n− 1

• Q∗ = dual point.

———————————————
Theorem. Convolution with µ maps Lp(R

d)
to Lq(R

d) ⇐⇒ (p−1, q−1) belongs to closed
convex hull of

{Q,Q∗, (0,0), (1,1)},
except perhaps at Q,Q∗.

Operator is of restricted weak type⇐⇒ (p−1, q−1)
belongs to closed convex hull.
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µ̂(ξ) = O(|ξ|−1/n),

so by Sobolev embedding L2 is mapped into
Lq with q−1 = 2−1 − n−2. This is not optimal,
even for p = 2, in any dimension.

History

Littman 1973: Dimension 2.
Oberlin 1987: Dimension 3.
Carbery-Christ: Showed Oberlin’s result opti-
mal for n = 3; proved necessity for all n. Asked
whether sufficient.
Oberlin 1997: Dimension 4 (except for some
boundary points).

Method used: Analytic family of operators.
• L2 7→ L2 for worse operators at one endpoint.
• Lr 7→ Ls for better operators at other end.

Relied on numerology: special exponents such
as 2,4 arise in low dimensions.
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Asymptotically, for large n, this is half of the

true gain for p = 2; for p near 1 or ∞ it leads

to a very inferior result.

Work of many authors on related problems is

relevant, including Greenleaf, Phong, Seeger,

Stein . . .

The better operators in Oberlin’s 4D proof in-

volve measures living on 2D manifolds. Half of

ambient dimension . . .

Cancellation/orthogonality played major role in

analysis.
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Features of Problem

• No good numerology for n large.

• Symmetry: all points on curve are “isomorphic”. Op-

erator is translation-invariant.

• Operators are positive. No cancellation.

• Higher-order curvature comes into play.

Examples showing necessity:
1) E = ball of radius δ. T (χE) ∼ δ on a curved
δ–tube.

2) E = rectangle of dimensions (δ, δ2, . . . , δn).
T (χE) ∼ δ on inner half of E.

3) Dual to 1): E = curved δ–tube; T (χE) ∼ 1
on ball of radius δ.
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The Plan

It suffices to prove that if

T (χE) ∼ α

on a set F , then

|F | ≤ Cα−q0|E|q0/p0.

Define β by

β|E| = α|F |.

Then equivalently we want

|E| ≥ cαn(n+1)/2 (β/α)n−1 .

Strategy:

• Enumerate points of E.

• Count points of E.

• Account for duplications.
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Proof of main Theorem is quite different. Es-

sentially combinatorial; no cancellation. In-

spired by Bourgain, Wolff, Schlag; but differ-

ent.

It’s a counting problem; of course points are

“counted” according to Lebesgue measure.
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Notation (Here 1 ≤ k <∞):

h(s) = (s, s2, . . . , sn)

t = (t1, . . . tk)

Φk(t) = h(t1)− h(t2)− · · ·+ (−1)k+1h(tk)

——————————————

Definition. A parameter space tower is a finite

sequence of measurable sets Ωj ⊂ [0,1]j such

that

(t1, . . . , tk) ∈ Ωk ⇒ (t1, . . . tk−1) ∈ Ωk−1

|Ω1| ≥ β,
and such that there exists x0 ∈ E such that for

all even k

t ∈ Ωk ⇒ |{s ∈ [−1,1] : (t, s) ∈ Ωk+1}| ≥ c0β
x0 + Φk(Ωk) ⊂ E

and the same holds for odd k with α,E replaced

respectively by β, F .
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Near-Tautology

Lemma. There always exists a parameter space

tower Ω1, . . .Ω2n.

Proof:

• For Ω1 this is Bourgain’s bush construction.

• Successive Ωj are obtained by descending in-

duction on j, using a pruning operation.

This has nothing to do with curvature.
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Crummy Lower Bound for |E|

Define

rn =
{

1 + 3 + . . . (n− 1) if n is even

2 + 4 + · · ·+ (n− 1) if n is odd.

Lemma. |E| ≥ cαn(n+1)/2 · (β/α)rn

Proof for n even: Let Ψ(t) = x0 + Φ(t).

• E ⊃ Ψn(Ωn), and

|Ψn(Ωn)| ≥ 1
n!

∫
Ωn

|∂Ψn/∂t| dt.

• The Jacobian is

|∂Ψn/∂t| = c
∏
i<j

|ti − tj|

and simple estimations exploiting the tower struc-

ture of Ωn conclude the proof.
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Factor of n! comes from upper bound on multiplicity
(except for set of parameters t of measure zero).

For n odd we use Ωn+1 but only those points t whose
first coordinate has a fixed value.

For n = 2,3 this proves the theorem (also for β ≥ cα). A
small extra trick makes it work for n = 4, but for about
n = 6 and larger it’s less easy to fix.

For the particular configurations that arise in analyz-
ing this construction for the extremal examples, the set
Ψn(Ωn) does satisfy the desired lower measure bound.
The problematic cases turn out to be irrelevant ones
where E is actually much larger than needed; the prob-
lem is to prove it.

(I don’t know how close I come to proving that the

known extremals are essentially the only worst cases.)
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Modified Strategy

Device: Use also Ψk(Ωk) for k > n.

Drawback: Ψk is not finite-to-one.

Solution: E ⊃ Ψk( typical n-dimensional slice )
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What remains is merely an elaboration of the

scheme I’ve described, but in terms of num-

ber of written words it’s actually the bulk of

the argument. Because it’s a bit particular I’ll

describe the rest only in vague terms.

I need all k between n and 2n− 2.

Insert picture

We have choice of how to slice.
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Good Parameter Sets, k > n

(Oversimplified)

Assume β � α.

Definition: band structure on {1,2, . . . k} is a
partition into nonempty disjoint subsets, called
bands.

In each band, one index is designated as free;
others are bound to the free index, except that
for bands having exactly 2 indices, the second
index is quasi-free (and is quasi-bound to the
associated free index).
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For odd k there are very similar requirements.
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Main Organizational Lemma

It is always possible to find
• an index n ≤ k ≤ 2n− 2 and a set ω ⊂ Ωk,
and to assign a
• band structure to set of all indices 1 ≤ j ≤ k such that
(for even k):

(i) The number of free indices plus the number of
quasi-free indices equals n.

(ii) |ω| ≥ cαk/2βk/2

(iii) For all i 6= j,

|ti − tj| ≥ δα

unless one of i, j is bound or quasi-bound to the
other, or both are bound to the same index.

(iv) If i is bound to j then |ti − tj| ≤ δ′α.

(v) If i is quasi-bound to j then cβ ≤ |ti − tj| ≤ δα.

(vi) δ′ is sufficiently small relative to δ to satisfy the
Jacobian lemma below.
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Parameter Space Slicing

• Λ = {m1, . . . ,mn} dendnotes set of all free or

quasi-free indices.

• τ = (tm1, . . . , tmn) ∈ R
n.

• For each bound index i ≤ k, B(i) = unique

free index to which i is bound.

• Make change of variables

s = (ti − tB(i))i6∈Λ ∈ R
k−n

• Regard t as a function of (τ, s).

• Slices of ω: Hold s constant.

• Define

Gs(τ) = Ψk(t(τ, s)) .
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Jacobian Lemma

Lemma. For each δ ∈ R
+, there exist δ′, c ∈

R
+ such that for all indices k and parame-

ter sets ω possessing the structure described

above, whenever t(τ, s) ∈ ω

|∂Gs/∂τ | ≥ cαn(n−1)/2(β/α)M

where M = number of quasi-free indices.

Applying this lemma to a typical slice leads to

|E| ≥ cαn(n+1)/2(β/α)M+k
2

and the main organizational lemma guarantees

that

M +
k

2
≤ n− 1.
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Note that lemma gives a uniform lower bound

for the Jacobian.

I use Bezout’s lemma to control maximal num-

ber of preimages for generic point in target

space R
d. This ought to be avoided.

This is one of those things which takes a lot

of words to say but is essentially trivial. (i) If

there are too many free plus quasi-free indices,

then one drops the last index. (ii) If many in-

dices are either far apart or close together then

all is OK. In bad case where they’re in between

we redefine what is meant by “far apart” by a

large constant factor, getting more free plus

quasi-free indices. Then we repeat.
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A Cautionary Note

Suppose u ∈ C2 satisfies

∂2u

∂x∂y
≥ 1 on [0,1]2.

Question. Is it true that for any α, β and any

parameter space tower Ω1,Ω2,∫
Ω2

|u(x, y)| dx dy ≥ cα2β2 ?

(c is permitted to depend on u but not on

α, β,Ωj.)

Proposition.

• There exists u ∈ C∞ for which the answer is

NO.

• There exist u ∈ C2, sequences α, β → 0, and

sets Ωj such that∫
Ω2

|u(x, y)| dx dy ≤ cα2β2 / log(1/α).
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If one were to attempt to apply this general

method to other similar operators, one would

arrive at a family of questions of the following

type. Here I state the simplest nontrivial one.

The proposition is part of ongoing work with

A. Carbery and J. Wright.

This also helps to explain why I use explicit

form of Jacobians (Vandermonde determinants)

in proving theorem, rather than merely exploit-

ing lower bounds for partial derivatives of Ja-

cobians.

• If one asks for a uniform lower bound for

all u satisfying ∂2u/∂x∂y ≥ 1 then for β ≤ α,

the integral is ≥ cβ2α3/ log(β−1). This is best

possible modulo the log factor.
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Deficiency

More ambitious goal: optimal smoothing esti-

mates Lp 7→ L
q
s.

Problem: For s > 0, cancellation plays essen-

tial role.

Expectation: This method won’t settle the

case s > 0, but perhaps it can be combined

with endpoint results for q = p plus interpola-

tion and/or analytic family of operators to get

full picture.

Core of method should be quite generally appli-

cable; does not require convolution operators,

nor curves.
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Optimal q = p smoothing estimates are presently

known only for dimension 2.
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Related Work of Carbery-C-Wright

Theorem. Suppose ∂2u/∂x∂y ≥ 1 on [0,1]2.

Then

|{(x, y) : |u(x, y)| < δ}| ≤ Cδ1/2
√

log(1/δ).

• The constant C is universal; it is independent of any
upper bound on higher derivatives of u.

• Example −(x− y)2/2 shows exponent is best possible.
We don’t know whether the log is needed.

• This estimate is equivalent to having∫
E

|u| ≥ c|E|3/ log(|E|−1)

for all small sets E.

There are generalizations to higher-order deriva-

tives and higher dimensions, and there are os-

cillatory integral estimates of van der Corput

type in the same spirit, for all dimensions.
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Related to Combinatorial Problems

Let E = set where |u| < δ

and Ex = {y : (x, y) ∈ E}.

∂2u/∂x∂y ≥ 1

⇒
For any polygonal Jordan curve γ with sides

parallel to axes and all corners in E, Area of

region enclosed is ≤ δ times number of corners

⇒
Any rectangle with sides parallel to axes and

all corners in E has area ≤ δ
⇒
|Ex ∩ Ex′| ≤ δ/|x− x′| for all x, x′

⇒
|E| ≤ cδ1/2

√
log(1/δ).
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Proof goes via a sequence of implications:

Thus the proof has an combinatorial aspect, as

well. It seems to be an open problem whether

the rectangle condition implies the measure es-

timate with no logarithmic factor.
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Counterexample

The condition

|Ex ∩ Ex′| ≤ δ/|x− x
′|

does not imply

|E| ≤ cδ1/2.

The construction is based on the

Kakeya/Besicovitch set.
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