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1. Introduction

If a function has a large derivative, then it changes rapidly, and so spends little
time near any particular value. This paper is devoted to quantifying that principle for
functions of several variables, particularly as it pertains to two problems in harmonic
analysis. Along the way we shall encounter diverse problems and techniques, and
shall be led to issues distinctly combinatorial in nature.

We begin by reviewing two well-known questions in one-dimensional analysis. Sup-
pose that u is a (smooth) real valued function on the real line R such that for some
k ∈ N, u(k)(t) ≥ 1 for all t ∈ R. Here, and in what follows, u(k) denotes the k’th
derivative of u.

a) How small are the sublevel sets {t ∈ R : |u(t)| ≤ α} for small α? In particular,
at what rate does the Lebesgue measure |{t ∈ R : |u(t)| ≤ α}| tend to zero as
α→ 0?

b) How quickly does the oscillatory integral I(λ) =
∫ b
a
eiλu(t)dt tend to zero as

λ→∞?

Answers are given by the following two results. The first is known as van der
Corput’s lemma; see, for example [S].

Lemma 1.1. a) Suppose k ≥ 2. If u(k) ≥ 1 then |I(λ)| ≤ Ck/ |λ|
1
k where Ck is an

absolute constant depending only upon k.

b) There is no constant C such that if u′ ≥ 1, then |I(λ)| ≤ C/ |λ|.
c) If u′ ≥ 1 and if in addition u′ is monotonic, then |I(λ)| ≤ C1/ |λ| where C1 is

an absolute constant.

Lemma 1.2. For each k ≥ 1, there exists a finite absolute constant Ck such that for
any function satisfying u(k)(x) ≥ 1 for all x,

|{t : |u(t)| ≤ α}| ≤ Ckα
1/k .

The estimates in Lemmas 1.1 and 1.2 are uniform over classes of functions u
whose k-th derivatives are bounded below; they are independent of any upper bounds
for higher order derivatives of u. Our chief goal is to establish analogous uniform
estimates in higher dimensions.

In dimensions greater than one, satisfactory results are generally valid only for
functions u defined on suitable bounded subsets of R

n, rather than on the whole
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space. For simplicity we work on the unit cube Q = Qn = [0, 1]n (or on Qn′ ×Qn′′),
but as the arguments will demonstrate, all results hold for arbitrary convex subsets
of R

n (or Cartesian products of two convex sets) with uniformly bounded diameters,
with uniform bounds in the conclusions. Two of our principal results are as follows:

Theorem 1.3. For any multi-index β there exist ε > 0 and C <∞, depending only
on β and on n, such that for any integrable1 u : Q→ R that satisfies Dβu ≥ 1 on Q
in the sense of distributions, one has for each α > 0 the sublevel set estimate

|{x ∈ Q : |u(x)| ≤ α}| ≤ Cαε.

Theorem 1.4. Let β = (β1, . . . , βn) 6= 0 be a multi-index, and suppose that at least
one of its entries βj is greater than or equal to two. Then there exist ε > 0 and
C < ∞, depending only on β and on n, such that for any integrable u : Q → R

satisfying Dβu ≥ 1 on Q in the sense of distributions, for all λ ∈ R, the oscillatory
integral I(λ) =

∫
Q
eiλu(x)dx satisfies

|I(λ)| ≤ C|λ|−ε.

Throughout the discussion, our aim is to obtain estimates entirely independent
of any other (quantitative) assumptions concerning u. That is, both ε and C should
depend only on β and the dimension n. Previous results in dimensions > 1 — where
the constant C depends also on ‖u‖C|β|+1 for example, see [S] — have lacked this
uniformity. Part of our motivation is the quest for a robust theory stable under
perturbations. In many problems, particularly those concerning singular integral
operators, scaling and normalisation play a central role, and families of functions
u may arise, which depend upon various parameters involved in the scaling; it is
essential to obtain estimates independent of those parameters.

It would be equivalent to state Theorems 1.3 and 1.4 only for C∞ functions u,
satisfying Dβu ≥ 1 in the ordinary pointwise sense, with the upper bounds in the
conclusions uniform over all such u. For a simple approximation argument based
on convolution with approximate identities then yields the conclusion for arbitrary
integrable functions satisfying the lower bound in the distribution sense.

We have been unable to obtain the seemingly natural exponent ε = |β|−1 in Theo-
rems 1.3 and 1.4. (The exponent |β|−1 can be obtained if C is allowed to depend on
the C |β|+1 norm of u.) For large multi-indices β, and for high dimensions, there is a
large gap between our results and those counterexamples known to us.

What may be unexpected is that certain combinatorial problems should be central
to our higher-dimensional analysis. As an example of such a problem, consider a
matrix M = (mi,j) where 1 ≤ i, j ≤ N , each of whose entries mi,j is equal either to
1 or to 0. By a 2 × 2 submatrix we mean any matrix (mi(p),j(q)) where p, q ∈ {1, 2}
and 1 ≤ i(p), j(q) ≤ N for each p, q. In particular, we allow i(1) = i(2) and/or
j(1) = j(2). By the area of such a submatrix we mean the quantity (|i(1) − i(2)| +
1)(|j(1)− j(2)|+ 1).

1By an integrable function we mean a Lebesgue measurable function in L1(Q).
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Problem 1.1. Does there exist ε > 0 such that for every M,N ≥ 1, any N × N
matrixM which has at least M entries equal to 1 has a 2× 2 submatrix all of whose
entries equal 1, whose area is at least εM2/N2?

This is the simplest of a hierarchy of related problems that arise, in continu-
ous rather than discrete formulations, in our analysis. To the best of our knowl-
edge it remains open; our methods yield the existence of a submatrix with area
≥ εM2/N2 log(N).

Our methods apply in an operator-theoretic setting, that is, to

Sαf(x′) =

∫
χα(x′, x′′) f(x′′) dx′′ and Tλf(x′) =

∫
eiλu(x′,x′′)f(x′′)dx′′

where x = (x′, x′′) ∈ R
n′+n′′ , and χα is the characteristic function of the set where

|u(x)| < α. Here one seeks decay estimates for the operator norms from Lp(Qn′′)
to Lq(Qn′) as α → 0 and |λ| → ∞, which depend only upon the basic hypothesis
Dβu ≥ 1 on Q. This is achieved in Theorems 3.16 and 4.13, though with seemingly
poor decay exponents.2 (Of course since the Tλ problem specializes, for particular
choices of u, to some of the leading unsolved problems of harmonic analysis, this lack
of optimality is no surprise.) In the special case where n = 2 and β = (1, k) with
k ≥ 2, we are able to obtain the sharp L2 − L2 result for Tλ; see Theorem 4.8.

These various problems are interrelated. The usual proof of the van der Corput
Lemma 1.1 uses the sublevel set estimate of Lemma 1.2 together with a simple integra-
tion by parts argument. On the other hand, estimates for oscillatory integrals imply
estimates for sublevel sets, via an old device: writing φ(u(x)) =

∫
R e

iλu(x)φ̂(λ)dλ ,
estimates on I(λ) or ‖Tλ‖ translate directly to estimates on

∫
φ(u(x))dx or the op-

erator whose kernel is φ(u(x)). In particular, choosing φ(t) = ψ(t/α) we see that

I(λ) = O(|λ|−δ) implies |{x : |u(x)| ≤ α}| ≤ Cαδ and that ‖Tλ‖ = O(|λ|−δ) implies
‖Sα‖ = O(αδ). In [C2] sublevel set estimates appeared as a central part of a mech-
anism devised to substitute for oscillatory integral estimates, where no reduction to
the latter was readily available. Finally, the problem addressed by Theorem 1.3 is
the special case p = ∞, q = 1 of the problem for Sα and the problem for I(λ) is a
special case of the instance p =∞, q = 1 of the problem for Tλ, and can in fact (see
Proposition 4.1) be used to solve that problem.

Motivated in part by the case k = 1 of van der Corput’s lemma, we also explore
what happens if supplementary higher order “convexity” type hypotheses are imposed
on u; in the settings of Theorems 1.3 and 1.4 we are then able to recover the natural
decay rates O(α−1/|β|) and O(λ−1/|β|), respectively. See Sections 3 and 4 for proofs,
and Section 7 for an application. When n = 2 we likewise obtain the optimal Lp−Lq
mapping properties of Sα under additional “convexity” hypotheses; see Theorem 3.13.

The layout of the paper is as follows. In Section 2 we give two basic real variable
lemmas, and deduce versions of Lemmas 1.1 and 1.2. In Section 3 we address the
sublevel set and Sα problems, while the corresponding I(λ) and Tλ problems are

2Better or optimal decay estimates for Tλ — but requiring more assumptions concerning u such
as quantitative smoothness — have been obtained by Phong and Stein [PS2] and by Seeger [Se2] in
the case n = 2.
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treated in Section 4. Many of the results of Section 3 for sublevel set estimates
could alternatively be deduced from the results of Section 4, as remarked above, but
with inferior exponents. The possible replacement of Dβ by other partial differential
operators such as the Laplacian is discussed briefly in Section 5. Section 6 contains
remarks concerning the combinatorial nature of our problems. Section 7 examines
the special case where u is a polynomial of bounded degree, while Section 8 contains
some applications; in both sections our basic hypothesis Dβu ≥ 1 arises naturally. In
Section 9 we briefly discuss the sublevel set problem, under the hypothesis that ∂βu
is not merely bounded below, but is C∞. It might well also be natural to posit lower
bounds on several different partial derivatives of u, in the spirit of work of Phong
and Stein, but that problem is not considered in this paper.

All our results concerning I(λ) and Tλ are equally valid for
∫
eiλu(x)φ(x)dx and∫

eiλu(x′,x′′)f(x′′)φ(x′, x′′)dx′′, where φ is a fixed smooth function of compact support
in Q; of course now the constants will depend (in an uninteresting way) upon φ and
some of its derivatives. Moreover all our results remain valid when u is merely an
integrable function satisfying Dβu ≥ 1 in the sense of distributions.

Concerning notation, the Lp − Lq operator norm of an operator P is denoted by
‖P‖p7→q, or ‖P‖Lp→Lq or simply ‖P‖ when the context is clear. C denotes a generic
constant depending only on the parameters made explicit during any argument; the
precise value of C may vary from line to line. The expression A ∼ B means that
A/B is bounded away from zero and infinity. N denotes the set {0, 1, 2, . . . }. We
write ∧ for ‘min’, ∨ for ‘max’, and #E for the cardinality of a set E.

Acknowledgement. The authors would like to thank Stephen Wainger, without
whose input this project would never have begun, let alone been finished. They
also thank Professors D. H. Phong, A. Seeger and E. M. Stein for many conversa-
tions and discussions on these topics. Finally, they acknowledge the hospitality of
ICMS, Edinburgh, where this research began, and of MSRI, Berkeley, where it was
concluded.

2. The one-dimensional case revisited

As stated in the introduction, in order to prove our main results, in which u is an
integrable function satisfying ∂βu ≥ 1 in the sense of distributions, it suffices to prove
them for C∞ functions satisfying such a lower bound, so long as the bounds obtained
are uniform over the class of all such u. To justify this reduction, fix a real-valued,
nonnegative auxiliary function η ∈ C∞0 (Rn) supported in the unit ball centered at
the origin, satisfying

∫
η = 1. Set ηt(x) = t−nη(x/t), and u(t)(x) = u ∗ ηt(x). Then

u satisfies the bound ∂βu ≥ 1 on the unit cube Q, in the sense of distributions, if
and only if each u(t) satisfies the same bound in the pointwise sense, on the domain
Qt = {x ∈ Q : dist (x, ∂Q) < t}. Likewise all the oscillatory integral and sublevel
set estimates considered in this paper hold for u, if and only if they hold uniformly
for all u(t) as t → 0, with Q replaced by Qt. Consequently we will assume without
comment in proofs throughout the paper that u ∈ C∞.

In this section we give versions of the one-dimensional van der Corput lemma and
the corresponding sublevel set estimate which are due to Arhipov, Karacuba and



VAN DER CORPUT AND SUBLEVEL SET ESTIMATES 5

Cubarikov [AKC]. These more precise formulations appear not to be well-known and
so we have included them for completeness.

Proposition 2.1. If u is an integrable, real-valued function satisfying u(k)(t) ≥ 1 on
R in the sense of distributions, then

|{t : |u(t)| ≤ α}| ≤ (2e)((k + 1)!)1/kα1/k.

Proposition 2.2. There exists an absolute constant C so that for any a < b, any
k ≥ 2, and any integrable real-valued function satisfying u(k) ≥ 1 in the sense of
distributions, for every λ, ∣∣∣ ∫ b

a

eiλu(t)dt
∣∣∣ ≤ Ck|λ|−1/k.

Remark. That the linear growth in k of the constants in the above propositions is
optimal may be seen by examining the function u(t) = tk/k!. For an application see
Section 7.

Before proving the propositions we give two lemmas, upon which our whole analysis
in both one and several variables rests. The first is a generalisation of the classical
mean-value theorem and can be found in texts on numerical analysis, for example
[IK], p.189ff. It employs Lagrange interpolation for polynomials. For the convenience
of the reader we include a proof.

Lemma 2.3. Let k ≥ 1, suppose that a1, . . . , ak+1 ∈ R are distinct, that f is a Ck−1

mapping from the closed convex hull cvx{a1, . . . , ak+1} to R, and that f is k times
differentiable on cvx{a1, . . . , ak+1}. Then there exists a ζ ∈ cvx{a1, . . . , ak+1} such
that

k+1∑
m=1

cmf(am) = f (k)(ζ)

where cm = ±k!
∏

`: 6̀=m
|a` − am|−1 .

Here cvx and cvx denote respectively the open convex hull of a set and its closure.

Proof. Let φ(x) = f(x)−Axk+pk−1(x) where pk−1 is some polynomial of degree k−1
and A ∈ R. We assert that we can choose pk−1 and A so that φ(am) = 0, 1 ≤ m ≤
k + 1. If so, then by Rolle’s theorem φ(k) vanishes somewhere in cvx{a1, ..., ak+1}.
So there is a ζ ∈ cvx{a1, ..., ak+1} such that f (k)(ζ) = k!A. So it remains to find
the A and pk−1 such that φ(am) = 0 for all m. Clearly this holds if and only if the
coefficients b0, ..., bk−1 of pk−1, and A satisfy the matrix equation

Vk+1(a1, ..., ak+1)


b0
...

bk−1

−A

 = −


f(a1)

...

...
f(ak+1)
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where Vk+1 is the Vandermonde matrix in {a1, . . . , ak+1} with 1’s down the first
column. This equation clearly has a unique solution when the am are all distinct,
and Cramér’s rule shows that

A =
k+1∑
m=1

±detVk(a1, . . . , âm, ..., ak+1)

detVk+1(a1, ..., ak+1)
f(am)

where the circumflex in the Vk in the numerator indicates omission of am. By the
formula for the Vandermonde determinant the coefficient of f(am) in this expression
is ±

∏
`:` 6=m

|a` − am|−1, as desired.

Lemma 2.4. Let E ⊆ R, |E| > 0, and let k ∈ N. Then there exist a0, a1, ..., ak ∈ E
such that for all ` = 0, 1, . . . , k,∏

j:j 6=`

|aj − a`| ≥ (|E| /2e)k .

Proof. Since an arbitrary measurable subset of R can be mapped to an interval by a
measure-preserving transformation which does not increase distances, the worst case
clearly occurs when E is an interval. Scaling permits us to assume E = [0, 1]. Taking
aj = j/k, we see that the value of ` giving the least value of the left side in the
proposed inequality is k/2 when k is even and (k ± 1)/2 when k is odd. For even k,
the left-hand side for ` = k/2 is{

1

k
· 2

k
. . .

(k/2)

k

}2

=

{
(k/2)!

(k/2)
k
2 2

k
2

}2

≥ (2e)−k .

For odd k, the left-hand side for ` = (k ± 1)/2 is{
1

k
.
2

k
. . .

(k − 1)/2

k

}2
k + 1

2k
≥ (2e)−k

also.

Proof of Proposition 2.1. Let E = {t : |u(t)| ≤ α}. If |E| > 0, there exist, by
Lemma 2.4, a0, . . . , ak ∈ E so that for all `

|E|k ≤ (2e)k
∏
j:j 6=`

|aj − a`| .

On the other hand, Lemma 2.3 implies that for some ζ ∈ cvx{a0, . . . , ak},

u(k)(ζ) = k!
∑
±u(aj)

∏
l:j 6=`

|aj − a`|
−1

≤ (k + 1)! max |u(aj)| (2e)k|E|−k.

The bound u(k)(t) ≥ 1 now implies |E|k ≤ (k + 1)!(2e)kα, as desired.
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Proof of Proposition 2.2. For a parameter β to be determined we split the integral
as I + II, where I is the integral over the region where |u′(x)| ≤ β. To estimate I
we apply Proposition 2.1 to the function v = u′ which satisfies v(k−1) ≥ 1 and obtain
|{|v| ≤ β}| ≤ Ckβ1/(k−1). For II, we observe that u(k) ≥ 1 means that {|u′| > β} is
the union of at most O(k) intervals on each of which u′ is monotone, and on each
of which we may integrate by parts in the usual fashion to obtain a bound which

is O(1/ |λ| β). Thus |II| ≤ Ck/ |λ| β. Optimising in β (β ≈ |λ|−(k−1)/k) yields the
result.

3. Operators associated to sublevel sets

Throughout the paper we use the following notation.

Definition. Uβ = Uβ(Q) denotes the set of all C∞ real-valued functions u ∈ C∞(Q)
that satisfy

Dβu ≥ 1(3.1)

at every point of Q. Ũβ denotes the set of all integrable real-valued functions u that
satisfy (3.1) on Q, in the sense of distributions.

Q = Qn denotes the unit cube in R
n, and β = (β1, . . . , βn) is a multi-index for

which each βj ∈ {0, 1, 2, . . . }. When n = 2, we will often write Uj,k rather than U(j,k).
Set

Eα = {x ∈ Q : |u(x)| ≤ α},
and, for n′ + n′′ = n (1 ≤ n′ ≤ n − 1), define the operators Sα taking functions on
Qn′′ to functions on Qn′ by

Sαf(x′) =

∫
Qn
′′

χEα(x)f(x′′)dx′′(3.2)

where x ∈ Qn is written as x = (x′, x′′) ∈ Qn′ × Qn′′ . We examine the Lp − Lq

mapping properties of Sα as a function of the (small) parameter α. The special case
p =∞, q = 1 of this problem is of course equivalent to estimating |Eα|.

3.1. The two-dimensional case. For 0 < α < 1 let Eα = {(x, y) ∈ Q2 : |u(x, y)| <
α} and rewrite (3.2) as Sαf(x) =

∫
[0,1]

χEα(x, y)f(y)dy. We suppose u ∈ Ũj,k, that

is, u is integrable, real-valued in Q, and satisfies

∂du

∂xj∂yk
≥ 1 on Q(3.3)

in the sense of distributions, where d = j + k and 0 ≤ j, k ≤ d. We investigate the
Lp → Lq boundedness properties of Sα as a function of α. We first give some lower
bounds on ‖Sα‖ = ‖Sα‖Lp→Lq for particular u satisfying (3.3).

Proposition 3.1. For each j, k there exists C <∞ such that the following hold.

(a) If u(x, y) = −(x− y)d with d ≥ 2, then ‖Sα‖ ≥ Cα1/d.
(b) If u(x, y) = xjyk, then ‖Sα‖ ≥ Cα1/jq.
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(c) If u(x, y) = xjyk, then ‖Sα‖ ≥ Cα1/kp′.

Proof. (a) Let f = χ(0,1); then Sαf is essentially the constant α1/d and thus ‖Sα‖ ≥
Cα1/d.

(b) If 0 < x < α1/j, Sαf(x) =
∫ 1

0
f(y)dy, and so ‖Sα‖ ≥ Cα1/jq.

(c) If 0 < y < α1/k, S∗αg(y) =
∫ 1

0
g(x)dx, and so ‖Sα‖p7→q = ‖S∗α‖q′−p′ ≥ Cα1/kp′ .

Remark. For the choices of u in the above Proposition, one can easily show that

‖Sα‖ ≤ Cα
1
d
∧ 1
d

[1+ 1
q
− 1
p

] when u(x, y) = (x− y)d and ‖Sα‖ ≤ Cα
1
jq
∧ 1
kp′ when u(x, y) =

xjyk.

Corollary 3.2. sup
u∈Uj,k

‖Sα‖ ≥ Cα
1
d
∧ 1
jq
∧ 1
kp′ .

Note that 1/jq = 1/kp′ = 1/d precisely when p = q = d/j. So were we able to

prove ‖Sα‖Ld/j→Ld/j ≤ Cα1/d we would have ‖Sα‖ ≤ Cα
1
d
∧ 1
jq
∧ 1
kp′ for all 1 ≤ p, q ≤ ∞

by interpolation with trivial estimates. We now examine what upper bounds can be
obtained for ‖Sα‖.

Proposition 3.3. If j = 0 and k = d, then ‖Sα‖ ≤ Cα1/dp′; if j = d and k = 0,
then ‖Sα‖ ≤ Cα1/dq.

The proof is an easy consequence of the corresponding one-dimensional result; the
details are left to the reader.

Theorem 3.4. There exists an absolute constant C so that if ∂2u/∂x∂y ≥ 1 (i.e.

u ∈ Ũ1,1), then ‖Sα‖L2→L2 ≤ Cα1/2 log1/2(1/α) for 0 < α < 1/2.

Corollary 3.5. There is an absolute constant C so that for all u ∈ Ũ1,1

|{(x, y) ∈ Q : |u(x, y)| ≤ α}| ≤ Cα1/2 log1/2(1/α).

Thus we are missing the result for Ũ1,1 suggested by Corollary 3.2 by a logarithmic
factor; we do not know whether this factor is necessarily present.

We begin the proof of Theorem 3.4 with a lemma.

Lemma 3.6. Let u ∈ U1,1, 0 < α < 1/2, E = {(x, y) ∈ Q : |u(x, y)| ≤ α}, and
E(y) = {x : (x, y) ∈ E}. Then

|E(y1) ∩ E(y2)| ≤ 4α/ |y1 − y2| .(3.4)

Proof. If x ∈ E(y1)∩E(y2), then |u(x, yj)| ≤ α for j = 1 and 2 and so |u(x, y1)− u(x, y2)| ≤
2α. For y1, y2 fixed let ψ(x) = u(x, y1) − u(x, y2) =

∫ y1
y2

∂u
∂s

(x, s), so that ψ′(x) =∫ y1
y2

∂2u
∂x∂s

(x, s)ds satisfies |ψ′(x)| ≥ |y1 − y2| on [0,1] by the hypothesis u ∈ U1,1. So, by

the one-dimensional version of the problem under consideration, |{x : |ψ(x)| ≤ 2α}| ≤
4α/|y1 − y2|.

For a further discussion of Lemma 3.6, see Section 6 below.
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Proof of Theorem 3.4. The proof is by the method of T ∗T, although we phrase it
without this terminology in view of later proofs. Assuming as we may that f ≥ 0,

‖Sαf‖2
2 =

∫
|Sαf(x)|2 dx

=

∫ (∫
χEα(x, y)f(y)dy

)2

dx

=

∫∫∫
χEα(x, y1)f(y1)χEα(x, y2)f(y2)dy1dy2dx

=

∫ ∫
|E(y1) ∩ E(y2)| f(y1)f(y2)dy1dy2

≤
∫∫

|y1−y2|≤4α

f(y1)f(y2)dy1dy2 + 4α

∫∫
|y1−y2|≥4α

f(y1)f(y2)dy1dy2

|y1 − y2|
≤ 4α ‖f‖2

2 + 4α log(1/4α) ‖f‖2
2

≤ Cα log(1/α) ‖f‖2
2 ,

as required.

The only property of the sublevel set E = {(x, y) : |u(x, y)| < α} used in the
proof of Corollary 3.5 was the inequality (3.4); the following example shows that the
apparently natural upper bound of Cα1/2 for |E| does not follow from that property
alone. Write Ex = {y : (x, y) ∈ E}.

Proposition 3.7. For any A < ∞ there exist a parameter α and a set E ⊂ [0, 1]2

such that

|Ex ∩ Ex′ | ≤ α/|x− x′| for every x 6= x′ ∈ [0, 1].(3.5)

but |E| > Aα1/2.

Proof. Let δ > 0 be a small parameter. Let K ⊂ R
2 be a δ–Kakeya/Besicovitch set,

as constructed in [F], pp. 97-8. Define σ = σ(δ) to be the Lebesgue measure |K| of
K. Then σ = O

(
log log(δ−1)/ log(δ−1)

)
tends3 to zero as δ → 0. Moreover, to each

x ∈ [0, 1] is associated a measurable set Tx ⊂ K, with |Tx| ∼ δ and

|Tx ∩ Tx′| ≤ Bδ2/|x− x′|
for some constant B. Finally {(x, y) ∈ [0, 1]× R

2 : y ∈ Tx} is Borel measurable.
Indeed, the set K constructed in [F] is a union of ∼ δ−1 overlapping triangles.

We interpret the parameter x as an angle in a certain fixed range, and to each such
parameter associate a triangle containing a line segment of unit length, pointing in
the associated direction.

Fix a measurable map Φ : [0, 1] 7→ K satisfying |Φ(S)| = σ|S| for every measurable
subset S of [0, 1]. Define

E = {(x, y) ∈ Q : Φ(y) ∈ Tx}.
3This value of σ is obtained by taking δ−1 = 2k and choosing 1−α = log(k)/2k in the construction

in [F].
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Define α = Bδ2/σ.
Now for each x ∈ [0, 1], |Ex| = σ−1|Tx| ∼ δ/σ. Hence

|E| ∼ δ/σ ∼ σ−1/2α1/2 � α1/2.

Moreover

|Ex ∩ Ex′| = σ−1|Tx ∩ Tx′| ≤ Bδ2σ−1/|x− x′| = α/|x− x′|.

Thus E satisfies (3.5), and α−1/2|E| ∼ σ−1/2 tends to infinity as δ → 0.

Observe that the counterexample agrees with the bound Cα1/2 log(1/α)1/2 up to a

relatively tame factor4 of magnitude
√

log log(α−1).

We have presented Theorem 3.4 separately from the general two-dimensional result
because of its simplicity, but it does illustrate the method underlying the general
result. For the general case we can assume, by symmetry, that 1 ≤ j ≤ k ≤ d − 1
when considering the class Ũj,k. We first state a generalisation of Lemma 3.6.

Lemma 3.8. For each j, k ≥ 1 there exists an absolute constant Cj,k such that for
every u ∈ Uj,k and every 0 < α < 1/2, the sets E(y) = {x ∈ [0, 1] : |u(x, y)| ≤ α}
satisfy

|E(y0) ∩ · · · ∩ E(yk)| ≤ Cj,kα
1/j

k∑
m=0

∏
`: 6̀=m

|y` − ym|−1/j .

Proof. For y0, . . . , yk fixed, let

ψ(x) =
k∑

m=0

±k!
∏
`:` 6=m

|y` − ym|−1u(x, ym),

where the ± signs are as in Lemma 2.3. Suppose x ∈ E(y0)∩ · · · ∩E(yk). Then since
|u(x, ym)| ≤ α for each 0 ≤ m ≤ k we have

|ψ(x)| ≤ αk!
k∑

m=0

∏
`:` 6=m

|y` − ym|−1.

Now by Lemma 2.3,
(
∂
∂x

)j
ψ(x) is equal for any x to ∂k

∂yk
∂j

∂xj
u(x, ζ) for some ζ (de-

pending on x) in the convex hull of {y0, . . . , yk}, and so
(
∂
∂x

)j
ψ(x) ≥ 1 on [0,1] since

u ∈ Uj,k.

4We believe that even this discrepancy might be eliminated by means of a recent result of U. Keich,
but have not yet been able to verify this.
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Therefore, by the one-dimensional version of the problem,∣∣∣{x : |ψ(x)| ≤ αk!
k∑

m=0

∏
`:` 6=m

|y` − ym|−1
}∣∣∣

≤ Cjα
1/j(k!)1/j

{
k∑

m=0

∏
`:` 6=m

|y` − ym|−1

}1/j

≤ Cj,kα
1/j

k∑
m=0

∏
`:` 6=m

|y` − ym|−1/j .

For an alternative approach to Lemmas 3.6 and 3.8 see Lemma 6.2.

Theorem 3.9. Let 1 ≤ j ≤ k, and let p = j(k+1)
j(k+1)−k , q = k + 1. Then there is an

absolute constant Cj,k so that for any integrable function u satisfying ∂j+ku/∂xj∂yk ≥
1 on Q (that is, for every u ∈ Ũj,k), for 0 < α < 1,

‖Sα‖Lp→Lq ≤ Cj,k

{
α1/j(k+1) j > 1
α1/(k+1)(logα−1)k/(k+1) j = 1

.

Corollary 3.10. There is an absolute constant Cj,k so that under the same hypoth-
esis on u,

|{(x, y) ∈ Q : |u(x, y)| ≤ α}| ≤ Cj,k

{
α

1
j(k+1) j > 1

α
1
k+1 (logα−1)

k
k+1 j = 1.

Proof of Theorem 3.9.∫
(Sαf)k+1dx =

∫ (∫
χEα(x, y)f(y)dy

)k+1

dx

=

∫
· · ·
∫ k+1∏

m=1

χEα(x, ym)dxf(y1) · · · f(yk+1)dy1 · · · dyk+1

=

∫
· · ·
∫
|E(y1) ∩ · · · ∩ E(yk+1)| f(y1) · · · f(yk+1)dy1 · · · dyk+1.

Suppose now that j > 1; we use Lemma 3.8 and symmetry to dominate this expression
by

Cα1/j

∫
· · ·
∫

|y1 − y2|−1/j|y1 − y3|−1/j · · · |y1 − yk+1|−1/j

·f(y2)f(y3) · · · f(yk+1)dy2 · · · dyk+1f(y1)dy1

= Cα1/j

∫
{Iβf(y1)}kf(y1)dy1,
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(where Iβ is fractional integration of order β = 1− 1
j
) and hence by α1/j ‖Iβf‖kkp′ ‖f‖p.

This in turn is dominated by α1/j ‖f‖k+1
p precisely when 1

kp′
= 1

p
− 1 + 1

j
; that is,

when p = j(k + 1)/(j(k + 1)− k).
When j = 1 we instead use multilinear interpolation with one copy of f in L1 and

all the others in L∞. We use the estimate

|E(y1) ∩ · · · ∩ E(yk+1)| ≤ Cj,k min
(

1, α
k+1∑
m=1

∏
`:` 6=m

|y` − ym|−1
)

together with the fact that for each s ≥ 1, the L1 norm of min(1, µ/t logs(t/µ)) as

a function of t ∈ [0, 1] is O
(
µ log(s+1)(µ−1)

)
. Hence one incurs an extra factor of

log (1/α)k in this case.

Remark. Note that 1
k+1
≤ j

j+k
= j

d
(with equality only when j = 1), that

(
1
p
, 1
q

)
=(

j(k+1)−k
j(k+1)

, 1
k+1

)
lies on the line 1

jq
= 1

kp′
, and that the exponent 1/(k + 1)j equals

1/jq = 1/kp′. Thus according to Corollary 3.2, the estimate of Theorem 3.9 is sharp
(modulo a logarithmic factor in the case j = 1) for the stated exponents p, q for all
j, k; however, we obtain the endpoint exponent pair (p−1, q−1) = (j/d, j/d) only when
j = 1. Consequently we obtain a poor lower bound in Corollary 3.10 for large j; we
know of no reason to believe that estimate to be sharp.

3.2. The two-dimensional case with extra hypotheses. We now discuss how
sharp operator bounds for Sα may be obtained under some mild conditions of a
qualitative nature on u. Before doing so we point out that according to Lemma 3.8,
it suffices to obtain the desired operator bounds when the sublevel sets E(y) satisfy

|E(y1) ∩ · · · ∩ E(yk+1)| ≤ Cj,kα
1/j

k+1∑
m=1

∏
`:` 6=m

|y` − ym|−1/j(3.6)

for all y1, . . . , yk+1. Note that if the ym are µ-separated (i.e. m 6= `⇒ |ym − y`| ≥ µ),
(3.6) implies

|E(y1) ∩ · · · ∩ E(yk+1)| ≤ Cj,kα
1/j/µk/j .(3.7)

Let Lp,q denote the usual Lorentz space.
In what follows we let E(x) = {y : |u(x, y)| ≤ α}; the script E(x) denotes a set

of parameters y depending on x, while roman E(y) denotes a set of parameters x
depending on y.

Proposition 3.11. Let j, k ≥ 1 and set d = j+ k. Then for each A ≥ 1 there exists
C < ∞ such that for any u ∈ Uj,k for which each set E(x) is a union of at most A
intervals,

‖Sαf‖
L
d
j ,∞
≤ Cα1/d ‖f‖ d

j
,1 .

Proof. It is no loss of generality to assume that each section E(x) = {y : (x, y) ∈ Eα}
is a single interval, for by hypothesis the sublevel set Eα may be decomposed as a
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union of at most A sets, for each of which every section is an interval. These sets
may not be sublevel sets, but their sections inherit (3.6), which is the only property
of Eα to be used in the proof.

We may also assume that f ≡ χF , and then that λ ≤ 1. We want to show that

|{x : |E(x) ∩ F | > λ}| ≤ Cα1/j |F |λ−d/j.
We break [0,1] up into equally spaced intervals Iσ, with spacing equal to the nearest
integer to the reciprocal of α1/j/λk/j. It is then enough to show that

α
1
j λ−

k
j #{σ : Iσ contains an xσ such that |E(xσ) ∩ F | > λ} ≤ Cα

1
j |F | /λ

d
j .

Hence it suffices to show that

#{σ : Iσ contains an xσ such that |E(xσ) ∩ F | > λ} ≤ C |F |λ−1.

By considering only every M ’th interval, we may assume (at the expense of a factor

M) that the xσ are Mα
1
j /λ

k
j –separated. By applying the remark before the statement

of Proposition 3.11 with the roles of x and y interchanged, we see that by (3.7)∣∣E(xσ1) ∩ · · · ∩ E(xσj+1
)
∣∣ ≤ Cα

1
k /[Mα

1
j /λ

k
j ]

j
k = CλM− j

k(3.8)

Now (3.8) with M sufficiently large, together with the fact that each |E(xσ)| > λ,
implies that the intervals E(xσ) have bounded overlap, i.e. no point in [0,1] belongs
to more than N = N(j, k) of them. Thus

|F | ≥
∫
χFχS

σ
E(xσ) ≥

1

N

∫
χF
∑
σ

χE(xσ) =
1

N

∑
σ

|F ∩ E(xσ)|

≥ 1

N
λ#{σ : Iσ contains an xσ with |E(xσ) ∩ F | > λ}

which is what we needed to finish the proof.

Corollary 3.12. Under the same hypotheses as Proposition 3.11

|E| = |{(x, y) : |u(x, y)| ≤ α}| ≤ Cα
1
d

where C depends only on j, k and A.

Proof.

|E| = ‖Sα1‖1 ≤ ‖Sα1‖d/j,∞ ‖1‖d/k,1 ≤ Cα
1
d ‖1‖d/j,1 ‖1‖d/k,1 = Cα

1
d .

With some extra effort, one may improve the restricted weak-type conclusion of
Proposition 3.11 to the expected strong-type conclusion.

Theorem 3.13. Suppose that E ⊆ [0, 1]2. Let E(x) = {y : (x, y) ∈ E}. Suppose that
each E(x) is an interval. Suppose furthermore that for certain j, k ∈ N,

|E(x0) ∩ E(x1) ∩ · · · ∩ E(xj)| ≤ Cα1/k

j∑
s=0

∏
r:r 6=s

|xr − xs|−1/k(3.9)
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for all x0, . . . , xj ∈ [0, 1]. Then the operator Sf(x) =
∫
χE(x, y)f(y)dy satisfies

‖Sf‖ j+k
j
≤ Cα

1
j+k ‖f‖ j+k

j
.

Proof. In the first three steps of the proof, we will assume that each interval E(x) is
dyadic.

Step 1: ‖S(1)‖ j+k
j
≤ Cα

1
j+k .

To establish this, it suffices to show that∫
{x:E(x)⊆I}

|E(x)|
j+k
j dx ≤ Cα

1
j |I|(3.10)

whenever I is a dyadic interval which occurs as some E(xI). For, given (3.10), one
can choose I to be a maximal dyadic interval occurring amongst {E(x) : x ∈ [0, 1]},
and then sum over the (disjoint) I occurring.

If j = 1 we can use the fact that if xI is such that E(xI) = I, then |E(x)| ≤
C min(α1/k|x− xI |−1/k, |I|) whenever E ⊂ I, by (3.9). Integrating this raised to a
suitable power gives (3.10).5

Assume now that j ≥ 2. For I fixed we estimate the left-hand side of (3.10) as
follows. It suffices to show, for each p = 0, 1, 2, . . .∫

{x:E(x)⊆I, |E(x)|=|I|·2−p}

|E(x)|
j+k
j dx ≤ Cα

1
j |I| 2−

p
j .(3.11)

For each such p we decompose I as a disjoint union of dyadic intervals Iλ, with each
|Iλ| = |I| · 2−p. Let

Sλ = {x : E(x) = Iλ}

F0 = {λ : |Sλ| ≤ 2−
p
j α

1
j (2−p |I|)−

k
j }

and, for m ≥ 1,

Fm = {λ : |Sλ| ∼ 2m2−
p
j α

1
j (2−p |I|)−

k
j }.

Then ∫
{x:E(x)⊆I, |E(x)|=|I|2−p}

|E(x)|(j+k)/j ∼
∞∑
m=0

∑
λ∈Fm

∫
Sλ

|E(x)|(j+k)/j

∼
∞∑
m=0

∑
λ∈Fm

|Sλ| (|I| 2−p)(j+k)/j

≤ Cα
1
j 2−

p
j |I|
(

1 +
∞∑
m=1

#Fm 2m 2−p
)
.

Claim For every m ≥ 1, #Fm ≤ C2p−mj.

5We are indebted Nets Katz for pointing out this argument; our original proof in the case j = 1
was much more complicated.
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The claim establishes (3.11) as we are assuming j ≥ 2.

Proof of Claim Let x0 satisfy E(x0) = I, and assume without loss of generality
that each member of each Sλ is greater than or equal to x0. Pick a λ0 such that Sλ0

contains some member x̄ such that

x̄− x0 >
1
2
D := 1

2
diameter (∪Sλ).

Now a suitable modification of Lemma 2.4 gives the existence of x1, x2, ..., xj ∈ Sλ0

such that for 0 ≤ r, s ≤ j ∏
s:s 6=r

s∈{0,...,j}

|xr − xj| ≥ C |Sλ0|
j−1D.

Then, as E(xs) = Iλ0 for s = 1, ..., j, we have by (3.9)

2−p |I| =
∣∣∣ j⋂
s=0

E(xs)
∣∣∣ ≤ Cα

1
k

min
r

∏
s:s6=r
|xr − xs|

1
k

≤ Cα
1
k

{|Sλ0|
j−1 D} 1

k

≤ Cα
1
k

|Sλ0|
j
k (#Fm)

1
k

,

since D ≥ #(Fm) |Sλ0| . Therefore

#Fm ≤
Cα

|Sλ0|
j (2−p |I|)k

∼ C2−mj2p.

Step 1 is now complete.

Step 2: For a dyadic interval J,

‖SχJ‖ j+k
j
≤ Cα

1
j+k |J |

j
j+k .(3.12)

This follows directly from Step 1, by replacing each interval E(x) by E(x)∩J . These
smaller intervals still satisfy (3.9), which is all that was used in the proof of (3.10).
Invoking (3.10) for each maximal dyadic interval I ⊂ J in the resulting collection,
and then summing over all such maximal intervals, yields the conclusion desired.

Step 3: ‖Sf‖ j+k
j
≤ Cα

1
j+k ‖f‖ j+k

j
for all f .

For this we merely observe that, D denoting the collection of all dyadic intervals
in [0,1] and fI denoting |I|−1 ∫

I
f,∫

|Sf |
j+k
j =

∑
I∈D

∫
{x:E(x)=I}

(

∫
I

f)
j+k
j

=
∑
I∈D

(fI)
j+k
j |I|

j+k
j |{x : E(x) = I}|

=
∑
I∈D

(fI)
j+k
j γI ,
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where γI is defined by the last identity. Now this quantity is bounded above by

α
1
j ‖f‖(j+k)/j

(j+k)/j for general f if and only if {γI} satisfies the Carleson measure condition∑
I⊆J

γI ≤ Cα
1
j |J | for all J.

(See, for example, [S].) But∑
I⊆J

γI ≤
∫
|SχJ |

j+k
j ≤ Cα

1
j |J |

by Step 2. This concludes the proof, in the case where all intervals are dyadic.
Step 4: The general case.
To each x associate a dyadic interval Ĩ(x) ⊂ E(x), such that |Ĩ(x)| ≥ |Ẽ(x)|/4. To

x associate also I∗(x), defined to be the union of 9 adjacent dyadic intervals each of
length |Ĩ(x)|, such that the midpoint of Ĩ(x) is the midpoint of their union. Then
E(x) ⊂ I∗(x).

The collection {Ĩ(x)} certainly still satisfies the hypothesis (3.9), hence satisfies
the conclusion of Step 2 above. It follows almost immediately that {I∗(x)} likewise
satisfies that conclusion. The proof of Step 3 established that the conclusion of Step
2 implies the desired operator estimate. Since the operator associated to the larger
intervals I∗(x) dominates our operator S, the proof is complete.

In the next corollary, by a single-signed distribution we mean one that is real-
valued and is either nonnegative on every open set, or nonnegative on every open
set.

Corollary 3.14. Let u ∈ Ũj,k and suppose either that for some N > k, ∂Nu/∂yN is
single-signed, or that for some N > j, ∂Nu/∂xN is single-signed. Then there exists
a finite constant C depending only on j, k,N such that

‖Sαf‖ j+k
j
≤ Cα1/(j+k) ‖f‖ j+k

j
for all f, α.

Since the hypotheses are stable under convolution with nonnegative approximate
identities, the corollary follows from Theorem 3.13 by regularisation.

3.3. The higher-dimensional case. When n ≥ 3 our results are less complete.
We will show that there always are nontrivial uniform Lp−Lq operator bounds, and
that under certain nonquantitative “convexity” conditions imposed on u, optimal
estimates can be achieved for the sublevel set problem.

Theorem 3.15. For each n ≥ 1 and each β ∈ N
n there exist ε > 0 and C < ∞

such that for any real-valued, integrable function u satisfying Dβu ≥ 1 in the sense
of distributions on Q, and for any α > 0,

|{x ∈ Q : |u(x)| ≤ α}| ≤ Cαε.

This conclusion should be contrasted with a previously known result. If u ∈ C |β|
then the conclusion holds with ε = 1/|β|, with a constant C that depends on u. See
for instance [S]. Our conclusion is uniform over a large class of u, but with a weaker
exponent.
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Theorem 3.16. For each n = n′ + n′′ ≥ 2, each 1 ≤ p, q ≤ ∞ such that p 6= 1 and
q 6=∞, and each β there exist ε = ε(n, β, p, q) > 0 and C = C(ε, n, β, p, q) such that
whenever u is real-valued, integrable and Dβu ≥ 1 in the sense of distributions on Q,
for each α > 0 the operator

Sαf(x′) =

∫
Qn′′

χ{|u(x′,x′′)|≤α}f(x′′)dx′′

satisfies

‖Sαf‖Lq(Qn′ ) ≤ Cαε ‖f‖Lp(Qn
′′

) .

Theorem 3.16 is an immediate consequence of Theorem 3.15 so we prove only the
latter. Throughout its proof we suppose, without loss of generality, that u ∈ C∞,
that Dβu ≥ 1 on Q = Qn−1 ×Q1, and that βn 6= 0.

Proof of Theorem 3.15. The proof is by induction on n. The case n = 2 has already
been dealt with as Corollary 3.10, and so we assume the case n− 1 of Theorem 3.15.
Without loss of generality we may assume that u ∈ C∞.

Let β = (β′, βn) ∈ N
n−1×N and write βn = k. Let E = {x ∈ Qn : |u(x)| ≤ α} and

E(y) = {x′ : (x′, y) ∈ E}. We first claim that

|E(y1) ∩ · · · ∩ E(yk+1)|n−1 ≤ Cαε(n−1,β′)
k+1∑
m=1

∏
`:` 6=m

|y` − ym|−ε(n−1,β′)(3.13)

as in Lemma 3.8, where the left hand side denotes the n − 1 dimensional Hausdorff
measure of the set indicated. Indeed, with an appropriate choice of the ± signs,
defining

ψ(x′) =
k+1∑
m=1

±k!
∏
`:` 6=m

|y` − ym|−1 u(x′, ym),

we have

Dβ′ψ(x′) = ∂kyD
β′u(x′, ζ)

for some ζ in the convex hull of {y1, . . . , yk+1} by the higher-order mean-value theo-
rem, Lemma 2.3. So Dβ′ψ ≥ 1 on Qn−1. Thus, by the inductive hypothesis,

|{x′ : |ψ(x′)| ≤ γ}|n−1 ≤ Cγε(n−1,β′).

On the other hand, x′ ∈ E(y1) ∩ · · · ∩ E(yk+1) implies

|ψ(x′)| ≤ Cα
k+1∑
m=1

∏
`:` 6=m

|y` − ym|−1
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and so (3.13) follows. Now

|E| =

∫
Qn−1

∫
Q1

χE(x′, y)dydx′

≤
{ ∫
Qn−1

{∫
Q1

χE(x′, y)dy
}k+1

dx′
} 1
k+1

=
{∫
· · ·
∫
|E(y1) ∩ · · · ∩ E(yk+1)|n−1 dy1 . . . dyk+1

} 1
k+1

≤ Cαε(n−1,β′)/(k+1) ,

as required.

Notice that the proof shows that we may take ε(n, β) = ε(n − 1, β′)/(βn + 1). As
in Theorem 3.9 there is also an operator-theoretic Lp − Lq estimate implicit in the
above argument. For n = 3, β = (1, 1, 1) we obtain

‖Sαf‖L2(Q2) ≤ Cα
1
4 log(1/α)C ‖f‖

L
4
3 (Q1)

.

However, even here one uses induction on the measure estimate rather than the
operator-norm estimate.

Simple examples (as in the two-dimensional case) show that no better result is

possible for Sα under the hypothesis Dβ′

x′D
β′′

x′′u ≥ 1 than

‖Sαf‖r ≤ Cα
1

|β′|+|β′′| ‖f‖r
with r = (|β′|+ |β′′|)/|β′|.

Conversely, further “convexity” conditions on u lead to the corresponding optimal
sublevel set estimate:

Proposition 3.17. Suppose that u is integrable, that Dβu ≥ 1 in the sense of distri-
butions on Q, and moreover that for some indices N2 > β2, N3 > β3, . . . , Nn > βn, the
partial derivatives D(0,0,...,Nn)u, D(0,0,...,0,Nn−1,βn)u, . . . , D(0,N2,β3...,βn)u are all single-
signed, as distributions. There there is a C < ∞ depending only on β,N2, . . . , Nn

such that for every α > 0,

|{x ∈ Q : |u(x)| ≤ α}| ≤ Cα1/|β|.

Proof. By the usual approximation argument we may assume that u ∈ C∞. The proof
proceeds by induction on n. The case n = 1 is Proposition 2.1 and so we assume the
statement of Proposition 3.17 to hold in the case n−1. If E = {x ∈ Q : |u(x)| ≤ α} we
let γ denote a quantity to be chosen below, and write |E| =

∫
Q
χE(x′, xn)dx = I+II,

where I is the integral over the set where |∂βnu(x)/∂xβnn | ≥ γ.

For II we use the inductive hypothesis applied to Dβ′ with
(

∂
∂xn

)βn
u in place of

u to estimate the inner integral by Cγ
1

|β′| . For I we fix x′ and estimate the inner

integral by C(α/γ)
1
βn using the single-signedness of

(
∂
∂xn

)Nn
u, which assures us that
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[0,1] decomposes into at most boundedly many intervals on each of which ∂βnu/∂xβnn

is single-signed. Thus |E| ≤ C(γ
1

|β′| + (α/γ)
1
βn ) which, upon taking γ = α|β

′|//|β|,

yields |E| ≤ Cα
1
|β| as desired.

An application of this proposition can be found in Section 7.

Finally, we note that Proposition 3.17 can be strengthened slightly. Under its hy-

potheses, one obtains that the operator Sα maps L
|β|
β1
,1

(Qn−1) boundedly to L
|β|
β1
,∞

(Q1)
with constant O(α1/|β|). One mimics the proof of Proposition 3.11 using in place of
(3.8) the estimate

|E(x1) ∩ · · · ∩ E(xβ1+1)| ≤ Cα1/β1

β1+1∑
m=1

∏
`:` 6=m

|x` − xm|−1/β1

which is established, using the convexity assumption and Proposition 3.17, implicitly
in the proof of Theorem 3.15. The details are left to the reader. One may similarly
expect to improve restricted weak type |β| /β1 to strong type |β| /β1 along the lines
of Theorem 3.13. We do not pursue this point here.

4. Oscillatory Integral Operators

4.1. The two-dimensional case. Let, for |λ| >> 1,

Tλf(x) =

∫
[0,1]

eiλu(x,y)f(y)dy and I(λ) =

∫
[0,1]2

eiλu(x,y)dxdy

where u ∈ Uj,k and j, k > 0; that is u : Q → R is of class C∞ and satisfies
∂j+ku/∂xj∂yk ≥ 1 on Q = [0, 1]2. We could just as well define Tλ and I(λ) in-
corporating smooth bump functions rather than the ‘rough’ cut-offs χ[0,1] or χQ, and
our conclusions would be unchanged; either formulation of the results implies the
other.

In this sub-section we investigate the behaviour of I(λ) and ‖Tλ‖Lp→Lq for large |λ| ,
1 ≤ p, q ≤ ∞. As always, we are concerned only with estimates which are uniform
over the class Uj,k; for non uniform results, see for example [S] p.416. If j or k is
zero, then I(λ) is essentially one-dimensional, at least from our point of view, and
is governed by the classical van der Corput lemma; in contrast, there are no decay
estimates for ‖Tλ‖, as may be seen by considering functions u of the appropriate
single variable x or y.

Proposition 4.1. If j, k ≥ 1 and α > 0, then the statement

|I(λ)| ≤ C |λ|−α for all u ∈ Uj,k

is equivalent to

‖Tλ‖L∞→L1 ≤ C |λ|−α for all u ∈ Uj,k.
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Proof. If ‖Tλf‖1 ≤ C|λ|−α ‖f‖∞ , then
∣∣∫ Tλf(x)g(x)dx

∣∣ ≤ Cλ−α ‖f‖∞ ‖g‖∞ , and

taking f = g = 1 gives |I(λ)| ≤ C|λ|−α. Conversely, suppose |I(λ)| ≤ C|λ|−α for all
u ∈ Uj,k. Then for arbitrary φ, ψ ∈ C∞, and u ∈ Uj,k∣∣∣ ∫ eiλu(x,y)eiφ(x)eiψ(y)dxdy

∣∣∣ ≤ C|λ|−α

since u(x, y) + λ−1φ(x) + λ−1ψ(y) ∈ Uj,k too when j, k ≥ 1. Let now A and B be
arbitrary measurable subsets of [0, 1] and choose sequences of smooth functions φn
and ψn so that

φn(x)→
{

0 x ∈ A
π x ∈ AC and ψn(y)→

{
0 y ∈ B
π y ∈ BC .

By the dominated convergence theorem,∫
eiλu(x,y)eiφn(x)eiψn(y)dxdy

→
∫
eiλ(x,y)[χA − χAC ](x)[χB − χBC ](y)dxdy

as n→∞. Hence the latter integral is O(|λ|−α) uniformly in A, B and λ. Combining
this with the special cases where A and/or B is empty one immediately deduces that∣∣∣ ∫ eiλu(x,y)χA(x)χB(y)dxdy

∣∣∣ ≤ C|λ|−α

for arbitrary measurable A and B. Hence,∣∣∣ ∫ eiλu(x,y)
(∑

`

α`χA`(x)
)(∑

m

βmχBm(y)
)
dxdy

∣∣∣ ≤ C|λ|−α
∑
`

|α`|
∑
m

|βm|

for arbitrary measurable {A`}, {Bm}. If now f, g ∈ L∞[0, 1], we can write f as∑̀
α`χA` with

∑
|α`| ≤ ‖f‖∞ and similarly for g. Thus∣∣∣ ∫ eiλu(x,y)f(x)g(y)dxdy

∣∣∣ ≤ C|λ|−α ‖f‖∞ ‖g‖∞

and hence ‖Tλ‖L∞→L1 ≤ C |λ|−α .

Remark. Let 1 ≤ p, q ≤ ∞ (p 6= 1, q 6=∞). Then, by interpolation, the statements

of Proposition 4.1 are also equivalent to ‖Tλ‖Lp→Lq ≤ C |λ|−α(p,q) .

Our first result is analogous to the failure of the classical van der Corput estimate
under the hypothesis ψ′ ≥ 1 but without any convexity assumption.

Theorem 4.2. There is no α > 0 such that for some absolute C, for all u ∈ U1,1,

|I(λ)| ≤ C|λ|−α. There are no 1 ≤ p, q ≤ ∞ and no α > 0 for which one has
‖Tλ‖Lp→Lq = O

(
|λ|−α

)
uniformly in u ∈ U1,1.

By Proposition 4.1 it is enough to prove the first statement of Theorem 4.2. This
we achieve with the help of some lemmas.
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Lemma 4.3. For any ε > 0, there exists u ∈ U1,1 such that dist (u(x, y),Z) < ε
except for (x, y) in a set Fε of measure at most ε.

Lemma 4.4. For each M >> 1 and each ε > 0 there is a smooth g : [0, 1]→ R such
that g′(y) ≥ M on [0, 1] and dist (g(y),Z) < ε except for an exceptional set of y of
measure O(ε) consisting of at most CM/ε intervals each of length ε2/M.

Proof of Lemma 4.4. Merely let g(0) = 0 and make g piecewise linear with slopes
alternately M/ε2 and M on intervals of length ≈ ε2/M and ε/M respectively. Then
g can be made to be within ε of Z except on the union of the intervals of length ε2/M,
of which one needs ≈ M/ε to construct g on all of [0,1]. Finally one can convolve
with an approximate identity to produce a smooth g.

Proof of Lemma 4.3. We first define inductively some auxiliary functions on [0,1].
Let f0 = 0, and, given f0, f1, . . . , fj each with the property that dist (fj(y),Z) < ε
except on a set of measure ε, one uses Lemma 4.4 to define fj+1 with the same
property and such that

inf
0≤y≤1

f ′j+1(y) ≥ sup
0≤y≤1

f ′j(y) + ε.

We now define f(x, y) on Q = [0, 1]2 as follows. For 0 ≤ j ≤ 1
ε
(∈ N), let f(jε, y) =

fj(y). For jε ≤ x ≤ (j + 1)ε− ε2, one sets f(x, y) = fj(y) + (x− jε)y. For (j + 1)ε−
ε2 ≤ x ≤ (j + 1)ε, one interpolates linearly (for each fixed y) between the values of
f(j + 1)ε− ε2, y) and f((j + 1)ε, y). That is,

f(x, y) =

[
(j + 1)ε− x

ε2

]
f((j + 1)ε− ε2, y) +

[
x− (j + 1)ε+ ε2

ε2

]
f((j + 1)ε, y)

when (j + 1)ε− ε2 ≤ x ≤ (j + 1)ε.
Now, except on the lines x = jε and x = jε− ε2,

∂2f

∂x∂y
=

{
1 jε < x < (j + 1)ε− ε2

1
ε2

[
f ′j+1(y)− f ′j(y)− ε+ ε2

]
(j + 1)ε− ε2 < x < (j + 1)ε

the value of which is at least 1 by the construction of the fj’s.
For x belonging to one of the strips jε < x < (j+1)ε−ε2, we have |f(x, y)− fj(y)| =

|(x− jε)y| ≤ ε, so that f(x, y) is within 2ε of Z except on a union of horizontal strips
of total two-dimensional measure ε× ε = ε2, for each fixed j. As there are 1

ε
such j’s

this gives an exceptional set of measure ε altogether.
The remaining strips (j + 1)ε− ε2 < x < (j + 1)ε each have measure ε2 and there

are 1
ε

of them, again giving an exceptional set of measure ε.
Thus f : [0, 1]2 → R is continuous, smooth away from the lines x = jε, x = jε−ε2,

satisfies ∂2f/∂x∂y ≥ 1 off these lines and f(x, y) is within 2ε of Z except on a set of
measure 2ε. Moreover, for each fixed y, x 7→ ∂f(x, y)/∂y is continuous where x = jε,
x = jε − ε2. Thus ∂2f/∂x∂y ≥ 1 in the sense of distributions and consequently
convolving f with a non-negative approximate identity on a very small scale (one can
quantify this by using Lemma 4.4 to keep track of the widths of the many horizontal
exceptional strips occurring) yields the desired u ∈ U1,1.
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Proof of Theorem 4.2. Take u = uε as in Lemma 4.3. Then, for (100ε)−1 = λ ∈ 2πN,

Re I(λ) =

∫
Fε

cos[λu(x, y)]dxdy +

∫
[0,1]2\Fε

cos[λu(x, y)]dxdy .

Now on FC
ε , dist (λu(x, y), 2πZ) < 2ελ = 1/50. Hence on [0, 1]2\Fε, cos[λu(x, y)] ≥

1− cos (1/50) , and so∫
[0,1]2\Fε

cos[λu(x, y)]dxdy ≥ [1− cos (1/50)][1− 10ε].

On the other hand, ∣∣∣ ∫
Fε

cos[λu(x, y)]dxdy
∣∣∣ ≤ |Fε| ≤ 10ε.

Thus, for ε < 1/100, |I(λ)| ≥ C0 where C0 is an absolute constant.

We now consider the case where j and k are greater than or equal to one, and at
least one of them is at least two. We first establish some lower bounds for ‖Tλ‖.

Lemma 4.5. For u(x, y) = −(x− y)d (d ≥ 2), ‖Tλ‖p 7→q ≥ C |λ|−1/d for all p, q.

Proof. Setting f ≡ 1, we see that the size of Tλf(x) is essentially |λ|−1/d (either by
the one-dimensional van der Corput lemma or by a simple change of variables).

It is known that at least when d is even and u(x, y) = (x− y)d, the sharp estimate

‖Tλf‖d ≤ C |λ|−1/d ‖f‖d holds [JS], [Sj]. This is in spite of the fact that when d > 2,

g 7→
∫ 1

0
g(x1− t, x2− td)dt does not map Ld(R2) to Ld1/d(R

2) [C1]. Note that there is

a contrast in Lp behaviour between Tλ and Sα for u(x, y) = (x− y)d; Sα is bounded
on all Lp with constant O(α1/d) while Tλ is bounded for p ∈ [d′, d] with constant

O(|λ|−1/d). This is due to the fact that for Tλ we need to use a result about Uj,k with
j + k = d and 1 ≤ j, k ≤ d− 1, while for Sα we can take 0 ≤ j, k ≤ d.

Lemma 4.6. Let u(x, y) = xjyk with j, k ≥ 1 and either j or k ≥ 2. Then ‖Tλ‖p7→q ≥

C |λ|−
n

1
jq
∧ 1
kp′

o

.

Proof. Again set f ≡ 1. Then Tλf(x) =
∫ 1

0
eiλx

jykdy, which has size{
1 0 < x < c |λ|−

1
j

(|λ|xj)−1 c |λ|−
1
j < x < 1

by simple calculations. The Lq norm of this function has magnitude |λ|−1/jq . By

symmetry we also obtain a lower bound of magnitude |λ|−1/kp′ .

Thus we obtain an analogue of Corollary 3.2:

Proposition 4.7. sup
u∈Uj,k

‖Tλ‖ ≥ Cλ
−{ 1

j+k
∧ 1
jq
∧ 1
kp′ }.
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The upper bounds for ‖Tλ‖ that we can obtain are as follows.

Theorem 4.8. Let k ≥ 2. Then for every u ∈ Ũ1,k, for every λ ∈ R,

‖Tλ‖L2→L2 ≤ C|λ|−1/2k .

Proof. We calculate

‖T ∗λf‖
2
2 =

∫ ∣∣∣∣∫ eiλu(x,y)f(x)dx

∣∣∣∣2 dy
=

∫∫∫
eiλ[u(x1,y)−u(x2,y)]dy f(x1)f(x2) dx2dx1

=

∫∫ {∫
eiλ[u(x1,y)−u(x1+z,y)]dy

}
f(x1)f(x1 + z)dzdx1,

making the change of variables z = x2 − x1 for x2 with x1 fixed. Call ψz(x1, y) =
u(x1, y)− u(x1 + z, y) and call Jx1,z(λ) =

∫
eiλψz(x1,y)dy. Now

|∂kyψz(x1, y)| =
∣∣∣ x1∫
x1+z

∂s∂
k
yu(s, y) ds

∣∣∣ ≥ |z|
since u ∈ U1,k. Since k ≥ 2 here, the classical van der Corput lemma gives

|Jx1,z(λ)| ≤ C(|λ| |z|)−1/k.

Thus

‖T ∗λf‖
2
2 ≤ C|λ|−1/k

∫
|z|−1/k|f(x1)f(x1 + z)|dzdx1 ≤ C|λ|−1/k ‖f‖2

2 ,

and so ‖Tλ‖2−2 ≤ C |λ|−1/2k .

For a fixed real-analytic u with critical point at (0, 0), satisfying ∂j+ku/∂xj∂yk 6= 0

onQ, Phong and Stein [PS2] have established the sharp bound ‖Tλ‖2−2 = O(|λ|−
1

2(j∨k) )
(among many others). But of course implicit in their result are assumptions on upper
bounds of higher derivatives of u. On the other hand our result with j = 1 and k ≥ 2
is uniform over the class U1,k. When u ∈ Uj,k with 2 ≤ j ≤ k we are able to make an
inductive estimate on I(λ):

Proposition 4.9. For each j, k satisfying 2 ≤ j ≤ k, there exists C < ∞ such that
for every u ∈ Ũj,k ,

|I(λ)| ≤ C|λ|−1/(k·2j).

As noted above, it follows from this proposition that ‖Tλ‖2 7→2 ≤ C |λ|−α for some
α(j, k) > 0.

Proof. We proceed by induction on j. The case j = 1 is given by Theorem 4.8 so we
assume that the proposition is true for 2, 3, . . . , j − 1. With u ∈ Uj,k we begin as in
the proof of Theorem 4.8 but with the function f replaced by 1. Thus

|I(λ)|2 ≤
∫ ∣∣∣∣∫ eiλu(x,y)dx

∣∣∣∣2 dy =

∫ ∫
Jx1,z(λ)dzdx1
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where Jx1,z(λ) =
∫
eiλψz(x1,y)dy and where ψz(x1, y) = u(x1, y)−u(x1 + z, y). We now

observe that for z ≤ 0,(
∂

∂x1

)j−1(
∂

∂y

)k
ψz(x1, y) =

∫ x1

x1+z

(
∂

∂s

)j (
∂

∂y

)k
u(s, y)ds ≥ |z|

since u ∈ Uj,k. There is a similar estimate for z ≥ 0. Hence∣∣∣∣∫ ∫ Jx1,z(λ)dx1dz

∣∣∣∣ ≤ C|λ|−1/2j−1k

by the inductive hypothesis (applied on two triangles rather than on Q). Hence,

|I(λ)| ≤ C|λ|−1/(k·2j),

as desired.

As in subsection 3.1, the estimates on I(λ) can be improved if one assumes some
additional qualitative condition to be satisfied by u. Similar but more complicated
results are in [AKC].

Proposition 4.10. Suppose j, k ≥ 1, that u ∈ Uj,k and that in addition, for some
constant A,

# of components of

{
y :

∣∣∣∣∂ku∂yk
(x, y)

∣∣∣∣ < β

}
≤ A

with A independent of x and β. If k = 1 we assume also that ∂2u
∂y2

has for each x at

most A changes of sign. Then there exists a constant Cj,k,A depending only on j, k
and A such that for all |λ| ≥ 1,

|I(λ)| ≤ Cj,k,A/ |λ|
1
j+k .

Corollary 4.11. If u ∈ Ũj,k, j, k ≥ 1 and if for some N > k, ∂Nu/∂yN is single-
signed, or if for some N > j, ∂Nu/∂xN is single-signed, then

|I(λ)| ≤ CN,j,k/ |λ|
1
j+k .

Proof of Proposition 4.10.

|I(λ)| ≤
∣∣∣ ∫∫

{(x,y):|∂kyu|≥β}
eiλu(x,y)dydx

∣∣∣ +

∫∫
{(x,y):|∂kyu|<β}

dxdy .

For the second term we estimate the inner integral by Cjβ
1/j since ∂jx∂

k
yu ≥ 1. To

bound the first, we fix any x. Then
{
y :
∣∣∂ku/∂yk∣∣ ≥ β

}
is by hypothesis a union of

at most A + 1 intervals. The integral of eiλu(x,y) with respect to y over each such
interval is at most Ck(|λ| β)−1/k by the classical van der Corput lemma. Thus

|I(λ)| ≤ Cjβ
1/j + CA,k/(|λ| β)1/k.

Optimising in β (β ≈ |λ|−
j
j+k ) yields the result.
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An application of Corollary 4.11 will be given in Section 7.
The only uniform result (of which the authors are aware) for the operators Tλ

under extra convexity conditions is one of Phong and Stein [PS1]. They show that

if u ∈ U1,1 and satisfies ∂3u/∂x∂y2 ≥ 0, then ‖Tλ‖2−2 ≤ C(log |λ|)1/2/ |λ|1/2 with an
absolute C.

4.2. The higher-dimensional case. We return to the notation of Section 3, in
particular of subsection 3.2, and examine I(λ) and Tλ (defined in the obvious way)
as an operator from Lp(Qn′′) to Lq(Qn′) where n′+ n′′ = n ≥ 3 under the hypothesis
Dβu ≥ 1 on Qn.

There is of course an analogue of Proposition 4.1, with the same proof, which we
therefore omit. In analogy with Theorem 4.2, there are no decay estimates for I(λ)
nor Tλ if each entry of β is 0 or 1.

Theorem 4.12. For each n ≥ 2 and each β with at least one entry strictly greater
than 1, there exist ε = ε(n, β) > 0 and C = C(ε, n, β) such that for every real-valued,
integrable function u satisfying Dβu ≥ 1 on Q, for every λ ∈ R, I(λ) =

∫
Q
eiλu(x)dx

satisfies

|I(λ)| ≤ C|λ|−ε .

Theorem 4.13. For each n = n′ + n′′ ≥ 2, each 1 ≤ p, q ≤ ∞ (p 6= 1, q 6= ∞)
and each β with at least one nonzero entry in each of {1, ..., n′} and {n′ + 1, . . . , n}
and with at least one entry greater than 1, there exist ε = ε(n, β, p, q) > 0 and
C = C(ε, n, β, p, q) such that for every real-valued, integrable function u satisfying
Dβu ≥ 1 on Q, for every λ ∈ R, the operator

Tλf(x′) =

∫
Qn
′′

eiλu(x′,x′′)f(x′′)dx′′

satisfies

‖Tλf‖Lq(Qn′ ) ≤ Cλ−ε ‖f‖Lp(Q′′) .

These two results have already been proved above for n = 2. Theorem 4.13 follows
from Theorem 4.12 by the higher-dimensional analogue of Proposition 4.1.

Proof of Theorem 4.12. The proof is formally the same as that of Proposition 4.9 and
is by induction on n. The case n = 2 is contained in Theorem 4.8 and Proposition 4.9
and so we assume the statement of Theorem 4.12 for the case n− 1. We may assume
that an entry of β which is at least two occurs among the first (n − 1) variables.

Let β = (β̃, βn). If βn = 0, the statement follows from the inductive hypothesis, by
performing the integration in the first n − 1 variables first. So assume inductively

that the statement is true for βn ∈ {0, 1, 2, ..., k − 1} and that D(β̃,k)u ≥ 1 on Q. As



26 ANTHONY CARBERY, MICHAEL CHRIST, AND JAMES WRIGHT

in the proof of Proposition 4.9,

|I(λ)|2 ≤
∫

Qn−1

∣∣∣ ∫
Q1

eiλu(x′,y)dy
∣∣∣2dx′

=

∫∫∫
eiλ[u(x′,y)−u(x′,z)]dydzdx′ =

∫∫∫
eiλψs(x

′,y)dydx′ds

where ψs(x
′, y) = u(x′, y + s)− u(x′, y) =

y+s∫
y

∂
∂t
u(x′, t)dt. So

∣∣∣D(β̃,k−1)ψs

∣∣∣ =
∣∣∣ y+s∫
y

Dβu(x′, t)dt
∣∣∣ ≥ |s| .

Thus by the inductive hypothesis the inner dydx′ integral above is dominated by
(|λ| |s|)−ε, for some ε > 0. Hence, by integrating with respect to s we find that I(λ)
is (uniformly) O(λ−ε

′
), for some ε′ > 0.

Once again, if we impose some qualitative conditions upon u we can improve the
decay estimate for I(λ) to the optimal rate; see also [AKC].

Proposition 4.14. Under the hypotheses of Proposition 3.17, there is a constant
C = C(β,N2, . . . , Nn) such that

|I(λ)| ≤ C|λ|−1/|β| .

Proof. The proof is the same as that of Proposition 4.10. We write

|I(λ)| ≤
∫ ∣∣∣ ∫

n
xn:
���( ∂
∂xn

)
βn
u
���≥γ

o
eiλu(x′,xn)dxn

∣∣∣dx′ + ∫ ∫
n
x′:
���( ∂
∂xn

)
βn
u
���<γ

o
dx′dxn .

For the second term we use the case n−1 of Proposition 3.17 with β′ in place of β and(
∂
∂xn

)βn
u in place of u to estimate the inner integral by Cγ1/|β′|. For the first we apply

the classical van der Corput lemma to estimate the inner integral by C (|λ| γ)−1/βn .

Thus |I(λ)| ≤ C
(
γ1/|β′| + (|λ| γ)−1/βn

)
, which, upon taking γ = λ−|β

′|/|β|, yields

|I(λ)| ≤ C |λ|−
1
|β| as desired.

As pointed out in the introduction, most cases of Theorems 3.15 and 3.16 and
of Proposition 3.17 are implied by the results of this section, though generally with
inferior exponents.

5. Other Second-Order Differential Inequalities

Let p(D) be a constant-coefficient homogeneous differential operator of degree 2
on R

2 with real coefficients. Under what conditions on p is there an implication of
the form

p(D)u ≥ 1 on Q⇒ |{x ∈ Q : |u(x)| ≤ α}| ≤ Cαε
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for some ε > 0 and some absolute C?

Theorem 5.1. In R
2, p(D) is not elliptic if and only if there exist ε, C > 0 such

that for every C∞ function u satisfying p(D)u ≥ 1 on Q and every α > 0

|{x ∈ Q : |u(x)| ≤ α}| ≤ Cαε .(5.1)

If p(D) is not elliptic, then (5.1) holds for every ε < 1/2.

Since the measure-theoretic statement involved is invariant under affine changes
of variables (except for the domain Q, which is immaterial for our purposes) any
two p(D)’s related by an invertible linear change of variables will share the same
behaviour. Now the symbol of p(D) is merely a quadratic form p(ξ) of two real
variables ξ = (ξ1, ξ2), which can be brought to one of the normal forms 0, ξ2

1 , ξ1ξ2

or ξ2
1 + ξ2

2 by a linear change of variables. Discarding the trivial case 0, we see
that the cases ξ2

1 and ξ1ξ2 have already been dealt with as ∂2/∂x1
2 and ∂2/∂x1∂x2

respectively, for which there are positive results. Thus Theorem 5.1 follows from the
negative result in the special case of the Laplacian ∆ :

Proposition 5.2. For each 0 < δ < 1/2, there exists a u = uδ ∈ C∞(Q) such that
∆u ≡ 1 on Q and |{x ∈ Q : |u(x)| < δ}| ≥ 1− δ.
Proof. Fix a compact set K ⊆ Q2 with empty interior such that R

2\K is connected
and Q2\K has measure < δ for some pre-assigned δ > 0. Let f(x) = −x2

1/2. Then
by Mergelyan’s theorem (see for example [R] p. 423) we may uniformly approximate
f on K by a harmonic polynomial p, to within δ. Set u = f − p. Then ∆u ≡ 1, while
on K, |u(x)| < δ. Thus |{x ∈ Q : |u(x)| < δ}| ≥ 1− δ since |K| ≥ 1− δ.

The same considerations establish that the only homogeneous second order con-
stant coefficient differential operators p(D) in n dimensions which possess favourable
measure estimates for the sublevel set of u’s with p(D) ≥ 1 are those which can
be written as compositions of two first order directional derivatives. We do not
know whether a similar result is true for homogeneous constant coefficient differ-
ential operators of arbitrary order. We wonder whether a more general setting for
these inequalities might be in terms of compositions of vector fields; such a formu-
lation might be invariant under diffeomorphism, whereas the setup for our results is
strongly coordinate-dependent.

6. Connections with Combinatorial Problems

The questions addressed in this paper — in particular the sublevel set estimates of
Section 3 — have connections with certain combinatorial problems arising in extremal
graph theory. A continuous analogue of such a problem is as follows:

Problem 6.1. Suppose E ⊆ Q = [0, 1]2 has Lebesgue measure |E| > 0. Is it true
that for some absolute constant ε0, one can always find four points A,B,C,D ∈ E,
such that the quadrilateral figure ABCD is a rectangle with sides parallel to the
coordinate axes, whose area is at least ε0 |E|2?

This problem has little to do with Lebesgue measure, and can be couched in terms
of probability measures on R.
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Problem 6.2. Let µ, ν be probability measures on R. Suppose E ⊆ R
2 satisfies

µ⊗ ν(E) > 0. Is there an absolute constant ε0 (independent of E), such that one
can always find four points A,B,C,D ∈ E, such that the quadrilateral ABCD is a
rectangle R with sides parallel to the coordinate axes, and such that

(µ⊗ ν)(R) ≥ ε0(µ⊗ ν)(E)2 ?

Specialisation of Problem 6.2 to counting measure on [1, N ] gives rise to a matrix
problem:

Problem 6.3. Does there exist ε0 > 0 such that for any M,N , for any N×N matrix
A at least M of whose entries are equal to 1, A has a 2 × 2 submatrix all of whose
entries are equal to 1, and whose area is at least ε0M

2/N2?

Nets Katz has shown that if there is such an ε0, then it cannot exceed 1/5.
If Problem 6.1 has an affirmative answer, then every u ∈ U1,1 would satisfy

|{x ∈ Q2 : |u(x)| ≤ α}| ≤ Cα1/2 for some absolute C. That is, the logarithmic factor
occurring in Corollary 3.5 would be superfluous. Indeed, the proof of Lemma 3.6
shows that if u ∈ U1,1 and if E = {(x, y) : |u(x, y)| ≤ α}, then (xi, yi) ∈ E for
i, j ∈ {0, 1} implies that the area of the rectangle with vertices (xi,yj), i, j ∈ {0, 1}
is at most 4α. The contrapositive of the (putative) positive solution to Problem 6.1
would then force E to have area at most Cα1/2. On the other hand, by re-working
the methods of Section 3, one can show:

Proposition 6.1. There exists an absolute constant ε0 > 0 with the following prop-
erty. Let µ, ν be probability measures on R. For any set E ⊆ R

2 satisfying µ ⊗
ν(E) > 0, there exists a rectangle R ⊆ R

2 whose vertices all belong to E, satisfying6

(µ⊗ ν)(R) ≥ ε0(µ⊗ ν)(E)2 / log+[1/(µ⊗ ν)(E)] .

Here log+(t) = max(1, log(t)).

Proof. We prove the contrapositive statement: if every rectangle R (with sides par-
allel to the axes) with vertices in E has (µ ⊗ ν)(R) ≤ α, then (µ ⊗ ν)(E) ≤
Cα1/2 log (1/α)1/2 . Indeed, as in the proof of Theorem 3.4,

(µ⊗ ν)(E)2 ≤
∫ ∫

µ(E(y1) ∩ E(y2))dν(y1)dν(y2)

≤ 2

∫∫
y2≥y1

[
α

ν((y1, y2])
∧ 1

]
dν(y1)dν(y2)

≤ Cα log(1/α).

There are also combinatorial problems featuring more general polygons than rect-
angles. These arise typically as follows. (Incidentally, what follows gives an alterna-
tive proof of Lemma 3.6; Lemma 3.8 can likewise be obtained from the same idea.)

6If R is a rectangle with vertices (xi, yj), i, j ∈ {0, 1}, then µ ⊗ ν(R) is defined as
µ((x0,x1])ν((y0, y1]).
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Lemma 6.2. Suppose ∂2u/∂x∂y ≥ 1 on Q. Suppose that Γ ⊆ Q is a polygonal
Jordan curve, all of whose edges are either horizontal or vertical. Assume that each
corner of Γ belongs to E = {(x, y) : |u(x, y)| ≤ α}. Let R be the region enclosed by
Γ. Then

Area(R) ≤ #(corners of Γ) · α.

By a corner of Γ we mean of course a point where a horizontal segment and a
vertical segment of Γ meet.

Proof. By Stokes’ theorem,∫
R

uxy dx dy = 1
2

∫
Γ

(uxdx− uydy) = ±[u(v1)− u(v2) + u(v3) . . . ]

where v1, v2, . . . are the corners of Γ in order.

Thus an affirmative answer to the following question would suffice to remove the
logarithmic term from Corollary 3.5.

Problem 6.4. Suppose E ⊆ Q2 has Lebesgue measure |E| > 0. Is it true that for
some absolute constant ε0 one may find k ∈ {4, 6, 8, . . . } and points V1, V2, . . . , Vk in
E such that the figure V1V2 . . . Vk = R is a closed Jordan curve with all edges either
horizontal or vertical, and is such that

area(R) ≥ ε0k |E|2 ?

Nets Katz [K] has solved a modified version of Problem 6.4. He produces a closed
curve with sides parallel to the coordinate axes, having either four or six corners and
satisfying the desired area estimate; however, in the case of six corners, the curve
may have self-crossings (which are not counted among its corners).

A hierarchy of similar combinatorial problems arises in connection with the sub-
level set problem for Uj,k in R

2 and for Uβ in R
n, n ≥ 3. Thus, for example, the

sublevel set problem for U(1,1,...,1) in R
n — for which Theorem 3.15 gives an estimate

of O(ε
1

2n−1 (log 1/ε)γn) for some γn > 0 — leads to the variant of Problem 6.1 in Qn

where quadrilateral figures in Q2 are replaced by rectangles in Qn with sides parallel
to the axes. Keleti [Ke] has observed that one can find such a rectangle with volume

≥ ε0 |E|2
n−1

· (log+ 1/|E|)−γn , the same bound which is implied by our analysis in
Theorem 3.15. He has also observed that, if a conjecture of Erdös [E] is true, then
modulo the logarithmic factors this combinatorial result would be sharp.

7. Polynomials of Bounded Degree

In this section we study the special case where u is a polynomial whose degree does
not exceed some pre-assigned, but arbitrary, quantity. Here supplementary convex-
ity hypotheses of the type imposed in Proposition 3.17 are automatically satisfied.
Consequently we obtain:
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Theorem 7.1. For each d, n there exists a finite constant C such that for any multi-
index β and any polynomial u : R

n → R of degree ≤ d satisfying Dβu(x) ≥ 1 for
every x ∈ Qn,

|{x ∈ Qn : |u(x)| ≤ α}| ≤ Cα1/|β|.

The weaker conclusion with exponent 1/d instead of 1/|β| may easily be proved by
a slicing argument, as for instance in the proof of Lemma 3.4 of [C2]. This theorem
can be used to sharpen some results of Ricci and Stein [RS].

As a direct consequence of Proposition 4.14, we have a van der Corput lemma
for polynomials in higher dimensions, which can also be obtained by the methods of
[AKC].

Theorem 7.2. For each d, n there exists C such that for any polynomial u : Qn → R

of degree ≤ d which for some multi-index β satisfies Dβu(x) ≥ 1 for every x ∈ Qn,∣∣∣ ∫
Qn
eiλu(x)dx

∣∣∣ ≤ C|λ|−1/|β|.

Corollary 7.3. Let p(t) =
∑
|α|≤d

cαt
α, cα ∈ R. Then

∣∣∣ ∫
Qn
eip(t)dt

∣∣∣ ≤ Cd,n

( ∑
0<|α|≤d

|cα|
)−1/d

.

Moreover Cd,1 ≤ Cd for an absolute constant C.

Proof. Without loss of generality p(0) = 0. Let Pd denote the vector space of all
polynomials p(t) =

∑
0<|α|≤d cαt

α, equipped with the norm ‖p‖ =
∑

0<|α|≤d |cα|. As

in [CRW], consider the functional

θ(p) = max
0<|α|≤d

inf
t∈Qn
|Dαp(t)| .

This is a continuous function on Pd, which is homogeneous of degree 1. Moreover
θ(p) 6= 0 for 0 6= p ∈ Pd; vanishing would force the coefficients of p, starting with the
highest order ones, to be all zero. Thus, for some constant depending only on n and
d, θ(p) ≥ C ′d,n‖p‖ for all p ∈ Pd. Theorem 7.2 now yields the desired conclusion.

This could alternatively be derived directly from the one-dimensional case, using
the functional

θ(p) = sup
µ,ν

inf
t∈Qn
|(ν · ∇)µp(t)|,

where µ ∈ {1, . . . d} and ν represents an arbitrary unit vector in R
n. The details are

left to the reader.
To obtain the linear bound for Cd,1 we need the following variant of the argument,

which together with a simple rescaling allows us to apply Proposition 2.2 to complete
the proof.

Lemma 7.4. Let p(t) =
d∑
j=1

cjt
j. Suppose

d∑
j=1

|cj| ≥ e. Then, for some j,
∣∣p(j)(t)

∣∣ ≥ 1
2

on I = [0, loge
3
2
].
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Proof. Consider the statement, for j = −1, 0, 1, 2, ..., d− 2, that
max{d! |cd| , . . . (d − j)! |cd−j|} ≤ 1 and |cd−j−1| ≥ 1

(d−j−1)!
. (When j = −1 the

statement is simply |cd| ≥ 1
d!
.) If for some j this is true, we are done because then

p(d−j−1)(t) = (d− j − 1)!cd−j−1 +
(d− j)!

1!
cd−jt+ · · ·+ d!

(j + 1)!
cdt

j+1

satisfies ∣∣p(d−j−1)(t)
∣∣ ≥ 1−

{
t+

t2

2!
+ ...+

tj+1

(j + 1)!

}
≥ 1− (et − 1) ≥ 1

2

if et ≤ 3/2 that is, if t ∈ I.
If the statement fails for all j, we have |cd| ≤ 1

d!
, |cd−1| ≤ 1

(d−1)!
, . . . , |c2| ≤ 1

2!
and

|c1| ≤ 1
1!

, which contradicts
d∑
j=1

|cj| ≥ e.

Consider the operators Tλf(x) =
∫
Qn′′

eiλq(x,y) f(y) dy where n = n′+n′′ and (x, y) ∈
Qn′ ×Qn′′ .

Corollary 7.5. For each d, n and each pair of exponents 1 ≤ p, q ≤ ∞ with p 6= 1
and q 6= ∞, there exist C < ∞ and δ > 0 such that for any polynomial q(x, y) =∑

α cαx
α′yα

′′
of degree ≤ d,

‖Tλ‖Lp 7→Lq ≤ Cλ−δ
( ∑
α′ 6=0 and α′′ 6=0

|cα|
)−δ

.

Proof. By interpolation it suffices to prove this for p = q = 2. It is no loss of generality
to assume that

∑
α′ 6=0 and α′′ 6=0 |cα| = 1. Fix β with β′, β′′ 6= 0 such that |cβ| ∼ 1. One

has

‖Tλf‖2
2 =

∫∫
Qn′′×Qn′′

K(y, z)f(y)f(z) dy dz

where

K(y, z) =

∫
Qn
′
eiλ[q(x,y)−q(x,z)] dx.

By Corollary 7.3, |K(y, z)| ≤ C min(1, λ−1/d|ρ(y, z)|−1/d) where ρ(y, z) = ∂β
′

x [q(x, y)−
q(x, z)]|x=0. Therefore it suffices to show that for some C <∞ and δ > 0 depending
only on n, d,

sup
y

∫
Qn′′
|ρ(y, z)|−δ dz ≤ C.(7.1)

As a function of z, ρ is a polynomial of degree ≤ d for each y, and |∂β′′z ρ(y, 0)| ∼ 1.
Therefore (7.1) follows from the sublevel set version of Corollary 7.3, which is a lemma
established in [RS], and which could alternatively be deduced from various results in
this paper.
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8. Applications

Results in the previous section can be used to simplify the proof of a theorem
of Ricci and Stein [RS] and to improve their estimate in the one-dimensional case.
Let T be a bounded Calderón-Zygmund operator, associated in the usual sense to a
kernel K(x, y), and let q be a real-valued polynomial. Then there is an operator T̃q
associated to the kernel eiq(x,y)K(x, y), defined for test functions f by

T̃qf(x) = eiq(x,x)Tf(x) +

∫ (
eiq(x,y) − eiq(x,x)

)
K(x, y) f(y) dy.

Theorem 8.1. Let T be a Calderón-Zygmund operator that is bounded on L2(Rn).
Then for each degree d ≥ 1 and each p ∈ (1,∞) there exists C = C(n, d, p, T ) < ∞
such that for every real-valued polynomial q of degree at most d,

‖T̃q‖Lp 7→Lp ≤ C.

Moreover when n = 1 we may take C ≤ C ′ · d where C ′ is independent of the degree
d.

The original proof of [RS] relied on an induction on the degree of q; with Corol-
lary 7.5 in hand this induction can be eliminated. Otherwise the proof is essentially
the same. The details are left to the interested reader.

Remark. It would be interesting to determine the true behaviour of C1,d,p as a
function of d. Certain examples suggest that C1,d,p ≥ cp log(d + 2), but we have not
verified this in detail.

Our next application contains all but the nondegenerate case of Pan’s generalisation
[P] of Theorem 8.1, and also applies in certain ‘flat’ cases where Pan’s hypothesis is
not valid.

Theorem 8.2. Let V be a small neighbourhood of (0, 0) ∈ R
n × R

n and u : V → R

be smooth. Let β = (β1, β2) ∈ N
n ×N

n Suppose that both β1, β2 are nonzero and that
at least one coordinate of β1 or β2 is strictly greater than one. Suppose there exists a
constant A so that for all s ∈ (0, 1)

max
γ:|γ|=|β|

sup
|x−y|≤s
(x,y)∈V

|Dγu(x, y)| ≤ A inf
|x−y|≥s
(x,y)∈V

∣∣Dβu(x, y)
∣∣(8.1)

Let K be the kernel of an L2-bounded Calderón-Zygmund operator on R
n. Then for

any φ ∈ C∞0 (V ), the operators T̃λu are bounded on Lp(R) for 1 < p < ∞, uniformly
in λ ∈ R.

Proof. For simplicity of notation we shall assume that K is a convolution kernel and is
homogeneous. Without loss of generality u(x, x) ≡ 0. Fix an α < 1 to be determined
later, and consider the operators T 0

λ and T jλ , j ≥ 1, obtained by truncating smoothly
the kernels of Tλ at |x− y| ≤ α and at |x− y| ∼ 2jα respectively.

Now T jλ has the same operator norms as the operator with kernel

eiλu(2jαx,2jαy)K(x, y)χ|x−y|∼1φ(2jαx, 2jαy),
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for which it suffices to estimate the operator norms corresponding to the kernels

eiλu(2jα[x+`],2jα[y+`])K(x, y)χ|x−y|∼1χ|y|≤1φ(2jα[x+ `], 2jα[y + `])

uniformly in ` ∈ Z
n.

When |x− y| ∼ 1, we have∣∣Dβ{λu(2jα[x+ `], 2jα[y + `])}
∣∣ = |λ| (2jα)|β|

∣∣Dβu(2jα[x+ `], 2jα[y + `])
∣∣

≥ |λ| (2jα)|β| inf
|x−y|≥α

∣∣Dβu
∣∣ .

Hence by Theorem 4.13∥∥∥∑
j≥1

T jλ

∥∥∥
p−p
≤ C{|λ|α|β| inf

|x−y|≥α

∣∣Dβu
∣∣}−ε

for some ε > 0.
For the local part, T 0

λ , we follow Pan’s approach in [P]. It suffices to show that the
operators T 0`

λ , ` ∈ Z
n with kernels

eiλu(x,y)K(x, y)φ(x, y)χ|x−y|≤αχ|x−α`|≤α

have uniform bounds in `. For each such ` we first expand u(x, y) in a Taylor series
in y about x (with |x− y| ≤ α) to obtain, for any M ≥ 2,

u(x, y) =
∑

1≤|γ|<M

(y − x)γ

γ!
Dγ
yu(x, x) +O(|x− y|M sup

|γ|=M
sup
|ζ−η|≤α

∣∣Dγ
yu(ζ, η)

∣∣)
and then expand each Dγ

yu(x, x) about x = α` with |x− α`| ≤ α to obtain, for
Nγ := M − |γ|

Dγ
yu(x, x) =

∑
|σ|<Nγ

(x− α`)σ

σ!
D(σ,γ)u(α`, α`)

+O
(
|x− α`|Nγ sup

|τ |=Nγ
sup

|θ−α`|≤α

∣∣D(τ,γ)u(θ, θ)
∣∣ )

where D(σ,γ) is some constant coefficient differential operator of order |σ|+ |γ| . Com-
bining these equations, for each ` ∈ Z

n, M and {Nγ : |γ| < M}, we find that u(x, y)
equals a polynomial q(x, y), depending on `,M but having uniformly bounded degree,
plus

O(|x− y|M +
∑

1≤|γ|<M

|x− y||γ| |x− α`|Nγ ) sup
|γ|=M

sup
|x−y|≤α

|Dγu(x, y)| .

Now the operators S`λ with kernels

eiλq(x,y)K(x, y)φ(x, y)χ|x−y|≤αχ|x−α`|≤α

do have uniform Lp bounds in λ, `, α (and M) by Theorem 8.1. So it suffices to

control T 0,`
λ − S`λ, whose kernel we can dominate by

|λ|
[
|x− y|M−n +

∑
1≤γ<M |x− y|

|γ|−n |x− α`|Nγ
]
χ|x−y|≤αχ|x−α`|≤α

· sup|γ|=M sup|x−y|≤α |Dγu(x, y)| .
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Hence T 0,`
λ − S`λ is Lp bounded, 1 ≤ p ≤ ∞, with a constant dominated by

|λ|αM sup
|γ|=M

sup
|x−y|≤α

|Dγu(x, y)| .

Combining all the estimates gives

‖Tλ‖p−p ≤ C +
C

{|λ|α|β| inf
|x−y|≥α

|Dβu|}ε
+ CλαM sup

|γ|=M
sup
|x−y|≤α

|Dγu| ,

for 1 < p <∞. Choosing M = |β| , applying the hypothesis (8.1) and then choosing
α so that |λ|α|β| inf

|x−y|≥α

∣∣Dβu
∣∣ ≈ 1 concludes the proof.

Note that if β is as in the hypothesis of the theorem, and if u is smooth and
Dβu(0, 0) 6= 0, then hypothesis (8.1) is trivially satisfied if V is taken to be sufficiently
small. This situation corresponds to Pan’s case [P]. However hypothesis (8.1) may
also be satisfied even when Dβu(0, 0) = 0 for all β. For example if n = 1 and
u(x, y) = γ(x − y), then (8.1) is satisfied if γ(j) is increasing for some j ≥ 2. When

n = 1, examples such as u(x, y) = e−ψ(x,y)(x−y)−2
(where ψ ∈ C∞ and ψ(x, x) > 0)

also satisfy condition (8.1).

One can also obtain results for (certain semi-translation invariant) singular Radon
transforms associated to families of hypersurfaces by a direct application of Plancherel’s
theorem. We merely state the result corresponding to Theorem 8.2:

Theorem 8.3. Under the same hypotheses as Theorem 8.2, for any Calderón-Zygmund
convolution kernel K on R

n, the operator S given by

Sg(x, xn+1) =

∫
Rn

g(x− y, xn+1 − u(x, x− y))φ(x, x− y)K(y)dy

is bounded on L2(Rn+1).

Similarly, all the L2−L2 estimates for Tλ in Section 4 give corresponding uniform L2

smoothing estimates, with respect to the last coordinate, for certain semi-translation
invariant Radon transforms; these may then by interpolated to obtain Lp smoothing.

Denote by Lpε(Rn+1) the space of functions h such that
[
(1 + |ξn+1|2)

ε
2 ĥ
]∨

belongs to

Lp(Rn+1). Then corresponding to Theorem 4.13 and Proposition 4.9, we have:

Theorem 8.4. Let n ≥ 1, and let β = (β1, β2) ∈ N
n × N

n with both β1, β2 nonzero
and at least one coordinate of one βj strictly greater than one. Suppose Dβu ≥ 1 on
Q2n. Define, for φ ∈ C∞c (Q2n)

Sg(x, xn+1) =

∫
Rn

g(x− y, xn+1 − u(x, x− y))φ(x, y)dy.

Then, for each p ∈ (1,∞) there exists an ε = ε(n, β, p) > 0 and a C = C(ε, n, β, p, φ)
such that

‖Sg‖Lpε(Rn+1) ≤ C ‖g‖Lp(Rn+1) .
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Moreover when n = 2, p = 2 and β = (1, k) with k ≥ 2, we may take ε = 1/2k.

Remark. The original motivation for the study of the problems described above —
aside from their intrinsic interest — arose in the study of singular integrals along
flat curves, undertaken by the first and last authors in collaboration with Stephen
Wainger. To oversimplify matters a bit, one sought L2 operator smoothing estimates
for certain operators Tj associated to appropriately normalised pieces of the curve
in question; the method to be applied dictated the need for uniformity in the esti-
mates over j. It involved writing out the kernels Kj of the Tj explicitly and looking
for L1 smoothness of these Kj. To a first approximation, the expressions to be con-

trolled then took the form
∫
Q3 uj(x)−1 dx , where the only useful information available

about {uj} was that ∂3uj/∂x
2∂y ≥ 1 uniformly in j. Thus the problem addressed by

Theorem 1.3 arose. This motivating problem was eventually circumvented by other
methods — see [CWW].

In the case n = 1, results more general than Theorem 8.3 in the flat setting had
been given by [Se1], and further results have been obtained in [CP]. It would be
interesting to apply the results of this paper to operators further from the Euclidean-
translation-invariant case (e.g. to operators associated to flat vector fields [CSWW]
or the Heisenberg group [CWW]), in the spirit of their original motivation.

9. Remark on Multi-Sublevel Sets

Here we discuss the sublevel set problem for a function φ in the intermediate case
where ∂αφ is assumed to be C∞, but φ itself is merely integrable. Whereas it is
well-known that estimates for oscillatory integrals of the first kind,

∫
exp(iλψ), lead

to estimates for sublevel sets, we will exploit instead estimates for oscillatory integral
operators,

∫
exp(iλψ(x, y))F (x)G(y)dxdy.

The following remarks originated in a conversation between the authors and T. Tao.
A collection {rj} of numbers is said to be δ-separated if |rj − rk| ≥ δ for all j 6= k.

Proposition 9.1. Suppose that φ : [0, 1]2 7→ R is integrable, and that ∂2φ/∂x∂y is
C∞ and nowhere vanishing. Then there exists C < ∞ such that for any δ > 0, any
1 ≤ N <∞, and any collection {r1, . . . , rN} of δ-separated numbers,∣∣ ∪Nj=1 {(x, y) : |φ(x, y)− rj| < δ}

∣∣ ≤ CN1/2
√

log(1 +N)δ1/2.

In particular, the factor
√

log(δ−1) in Corollary 3.5 can be dispensed with here.
The example φ(x, y) = (x−y)2 demonstrates that this dependence on δ,N is optimal,
except possibly for the logarithmic factor.

Proof. While φ itself is not assumed to be smooth, we can decompose φ(x, y) =
ψ(x, y) + f(x) + g(y), were ∂2φ/∂x∂y ≡ ∂2ψ/∂x∂y, and ψ ∈ C∞. Fix such a real-
valued decomposition.

Then by a theorem of Hörmander [H],

|
∫

[0,1]2
eiλψ(x,y)F (x)G(y) dx dy| ≤ C(1 + |λ|)−1/2‖F‖L2([0,1])‖G‖L2([0,1])
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for all F,G ∈ L2 and all λ ∈ R. Taking F = exp(iλf) and G = exp(iλg) yields

|
∫

[0,1]2
eiλφ(x,y) dx dy| ≤ C(1 + |λ|)−1/2.

Set Ej = {(x, y) : |φ(x, y) − rj| < δ}. Fix a nonnegative auxiliary function h ∈
C∞0 (R), such that h(t) ≡ 1 for |t| ≤ 1. If |φ(x, y) − rj| < δ for some j, then
h([φ(x, y)− rj]/δ) = 1. Thus

| ∪j Ej| ≤
∣∣ ∫

[0,1]2

N∑
j=1

h(
φ(x, y)− rj

δ
) dx dy

∣∣.
Writing h as the inverse Fourier transform of its Fourier transform, and setting λ =
δ−1,

| ∪j Ej| ≤ C
∣∣ ∫ ∞
−∞

ĥ(ξ)

∫
[0,1]2

N∑
j=1

eiλ(φ(x,y)−rj)ξ dx dy dξ
∣∣ = C|

∫ ∞
−∞

ĥ(ξ)v(ξ)u(ξ)dξ|

where u(ξ) =
∑

j e
−iλrjξ and v(ξ) =

∫
[0,1]2

exp(iλξφ(x, y)) dxdy. Since ĥ is a Schwartz

function, we thus have

| ∪j Ej| ≤ C

∫ ∞
−∞

(1 + |ξ|)−2|u(ξ)v(ξ)| dξ.

Since the points λrj are 1-separated, the standard orthogonality computation gives∫ a+1

a

|u(ξ)|2 dξ ≤ CN,

uniformly in all a ∈ R, N ≥ 1. Also |u(ξ)| ≤ N for all ξ, while |v(ξ)| ≤ C min(1, λ−1/2|ξ|−1/2).
The contribution of the region |ξ| ≤ N−1 to the above integral is therefore at most

C

∫
|ξ|≤1/N

Nλ−1/2|ξ|−1/2 dξ ≤ CN1/2λ−1/2 = CN1/2δ1/2.

The contribution of the region N−1 ≤ |ξ| ≤ 1 is bounded by

Cλ−1/2(

∫ 1

−1

|u(ξ)|2)1/2 · (
∫
N−1≤|ξ|≤1

|ξ|−1)1/2 ≤ Cδ1/2N1/2
√

log(1 +N).

For the contribution of any region k ≤ |ξ| ≤ k + 1, where k ≥ 1 is an integer, one
obtains by the same reasoning a bound of k−5/2δ1/2N1/2. Summing over k completes
the proof.

Corollary 9.2. If φ satisfies the hypotheses of Proposition 9.1, then for every mea-
surable subset E ⊂ Q of positive Lebesgue measure, the image set φ(E) ⊂ R

1 has
Hausdorff dimension one.
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Proof. Suppose that φ(E) has Hausdorff dimension D < 1; we aim to show that
|E| = 0. Then there exists C <∞ such that for each small h > 0 there exists a cover
{Bj = B(xj, rj)} of φ(E) by balls, with

∑
j r

D
j ≤ C and rj < h for all j. Fixing h

and such a cover, for each integer k satisfying 2−k < h we denote by Nk the number
of balls Bj for which rj ∈ (2−k−1, 2−k], and by Ek the set of all points in E for which
φ(x, y) lies in some ball Bj with radius rj ∈ (2−k−1, 2−k]. Then

∑
kNk2

−kD ≤ C, so
Nk ≤ C2kD. By Proposition 9.1, |Ek| ≤ C2−k/2(Nk log(2 + Nk))

1/2. Thus summing
over all 2−k ≤ h,

|E| ≤
∑
k

|Ek| ≤ C
∑
k

2−k/2(2kD(1 + k))1/2 ≤ Chs

for all s < (1−D)/2. Letting h→ 0 concludes the proof.

Similar reasoning gives a stronger conclusion in higher dimensions. If φ : [0, 1]n ×
[0, 1]n 7→ R is integrable with a C∞ mixed Hessian ∂2φ/∂x∂y whose determinant
vanishes nowhere, then there is a bound of C(1+ |λ|)−n/2 for the oscillatory integrals.
If n > 1, this leads to the conclusion that for every measurable set E of positive
Lebesgue measure, φ(E) contains a set of positive measure.
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