The 3-Manifold Invariants of -
Witten and Reshetikhin—Turaev for sl(2,C)

RorBioN KIRBY AND PAuL MELVIN

§0. Introduction.

In the fall of 1988, Witten {W] gave the first intrinsically 3-dimensional interpretation
of the Jones polynomial [J1] [J2] of a link in the 3-sphere, using a quantum field theory
with Chern—Simons action. In the process, he uncovered a family of new invariants for
arbitrary closed framed 3-manifolds and for links in 3-manifolds.

Shortly afterwards, Reshetikhin and Turaev defined closely related invariants using the
theory of quantum groups. In particular, starting with a simple Lie algebra g, they defined
invariants for a framed link L in the 3-sphere using representations of associated quantum-
~ groups (which are Hopf algebra deformations of the universal enveloping algebra of g)- -
- [RT1].. For g = sl(2,C), these invariants Jr ) (which depend on a coiomng kof Lby -
_ representatmns) generalize the Jones polynomial. Their values at a fixed r* kb root of unity

g = €>™™/T can be combined to produce a complex valued invariant of the oriented 3-

manifold obtained by surgery on L [RT2], shown independent of L using [K1]. (Every
3-manifold can be obtained in this way [L1] [Wa].) Presumably these 3-manifold invariants
can be defined for any simple Lie algebra. What is needed is tha.t the associated quantum
- groups have the structure of a moduler Hopf algebra [RT2]. - »

This paper gives a self-contained proof of the existence of the 3~rnamfold mvanants for

. g = sl(2,C) and ¢ = >/ (§§1-5). It is similar in spirit to [RT2], but relies more on
the elementary representation theory of the relevant Hopf algebra .4 and the topology of

framed links, and less on the abstract theory of modular Hopf algebras.
" There are several new features in the present treatment (described below). These y1eld

manageable formulas for the 3-manifold invariants which can be interpreted in terms of fa-

‘miliar topological invariants for some small values of r (§§6-7). Perhaps more importantly,
_ they lead to a family of new invariants underlying those of Witten and Reshetikhin-Turaev.
‘These new invariants and some applications are discussed in the last section of the paper.

First, the 3-manifold invariants of Reshetikhin and Turaev are modified by splitting off

‘a term involving the first Betti number. The resulting invariants (M) conjugate under
‘orientation reversal (that is 7.(—M) = 7(M)) and are thus useful in answering questions
of amphicheirality. They also appear to be ezactly the same as Witten’s invariants of M
with the canonical 2-framing of Atiyah [A] (normalized at 1 for the 3-sphere). This has
been experimentally verified in many cases by Freed and Gompf [FG], and can in fact be
proved for plumbed 3-manifolds using the formulas for Witten’s invariants in [FG] together
with the formulas for 7.(M) in this paper (see Remark 1.9). ‘

Second, a cabling formula (4.15) which reduces the generalized Jones ﬁolynomials JLx |

~ to the classical Jones polynomial for cables of L is derived. (Similar formulas have been
" obtained independently by Morton and Strickland [MS].) From this one obtains a formula
for 7-(M) in terms of classical Jones polynomials (4.17) (first announced in [KM1] with
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a proof sketched in [KM2]). Recently, Lickorish [L3] {L4] [L5] has found an elegant new
proof of the invariance of such a formula, using the Temperley-Lieb algebra and linear skein
theory and thereby avoiding the explicit use of quantum groups. It is clear however that
the algebra 4 should not be deemphasized, for it encodes deep combinatorial properties
* of the Jones polynomial and appears to make caleulations more accessible.

 Using this formula, 7(M) is expressed in terms of familiar topological invariants for
r = 3 and 4, as the Jones polynomial has topological meaning at the corresponding roots
of unity. (Note that 72(M) = 1 for all M. The Jones polynomial is also understood at the -
sixth root of unity (Appendix B), and so one would expect a similar formula for 75(M);

- see [KM2] for partial results.) For example, '

r3(M) = exp(—2xi/8)*D)
if M is a Z/2Z-homology sphere with p-invariant p(M) (6.5); and

(M) =3 exp(—6mi/16)(Me)
. e . .

“for general M, where u(Me) is the p-invariant of M with spin structure ©, and the
~ sum is over all spin structures (7.1). The general formula (6.3) for 73(M) depends on the
" (mod 2) first betti number and the Brown invariant [Br] of M, and is therefore a homotopy
invariant, whereas 74(M) can distingtish homotopy equivalent manifolds. (The derivation
of the formula. for 1'4(M ) suggested .a new, elementary combinatorial proof of Rohlin’s
theorem, whlch appears in Appendix C.) :
TFinally, a Symmetry Principle (4.20) is proved which reduces grea.tly the number of
_ steps required in calculating 7.(3), and (coupled with the cabling formula) leads to an
- elementary proof of its invariance (see §5). In particular, this proof avoids the difficult
“analysis of the structure of tensor products of irreducible representations of A, which is -
- central to the treatment of [RT2]. Note also the application to Jones polynormals of cables .

- of a framed link at a root of unity (4.25).
'The Symmetry Principle has many other mterestmg consequences. Some of these are

dlscussed in §8:
- (1) Forr odd, '

- ( ) {7'3(M)T,’,(M) ifr:3(mod4)'

| | i T\ (M) (M) ifr =1 (mod4)
where 7,.(M) is an invariant of M (see 8.10). In particular, 73(M) = 0 implies that
(M) = 0 for all odd r. Note: it is shown in (6.3) that m(3) = 0 if and only if

 there exists o in H*(M;Z/2Z) with a — a — a # 0.

(2) For r divisible by 4,

(M) = 37 (M, ©)

5]

where 7-(M,©) is an invariant of the manifold M with spin structure @, and the
sum is over all spin structures on M (see 8.27). A similar statement holds for
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r = 2 (mod4), with the spin structure replaced by an element of H'(M;Z/2Z)

(8.32). This result has been observed independently by Turaev [T'3], also using the

Symmetry Principle.

(3) The Casson invariant of a homology sphere M obtained by Dehn surgery on a knot
is determined (mod 5) by 5(M) (8.20).

(4) The Jones polynomial of a knot K at the fifth root of umty is an invariant for
integral surgery on K (8.14). .

~ (5) ¥ Ky, denotes the homology sphere obtained by 1/n surgery on the knot K, then
7r(K1/a) is periodic in n with period r for odd r (8.15) and period r/2 for even r

~(8.26).

The paper is organized. as follows: In §1 there is a general discussion of framed links,
the K-move and 3-manifolds, the colored framed link invariants Jrx, and the definition
of r-(M). The algebra A (2.7) is described in §2, along with its finite dimensional rep-
resentations V¥ (2.8) and W7 (2.16). Explicit formulas for the R-matrix (2.18 and 2.32)
are derived. In §3, the A-linear tangle operators Fir are defined (3.6), which specialize to
Jrx (3.25). Their behavior under direct sums, extensions and tensor products of colors

(3.10) and under changes in orientation (3.18) is explored. The cabling formula (4.15) and

symmetry principle (4.20) for Ji x are established in §4, and §5 contains the proof of the
invariance of 7. under K-moves, and of its behavior under connected sums and orienta-
tion reversal. The evaluations of 7, (M) for » = 3 and 4 are found in §6 and §7. In §8,
applications of the Symmetry Principle to the study of 7 for odd r (8.7 — 21) and even r
(8.23 — 33) are given, and the new invariants mentioned above are defined. Appendix A
‘contains a combinatorial proof of the deepest identity in the algebra needed to define .
"Appendix B has a treatment of the Jones polynomml at ¢ = ¢2™/%_and Appendix C deals
with p-invariants.

~In a future paper [KM4] we Wlll calculate (M) for lens spaces and Seifert fibered

3 manifolds, and give a Dehn surgery formula. The calculation of 7,.(M) for lens spaces
led to a new definition of the Dedekind sum in terms of signatures, and new formulae for
signature defects and the 31gnature cocycle deﬁmng a central extension of SL(2,Z) by Z
[KM3].

- We are especially grateful to Nicolai Reshetikhin for his lectures and conversations on

his work, and to Vaughan Jones, Greg Kuperberg and Antony Wasserman for valuable
insights into quantum groups. We also thank Andrew Casson, Peter Gilkey, Raymond
' Lickorish, Jim Milgram, Peter Sarnak, Frank Schmidt and Larry Taylor for helpful conver-
‘sations. Part of this work was carried out while the second author was visiting Stanford
" University and the University of Cahforma. at Berkeley. We thank both institutions for
. ‘their hosplta.hty :




§1. The invariants of Reshetikhin and Turaev.

Fix an integer r > 1. In this section we describe in general terms the 3-manifold
invariant 7. of Reshetikhin and Turaev [RT2], which assigns a complex number 7(M)
to each oriented, closed connected 3~rna.mfold M. It satisfies the following propertles (see
5.9):

(D) (mult1phcat1v1ty) TT(M#N) = T,.(M)T,-(N)

(2) (orientation) 7r.(—M) = (M)

(3) (normalization) 7(S®)=1. _ .
In fact, 7 is a slight modification of the invariant that appears in [RT2,§3.3.2], which does

- not satisfy (2) (see 1.4 below). :
(M) is defined as a linear combination of certain colored fmmed Imk invariants J Lk

(defined in [RT1,85]) of a framed link I associated with M. The Ji ) are generalizations -
- of the Jones polynomial of L, and are described in more detail below and in §3.

Fxrst we fix some notation to be used throughout the paper. Writing e(a) for exp(2wia),

=e(l) eme(d) eme(d)

so g = §° = ¢4, (Reshetikhin and Turaev consider other roots of unity e (2), but we

restrict tom =1 for simplicity.) For any integer k, define

PLI- sm’r—k-

"(1._1) __ [k]: oo

§—8 . sm—

(cf. [k], in 2 28 below) Observe that [k] depends onr and has symmetnes [Kl=[r—k]=
-—[k + r] Fmaﬂy, set . '
b= \/—g—- sin =
ror
3(r—2)
ez

: Framed_links and 3-manifolds.-

(12

- Let L be a framed link in S3. Recall that I determines a smooth oriented 4-manifold
Wi obtained by adding 2-handles to the 4-ball B*, oriented as the unit ball in C?, along

the components L; of L in §* = 8B* [K2]. If L is oriented then each L; is identified with -

an element of H = Ho(Wy;Z), also called L;, formed from an oriented Seifert surface for

L; in 8% and the core of the associated 2-handle. The L; form a basis for H, and with

respect to this basis the intersection form on H, denoted by -, coincides with the linking

matrix of L. That is, L; - Lj = {k(L;i, Lj) for ¢ # j and L; - L; is the framing on-L;. We

- write oz, (or o) for the signature of the linking matrix of L, or equivalently the index of
Wr. :
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The 3-manifold My = 0Wi, oriented using the “outward first” convention for bound-
aries, is the result of surgery on L in $3. Any oriented 3-manifold M may be obtained in
this way [L1] [Wa), and if M = My = M}, then one can pass from L to L' by isotopy in
S% and a combination of the following two moves [K1]: _

MOVE 1 (blow up). Add (or delete) a disjoint unknotted componenf with framing +1.
. 'MovVE 2 (handle slide). For some i # j, replace L; with L} = L;#L;, a band connected

- sum of L; with a push off of L; (along the first vector in the framing), with franung

Lj-Li = (Li+ Lj) - (Li + Ly).

In Move 1, -dzsjomt means separated by a 2-sphere from the rest of the link. Move 2
corresponds to sliding the 2-handle for L; over the 2-handle for Lj. These two moves
can be combined into one {FR] which is more convenient for the work of Reshetikhin and

Turaev [RTZ]

m-STRAND K-MOVE (of type €= :}:1) Locally, the foﬂowmg are mterchangeable

m stran_ds
..... ' € twist
kT 1>,
L L

Figure 1. 3

' Where the framings on corresponding components J and J' of I and L' are related by

JJ =T J+e(K- TV

The colored framed link invariants.

At the heart of the 3-manifold invariant 7-(M) are the colored framed link invariants
Jix. Here L is a framed link in $* with M = My and k is a coloring of L, i.e. the
assignment of an .4-module (or color) to each component of L, where A is a certain Hopf
algebra over C (that depends on the fixed integer r) a,rising in the theory of guantum
groups. -

" The algebra A will be described in detail in §2. The reason for using a Hopf algebra is
that the set of representations (i.e. A-modules) is closed under taking tensor products and
duals over the ground field C. This is important for the construction of Jr i, given in §3.
 Here we will give a heuristic description of Jz, x in the language of topological quantum
field theory (see e.g. [AHLS]). Orient L and represent it by a planar diagram D. After
‘removing the extreme points (maxima and minima) of D, assign the module V, or its dual
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V*, to each V-colored strand of L {according to whether the strand is oriented down or
up, see Figure 1.4). _ .

Any horizontal line A which avoids crossings and extreme points hits D in a collection
of points labeled by the colors and their duals. Associate to this line A the module V)
. which is the tensor product of the labels in order. In Figure 1.4, V), = C = V3, and
Va=W*@V*@W@W*®W ®V. To each extreme point and each crossing, assign an
A-linear operator from the module just below to the one just above. The composition of
. these operators maps C to C. Hence it is multiplication by a scalar which (after adjusting
for framings) is defined to be Ji k. ' '

This construction should be independent of the orientation on L and the chosen diagram
D, so as to give an invariant of (unoriented) colored framed links. Suitable operators are
- provided in [RT1] using additional structure that exists on the algebra A.

1'2
w* :
. 11
W
A'O

Figure 1.4




The 3-manifold invariant.

Recall that r is a fixed integer > 1. To define the 3-manifold invariant in terms of
colored framed link invariants Ji,k, it is necessary to restrict the colorings k to lie in a
distinguished family M of A-modules, consisting of one irreducible module V¥ in each
dimension 0 < & < r (see §2). We call these M-colorings or write k C M, and denote the
dimension of the color assigned to the component L; of L by k;, also called the color of L;.

Now consider the following linear combination of colored framed link invariants.

-1.5 DEFINITION: For any framed link L, define

L = af Z (k) JL x
kCM

where oy, = b"2¢7F and [k} = [[, [&:]. (Recall (1.2) tha.t b= \/—_sm—, c=e ( E-(%fl));

. n =ny is the number of components in L and o, is the signature of the linking matrix of -

- L.) Note that since M = {V,...,V"7}, the sum } .-\, may be written in multi-index
notation as ) g <, (see §4). '

1.6 THroREM [RT2]. 71 is invariant under -moves on L.

Theorem 1.6 can be proved for 0 or 1-strand K -moves using three local propertiés of Jp i
and a standard Gauss sum (see 3.27, 5.1 and 5.4). Then the proof for m-strand K-moves

“is an easy inductive argument using the Symmetry Principle 4.20 (see 5.6).

It follows from Theorem 1.6 and [K1] [FR] that there is a well defined invariant for _'

closed, oriented 3-manifolds:
1.7 DEFINITION: 7.(M) = 11, where L is any framed link w1th M M L

1.8 REMARKS: (1) The invariant that actually appears in [RT2] differs from 7.(M) by a
factor of ¢”, where v is the nullity of the linking matrix of L (= first Betti number of M)
- The a.dvantage of (M) is that it behaves nicely under orientation reversal.

- As a convenience to the reader, here is a dictionary relating the notation of [RT2] with

~ the notation in this paper: The algebra U; of [RT2,§8] (where ¢ = e(1/4r) = exp(2ni/4r)

as abo{re) is our A = A, and the U;-module V; is our V**. (Note that in U, the element
wv~! is just K? and dim V; = [{ 4 1]). The link invariant F(T(L,w,))) of [RT2,§3] (where

‘w is the orientation on L and A is the coloring) corresponds to our Jz x. The constant

C defined in [RT2,§3.2 and 8.3.8] is our ¢?, the coefficient d; is equal to our be[i + 1],
and so the invariant {L} = (bc)"™ 3 ) - M[R]J Lk- Thus the 3-manifold invariant defined in
[RT2,83.3.2] is
) F(Mv L) =5" 7" Z [k]JL,k =c7 T-,-(M).

kC M .

(2) It is often useful for calculations to write (M) (where M = M) in other ways. For
example, let a; = L;- L; be the framing on L;, and write Ly for the link L with all framings
changed to zero. It is shown in Lemma 3.27b below that Jr i changes by £ -1) §f the
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~ framing of L; is changed by £1. Thus Jrx = _tEa.-(k?—

1) JL.O,k- Now, since ¢ = ¢ e(—%),
(1.5) becomes _

‘(1-9) Tr(M)—b"e( ) fa&“za' Z [Ie] 4223 'JLD,
kCM

The term &(L) = 3o - Y a; has been identified in [FG] as the difference between the
2-framing on M determined naturally by L and the canonical 2-framing on M {A].

Furthermore, the Gauss sum G = Y7, t** (see [La] and (5.1)) equals +/8r e(1), and so
=2 (s—3)e(—2) since 8 — 5 = 2i sin(Z). Formula (1.10) becomes

kCM

(L10)  n(M)= (—————-(3 3))_( )ﬁ+°’t3“f2“*_2[k]t_ﬂﬂ-ek?JLo,k.

It follows that T,.(M ) belongs tothe ring Z[ti 2,7~ since the ;= dlsappears using results

from §8. It is necessary to use t¥3 rather than ¢, since for exa.mple (see (5.5) and (6.3))" .
(8T x 8N =1= V2 =32 — 53/_2. (Integer powers of ¢ suffice if the nullity is put back .

into 7, see (1.8)). Question: is 7.(M) always an element of Z[t*%}?




§2. The quasitriangular Hopf algebra A.

In this section we shall define the Hopf algebra A and produce an R-matnx Rin A A
" making A a quasitriangular Hopf algebra. We also show that the associated operators R
_ in representations of A satisfy the Yang-Baxter equation. :

Throughout this section, r will be a fixed integer greater than 1.

" The algebra A.

As motivation, we first recall the definition of the Lie algebra sl(2, C) and its repre—.

sentations: sl(2,C) is a 3-dimensional complex vector space with preferred basis X, Y, H
~ and Lie bracket given by [H,X] = 2X, [H,Y] = —2Y and [X,Y] = H. It has a unique
(up to isomorphism) k-dimensional 1rreduc1ble representation V¥ for each positive integer

k. Explicitly, sl(2,C) acts on vV (with preferred ordered basis €m,€m—1,.-.,€-m Where

k=2m+1) by
o | = (m+7j + l)ej4
(2.1) . Ye; = (m -7+ l)ej_l
He; =2j¢;.

'Note that the subscripts are integers if k is odd and half integers if k is even.
For example, the 1, 2 and 3-dimensional representations of sl(2, C) are

- 0)5X~Y—H—0'.-. S
(jm _(m X = (8 é) Y‘f(? g)apdﬂuz(é :H)d

/0o 20 00 0 2 0 0
@3 Xx=[o0o01],y=[{100]andHE=[0 0 0
000 \o 2 o0 00 —2

_respectively.

- We extend this discussion to the universal enveloping algebm U = U(sl(2, C)), which
is just the associative algebra over C with the same generators and relations as sl(2, C).
(The bracket is interpreted as for matrices. Thus HX — XH = 2X, or equivalently
HX = X(H + 2). Similarly HY = Y(H — 2) and XY — ¥X = H.) The representa.tions
- above evidently extend to algebra representatlons of U and so there are unique irreducible

U modules V* in each dimension.

Note that U has a Hopf algebra structure (with comultiplication A : U — U ® U
- antipode S : U — U and counit ¢ : U ~— C given by Ala) =a®1+1®«, S(a) = —a and

&(a) = 0 for all « in sl(2, C)). This allows one to define U-module structures on the duals
V* = Homcg(V, C) and tensor products V@ W = V. @c W of U-modules V and W. In
particular, (af)(v) = f(S{a)v) and a(v@w) = Aa (v @ w) (where U® U acts diagonally
on VW), fora €U, feV*,veV and w € W. (This is the reason for using Hopf
algebras in the constructlon of the colored framed link invariants.)
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" Next we consider the guantized universal enveloping algebra Uy = Up(sl(2, C)), found
" by Kulish and Reshetikhin [KuR]. It can be defined as the algebra U[[A]] of formal power
series in h (= Planck’s constant for the physicists} with coefficients in U, with the same

- relations as in U except that [X,Y] = H is replaced with

sinh(hH /2) H -H
X,Y]|=-———rr--=H+ —— ceee
EYl=omny SHEt T +
Setting ¢ = e* and (m analogy with the usua,l nota.tmn) 5= ehlz t=ehlt 5=5"1=e""?
and . | JH _GH
==

' thése relations may be ﬁﬂtten _ .
o HX = X(H+2)
23 HY =Y(H - 2)
L xY)=(H)
If we 'izﬁ.:roduc_e the element |
K=tf =™ — 14 Hh-{--ééﬁhz +.
(which will ﬁlay an importa;nﬁ role in the sequel), then we_obtain. the asé;)ciated relations. |
| | KX =sXK
_ KR
§— 38

X,Y] =[] =

where K = K~ ={#,

There is a Hopf algebra structure on Uh as a module over the ring C[[h]] of formal
- power series, discovered by Sklyanin [Sk], with comu1t1phcat1on A, antipode § and counit -
g given by

A(X) = X@K+'I{’®X
AY)=Y@K+EKQ®Y
| |  AH)=H®1+1®H
(2.5) O S(X) =~
| S(Y)=-5Y
S(H) =—
e(X)=¢eY)=¢e(H) =0.
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.One may readily compute

AK)=K®K

(2.6) | CS(K)=FK
' ' - g(K)=1. _
We would like to specialize U,:; at particular values of h, namely h = 2’" (soqg=et =

e( )), and then look for complex representations. This cannot be done using the full-

~ algebra Up, because of the presence of divergent series, and so we first restrict to the
~ subalgebra, over the ring of convergent power series in A (1 e. entire functions), generated
by X,Y, K and K. Now, followmg Reshetikhin and Turaev, we define

A=A,

(denoted U, in [RT2]) to be the quotient of this subalgebra obtained by setting h = 2%

r v

X" =0,Y" =0 and K* = 1. (Omitting the last three relations yields the infinite-

dimensional algebra U, of [Ji] [RT1] known as the g-analogue of U.) Thus A is a ﬁmte
dimensional algebra over C with generators X, Y, K, K and relations = -

K=K
KX = sXK
| | o - KY =35YK
(2.7) ' D 2 2
o o [X,Y]:IL l_r\_
S—
X"'=Y"=0
Iﬂl‘r‘_

where s = € (), as usual. (We Will retain the notation

H—_58 KP-R?

S""'b 8—35

{mz

even though H is no longer in our a,Igebra, ) A acqulres a complex Hopf algebra structure

from Uy, and so tensor products and duals (over C) of .A-modules are still A-modules.

Representations of A.

As with U, there are A-modules V¥ in each dimension k¥ > 0. In pa,rtlcula,r A acts on
-V (with ba,sxs €my--+y€em, for k =2m+1) by
. _ ‘Xe;=[m+7+1ej4a
(2.8) | Ye; = [m—j + 1Jej_s
' Kej=sle; =te;
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~ (cf. 2.1, but note the brackets). The relation [X,Y] = [H] follows from the identity
][] —[a+1}p -1 =[e—0+1] _ :
For example, the 1, 2 and 3 dimensional representations of A are

- (1) x:my=nw¢x=1 |
oy x=(8 D)r=(2 §)amax=(; )

0 2] 0 /0 0 o0\ s 0
(3) X:(O 0 [1]),}’:([1] 0 O)a.ndK=(0 1
| 00 0/ 0 [2 o, \o o

[ I v ]

|

2.10 REMARK: It is useful to represent V* by a graph in the plane with one vertex at
height j for each basis vector e;, and with oriented edges from e; to eji: labeled by
[m+j+1]if [m+j+1] # 0 (recall & = 2m + 1), indicating the actions of X and Y.
This graph, with the top vertex labeled by its weight (i.e. eigenvalue for K ) 8™, is called
the diagram of V'* with respect to €m,..:,€—m. (See Figure 2.11a, with the special cases
% = 3 and 7 for r = 5 shown in 2.11b and ¢, using the identities [j] = [r — j] = —[r + J].)
 Similar diagrams can be used to describe other finite dimensional A-modules with respect

" to bases of weight vectors (i.e. eigenvectors for K). - ' '

)

respectively.

.Sm | o o . 53
. - o - | ’ V ' 3 .
re-117 ] 113 e o S
. e s 1[2]. | . lIEZ}% ; .._._‘1.11[1].
] _ N : 4 . ’
coreafdry o 1 Tle2n $ra1 ,1[2] |
St e TR o grerd 11i021
- | ,-EZJT' . | rzafral
. . S .
e afla
Ve ¥3 (r=5) - v/ (r=5) vt (r=5) w3 |
COTNE¢ > B 3 (d) (e)

Figure 2.11.
 The diagram of a module is often. simplified by fesca]i‘ng the basis (i.e. bhanging the
lengths of the basis vectors). In particular, if v is changed to av, then the label on each

edge which starts (or ends) at the corresponding vertex is multiplied (or divided) by a.
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For example for k < r, the basis em,...,e—nm for V¥ can be rescaled to a unique basis
" bmye. oy b—m (up to a multiple), called a balanced basis, with

Xb; = ([m +35 + 1lm — j1)"*bj1a
Yb; = (fm —j + 1][m +;])1/2b3 1

Kb; = &% b;.
: 1/2
(Indeed e; = 2m .
m—]
cf. 2.29.) Observe that in the corresponding diagram, any two oppositely oriented edges
with the same end points have equal labels of the form ([i][k—:])!/2, and so can be combined
into one doubly oriented edge. The case r = 5, k = 4 is shown in Figure 2.11d. _
It turns out that the representations V* are irreducible if and only if k& < r (see below),
and so it is natural to define the distinguished family :

(2.12) | ={V,...,v7}
of A- modules to be used in constructing the 3-manifold invariant 7. (vr is excluded for
technical reasons; see Lemma 3.29 below.)
The structure of the A-modules V¥ for k < r, and their tensor products VE® Vk for

k+ k' < r+4 1, is parallel to the classical case, and is summarized in the following well
known result (see e.g. [Ji] [Lu] [RT2]). :

2.13 THEOREM. Ifk < r, then the modules V* are irreducible and self dual., In particular,
the map D : (VF)y* — V" given by D(b?) = (—s)7b;, where b; is a balanced basis Wzth-

b, where [Z] = W[%]l—u,' is the quantized binomial coefficient,

B dual basis b7, is an A-linear isomorphism. (Equivalently, D(e?) = [mz?fj] (—s)e; )

Furthermore, if k+ k' < r+ 1, then
V‘@V" b ve
PERSK
where k@ k' = {k+k =1L,k +%' —3,... |k —K|+1}.

PROOF: It is evident from its diagram that for & < r, V* contains no proper submodules
generated by weight vectors e;. But for k < 2r, every submodule of V¥ is generated
by weight vectors, since the weights of the e; are distinct. Indeed, for any nonzero vector
v = Y ajej, each ¢; is a multiple of v by a suitable polynomial in K, and so the submodules
generated by v and by the e; with a; # 0 coincide. It follows that V'* is irreducible for
E<r.

For the second statement, note that a C-linear 1somorph;sm D is A-linear provided
D(a¥) = aD(¥) for @ = K, X and Y. For D of the form D(b?) = c;b_;, this imposes -

~ no restriction on the ¢; for @ = K, and the sole restriction ¢; = (—s)¢cj—y fora=Xor Y. .

To see this, one may compute the action of 4 on V**:
Xel = —s[m + jl]e' !
Yel = —5[m — jle/ !
Kel =35¢,
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or in the ba.lé.nc_ed basis,

XV = —s(fm — j + 1[m + )26
Y¥ = —5([m +j + 1]m — j])/ 26!
Ky =34,

. ' : /2
(N ote that b = [nfrfj] ¢/.) The self duality result follows.

- Finally, to venfy the decomposition of V¥ ® V* observe that there are weight vectors
v, in VE® V* of weight t*~1 with X v, = 0 for each p in k ® k', since the dimensions
of the corresponding weight spaces decrease as p increases. (To see this it is useful to use
the diagram for V¥ ® V¥ with respect to the weight basis e; ® e; with vertices at (¢,7),
see Figure 2.14 for the case V¥ @ V®.) It follows that the submodule generated by v, is

isomorphic to V?. These subspaces are independent since any collection of equal weight

vectors lying in distinct V7 are a.nmhllated by distinct powers of X. A d1mens1on count

, completes the argument. _ : ' . o

\ e1®e,

N

e1®e, e, ® e,

Figure 2.14

- As a consequence of Theorem 2.13, each of the irreducible modules V¥ can be expressed
‘as a linear combination of powers of V2 in the representation ring of A (where for example
2V +UW means VO V& ([U @W), (V)? means VRV (not V?), and U = V — W means
TeW=V): _

2.15 COROLLARY. For0<n <, the equa]ity
n/2
V= -1y (“ )y
J=0 '

holds in the representation ring, where the sum is over all integers j with 0 < 2j < n.
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PrROOF: Theorem 2.13 implies that V™t = V2V™ — ¥*~1  Thus by induction (which
starts trivially at n = 0),

g Vz.Z(_l)j (n —; —*j) (V2)n-1-2i B Z(_ljj (n ——? —j) — '
- %(nEl)(W)“*(” Yoy )(W)“-‘*_—Jr
- (37 e+ ("7 e
= (3) (V*)" - (”;1) V" + ( ) 2) (V) —

=30 1)1( | )(vg)“*f

("2
(n

O

It is amusing to note that the same 1dent1ty holds with the bracket [n] replaciﬁg Ve
The same proof works. :
For small values of n, we have

V3_=V2®V2 __Vl
Vi=VIeVieVi-2v? |
V=1V eV V-3Vl Vii Vi
..REMARK: The structure of the tensor product V¥ Q@ V¥ for k+ & > r+ 1 is more |

complicated. This has been analyzed by Reshetikhin and Turaev [RT2] (and independently
- by A. Wasserman and J. Frolich—-G. Keller) and is central to their proof of the invariance

. of the 3-manifold invariant. We will give a different proof of the invariance in §5 which

depends on the Symmetry Principle 4.20. This in turn is based on the structure of certain
. r-dimensional A-modules W" d1scussed below (which arise as well in the general discussion
of tensor products).

In contrast with the case of U, the A-modules V* are reducible for k > r. In pa.rt1cula.r

the subspace V; generated by e; for j > m — r is an r-dimensional submodule, since
Yem—rt+1 = [r]eém—r = 0. These modules are called Verma modules.

Observe that V7 = V7, and (as is easily seen using Remark 2.10) V" and V[, ,, are
isomorphic. If r < k& < 2r, then V| contains V?, where p = 2r — k, as its unique proper
submodule, which motivates the notation adopted in {RT2]

Wy = Var_p
for 0 < p < r. (See Figure 2.1le for the diagram of W3 = V7’.) Indeed, it is clear from
the diagram of W that V? is the only submodule generated by weight vectors, but every
‘submodule is of this form by the argument in the proof of Theorem 2.13.
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- In fact, the Verma modules W, may be described as extensions of V? by a twisted
version V' P(:) of V7P, In pa.rticular, observe that there are exactly four 1-dimensional
A-modules V'(a), where o = 1, gwen by K=aand X =Y = 0. (The value of K
follows from the relation [X,Y] = K K 2, which gives K* = 1 since [X,Y] = 0in C, and
the values of X and Y are 1mmedlate from the relations KX = sXK and KY = 5YK.)
For any 4-module V, put

Vie)=Ve® Vi(a).

(A diagram for V(a) is obtained from one for V by multiplying the vertex weights by a.)
It is now easy, using Remark 2.10, to establish the following result.

. 2:16 LEMMA [RT2, §8. 4] There is a short exact sequence
0—>VP——>W’"—>V" P(i)—0

for 0 < p < r, where V? is the unique proper submodule of W

Similar considerations apply to the g,eneral Verma modules V', since V[, ., is isomorphic .

to Vk (Zn)

The R-matrix.

The algebra A4 has the additional structure of a quasi-triangular Hopf algebra (see Drin-
feld [D2]). That is, there exists an 1nvert1b1e element R in A ® .A sa.t1sfy1ng the followmg

properties:

_ - (a) RA(@)R"'=A(a) forallain A
(2.17) " (b) (A®id)R)= RizRas |
: (ld ®A)(R) R13R12
where A(a) = P(A(a)), P is the permutatlon endomorph1sm of A given by Pla® ﬁ)

B®a, Riz=R®1, Ry3s =1®R and Rys = (P ®id)(Ras). (Explicitly, if R =3, a; @ S,
then ng = Ea,@ﬁ,@l Ros =5 1Qa;®f0; and Ry3 = Za,@l@ﬁ, ) Such an element

Ris called a universal R-matriz for A, and is the central mgredlent in the definition of the

colored framed link invariants.
Historically, an R-matrix was first discovered in the algebra Uy by Drinfeld {D1] and
- independently by Jimbo [J] in the algebra U,. R-matrices in A have been written down by

several authors, including Reshetikhin and Turaev [RT2] and A. Wasserman. We give a

formula for R of the form R = ¥ cnop X" K*®@Y " K?, which is derived by recursively solving
for the constants cnqp using the defining relation (2.17a). (This approach to finding R was

suggested to us by A. Wasserman, who has previously carried out a similar calculation.)

2.18 THEOREM. The element

47- Z (5 [";]"S) _Eab-l-(b a)n+nana, ® YnKb

n,a,b
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where the sum is over all 0 < n < r and 0 < a, b < 4r, is a universal R-matrix for A.
PROOF: As mentioned above, we assume that there exists an R-matrix of the form

(2.19) R=Y cipX"K°®@Y"K® 0<n<r,0<ab<dr,

n,a,b

and then find ¢nep by solving RA(X) = A(X)R and RA(Y) = A(Y)R.
'First note the following commutation relations in A (see 2.T):

KX =sXK and [H]X = X[H +2]
(2.20) KY =3YK and [H]Y =Y [H - 2]
' " YX =XY-[H] -
~where [H + n] = 3H+’;:§H+n = LK z:s . By 1nduct10n using the 1dent1ty :

[allH +c+ 8]+ [B{H +c—d] = [a+H[H + C_],
 we can generahze the last relation in (2.20) to o ..
YRX = XY™ - [n][H +n—1Y"
YX= XY - [ ~n 41X
Now we have (reca.lhng from 2.5 that A( X=XQK + K® X)

0= RA(X) - AX)R |
=y cmb(X"K“X QY KM 4 XP Ko ® Y R X
© n,a,b . '
—KX"K°@XY "K' - X"tK°® I?YnKb)
=Y cna(s* X" K QYK 4+ LXK @ XYTK
_ .n,a.,b ) ' : )
[n'] ( —f— IXnIra —1 ® Yn II,-6+2 nwlxnj-{a—l ® Yn-—lK-b—2)
S —3
—-s"X"K*t @ XY”K" ~s"X "R @Y K.

Thus the coefficient of X" K*@ XY " K® is —5"Cn,a—1,6 + sbcn,a.;.l,b = 0 which implies that

_b _h—
(2.21) Cn,a+2,b =8 Cpab =35 Cnab-

‘Also, the coefficient of X"K* ® Y"1 K’ is

b n— l[n : b+n+1

" Cn,a+1,b—2 + "—"“""';""“"Cn a1 b2 — 8" len—1,a,541 = 0.

(2.22) $%Cami,ap—1 —
L 8§—35 S —
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Similarly, using RA(Y) — A(Y)R = 0, we get-

0= z cnap(FEXYK* QY K 4 X K @ YIRS

n,a,b

_ nX(zKa-l-l ® Yn-i-ll:(b _ anYKa Yn.}—fb 1

[n]( n— lxn-‘lI{a-l-Z ® YnIrb 1 mn—lxn—lKa;2 ® YnI{b--;l),

S—S

and so the coefficient of X"V K® @ Y"K? is 5%Cn,a,b—1 — $"Cn,a,b+1 = 0 which implies

(2.23) | . | ' Cn,a,b+2 = §a'+ncn,a,b.

Also, the coefficient of X"~1K* ® Y K®is

_ nl g1 In .
(2.24) gbcn—l,a+1,b — 3" lcn——l,a—l,b + [ ]_82 lcn,a_z,b-;-l - [ ]_Scn,a+2,b+1 = (.
_ §—3 . T 55 ,
Using (2.22) and (2.23) we obtain
(2_25) Cn,ab = WCn—l,a—l,b—l

which can also be obtained from {2.21) and (2.24).

.+ If we choose ¢p,0,0 = 1, then from (2.21) and (2.23) cp,24,20 = 52 = b Thys it is

" a natural choice to let coas = 1°° (which is consistent with (2.21) and (2.23)). It follows
~ from (2.25) that for the values cnop = is—r—;—]‘s'-!):f“b*'(b‘“)““"", the element R of (2.19) satisfies
" the first defining relation (2.17a) of the R-matrix. In fact, in order to satisfy the second
defining relation as well, it is necessary to normalize by multiplying by ﬁ. Thus, we put

. — 1 (3_§)" _ab+(b—a.)n—i—n
229 o=

- which gives the desired

Z (3 — 3) —ab+(b—a)n+n X—nIra. ® YnKb
[n]!

n!l

satlsfymg (2.17a), and it remains to verify that R is 1nvert1ble and sat1sﬁes (2. 17b) We -

Cwill check the axiom
(227) : (A & Id)R = Ry13Hy3 _
. and leave the rest as an exercise.
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We need a quantized version of the binomial coefficients (this goes back to Gauss). If

BA = AB, then (A + B)" = Z (Z) A¥B™—F defines the binomial coefficient (:)
: . ' E .
Similarly, if BA = gAB (q arbitrary), then

(A+B)"=)" [’;] Ak Bk

k

* defines the binomial g-coefficient {Z] . It can be verified by induction that

‘where
. P
g—1"~

) N

This is just an unbalanced version of the [n] used in this paper, ie. [n], = s""[n]. Tt
follows that

. nl _ k(n—;k) n ni_ [n]! _
(2.29_) [ q] s [ ,] where [ _} = =l
Returmng to the axiom (2.27), the left hand side (A ® id)R is

41, Z (‘5 - 3) tab+(b—a.)n+n(X ®I& +I{®X) (K@ K)a Yn.Kb

(2.30)
. _ Z Crab Z [ :I XLI{A: n+a ® k{n— L)Xn-LI{k—i-a. YnI{b,

nab

since (K@ X)(X ® K) =X Q@K)K® X),.a,nd the right ha.nd side R13R2'3 is

’ ! s " i M ' i ! i
@y > enarpCanann XTKC @ XM K @3 YT KV
"
J’ I’bl

H H b”

(2.31)

We need to show equal the coefficients of
XK @ X" F K @ Y K
‘where o' = k-n+acanda’" =k+ain (230),and k=n',n" =n—kand b= + 5"

in {2.31). Furthermore, note that ¢’ = o’ — n in (2.30), but there are terms in (2.31) for
which @' # a" — n so these terms must be shown zero.
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Using (2.29) and (2.26), we compute this coefficient in (2.30) to be
1 i knek) k(n—k)
Lo 2] e

1 (s _ 3) 2 e ab+(b—a)ntn  _ [n]'

4 ) R [kl — k]!

- _1_ (S - S_)n t—a$+(b—.a)n+r'n
4r [k} n — k]! '

Smce b and b can vary as 10ng as b +0"=b (mod 4r), the corresponding coefﬁc1ent in
(2.31) equals

. 4r--1

1 b (n—k)
7 Z Cka’b’cn kat,b=b'S
16r =
4r—-1 k ) —k _ . . -
__ 1! 2 (s —s) 7 b’+(b‘—a’)k+k (3—'5) Fu'! (b= )+ (b=t —a"Y(n—K)tnmk _p2B(n—k)
167 2o~ [h] = & S ¥
4r—1 )
3 - S) “b'(a. —a"+n)+(—a k4-a' b-bn—bk— a”n+a.”k+n)
161' = [Ic]l n— k]'

4r—1 '
(‘S — 'S) f( a k+a"b+bn-—-bk—a”n+a”k+n) Z Eb {a' —a.”+n)
16r2 el — Ali

b'=0

.When a —a' +n # 0, thé_sﬁm on the right is zer.o, as it should be for there is no
corresponding term in (2.30). Ha'—ad"+n =0, then the sum equals 4r, and substztutlng
ad =k-n+aanda’ =k+aq, Weobtam

i (S — §)n sabt(b—a)ntn -
4r [k][n — k]!

' as the common value of this coefficient in (2.30) and (2.31). _ | O

2.32 COROLLARY. (a) R acts on the module V* @ V¥ by

- (5 S)n m+1 + n]1 [m _.7 +n] 4i7-2n(i—j)—n{n+1} .
R(6'®e’) Z Pl il -l e+_“®?’_"
where k = 2m + 1, ' = 2m' + 1, [n}! = [n][n —1]...[1] (= 1 for n = 0), a,n'd-[[ﬁ]]i, -
“[p)lp=1]...[n+1]. The sum is over all n > 0 with i +n < m and j —n 2 -m'. In
- particular, ifi = m or § = —m, then R(e; ® ¢;) = ¢"¢; @ ¢;.

(b) IfV is an A-module and v is a vector in V of weight t? (i.e. Kv = t?v), then R maps
v@ein VR Via)toaPv®e,ande®v in V1{(a)®@V to e ® aPv. (For the definition of
V(a), lock above Lemma 2.16.)
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.PROOF: . For the k-dimensional representation V* with basis €m, €m—1, .., E—m, recall that
Ke; = s'ei, Xei=[m+i+ 1]e,+1 and Ye; = [m — i + 1llei—1. It follows from the theorem

that R acts on V¥ ® V¥ by

(s—3)" [m+itn]! ! —j+n]! qab+(b—a .n n—2at—2bj
(2:33) R(_ei@ej)mﬁz s[nlss [m+i]T] [Tmfij]!] Zt Fb=a)ntn—2ai-2bj,

n>0 a,b

i+n 4 ej-—-.n-

Observe that the exponent of f can be written as (a+n— 2_7 Wo—n— 2z)+(n 27 )(n+22)+n
It is an elementary fact that

_ b o fla+n—2j)(b—n—2i)
o 05;6011- 05;5<4r o
so it follows that
Z {a.b+(b—a)n+n—2ai—2bj — 4r - t‘n(n+1)~—4ij+2n(i—j)
0<a,b<dr '

~ and substitution in (‘7 33) gives

(s=3)" [m+it+n][m' =7+l mtiytontiogn—aij
Blei®e) =), DN TED N e P s

 which proves (a).
For (b), note that e is an element of the (twisted) 1- dJmensmnal module Vl(a) with

a=1"= t”“ for some m (so Ke = ae=1""¢), and so we have

1 .
R(v ® e) = - Z tab—ap-brmv ®c
a,b

— 4TmP (% Zt—(a-—rm)(b—p)) v® e.
a.b

Thus .R(v ® e) = aPv ® e, since the sum equals 4r as above. The other case follows in the

same way. ' | O

2.34 REMARK: The action of the R-matrix in the modules V¥ @ V¥ given in the previous
' corollary can also be derived using Drinfeld’s R-matrix in Uy [D 2, p. 816},

R = Zth (h)tH®H+n(H®1 1®H)(X+) ®(X )n o

n=0

Here X* and H are generators for Uy, with relations [D2 p- 807]
[H,X*] = +2X*

X+, X"} = zsmh (hTH)

=

‘a“
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—nn —1 n =
=i = M e
=]

k=31

L |
= H 3t = _;f“(nﬂ)-
i (K] [n}!

'- 1 1 . o
The generators X and Y correspond to ( h_) "Xt and ( sf§) : Y+ (giving the relation

o g

S [X,Y] = [H]), and substituting these in Drinfeld’s R-matrix gives

— i (3 — ?‘)'ﬂ- tH®H+"(H®1—1®H)—n(n+1)Xn ® Yn.
“—  [n]!
(Since (s — 5)”t“(“+1) = (1 — q)"#"(*~V_ it follows that there is a missing t"(" =1} in the
formula for the R-matrix in [RT1, §7.4], and a missing t*~1) in [KiR, §1.7].)
To compute the action of Ron ¢; @ ¢; in VE@ V¥, observe that 785 = 1@1+ LH®

H+ () LH?@H? +... and t"(HOI-1OH) = (K" @1)(1@ K) = K" ® K", which gives.

tHOH 0. g e = t* ¢; @ ¢

rHO1-10H) o g o = £2706-9) ¢, g €j-
Thus
- (5 = 5)" a(iarm) G4 2 m)= (=)=l ),
Rle: @) = 8 = 8)" aGien)(—n i J n}. n(nt+1),
( z J) ; [n]!

) [m +7+n]l[m' —j+n}!

R I T B

: wh1ch readily yields the formula given in Corollary 2.32.

- 2.35 DEFINITION: The R-matrix, viewed as an operator on V @ W for A—modules V and

W, can be composed with the permutation operator P to glve an operator
B=PoR:VOW-WoV

“which we call the R-matric (read “R flip matrix”) on V@ W.
. These are the operators associated with crossings in the definition of the colored framed
link invariants.

2.36 LEMMA. The R—m_atn'ces are A-linear and satisfy the Yang—Ba,xter equation
Ro3Ri2Ras = RipResRas
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(as operators UQVRW - WRVQU for A-modulesU, V and W), where Ryy = R®1d
and R23 =id ®R :

PROOF: The first statement follows readlly from the first defining property (2.17a) of R.
Indeed for X in V @ W, we have

B(aX)=PRAa-X) (- = diagonal action)
— P(P(A)R-X)  (by 2.17a)
= AaP(R-X) '
=aq l%(X) |

The second also follows from the deﬁmng propert1es of R. First we derive the Yang-Baxter

. equatxon for the R-matrix, namely -

R12R13R‘>3 = R93R13R12, |
as follows: _ :
R12R13R23 =Rz~ (A ®id)(R)  (by 2.17b)

=(A®id)(R)-Ri». (by 2.17a)
— (P ®id)(RisRas) - Riz (by 2.17b)
= Ry3 RysRyz.

Now view this as an equation of operators UQV QW — U QV QW and multiply on the left
- by the operator Pa3 P2 Paz = P12 Pa3 Pia, where Pz = P ®1id and Pe3 =id ®P Observing
that P;jRix = RjxPij for j # k, we obtain the Yang-Baxter equation for R. 0

 2.37 EXAMPLES: If the preferred Welght basis e; ® e; for VE® Vk is put in decreasmg :
- lexicographic order with respect to (¢ + 7,1, j) then the R-matrices given in Theorem 2.18
decompose into block sums, with constant ¢ +j in each block. For example, the R—matrlx '

~in V2 ® V2 is given by

(ﬂ@(g ﬂ?ra)eu)

(vnth respect to the basis e;/2 ® ez, 6’1/9 ®e_1/2,€_ 1/9 ® eif, e—172 ®e_ 1/2) and the

“corresponding R-matrix is

0 i
()& (t_ %—(3_5))_@(75).
Sirnilarly the R-matrix in V3 ® V¥ is
0 0 g
(q)@(g qiq_)@(o 1 1—-¢ )@((1) qlq)Q(q)
| g -1 +9 (¢—-1-9) |
and the R-matrix in V2@ V3is ' ' ' '

(Q@(gf@i®)®(

23

o

L
Hq - 9)(s +§)) ®(s).

_—




§3. Tangle operators and link invariants.

. The link invariants Jy, i (see 3.25) are special cases of the more general tangle operators
which we define first (in Theorem 3.6).

‘Tangles.

Recall that a tangle T is a 1-manifold properly embedded (up to isotopy) in the unit
cube PP in R® = 5% — oo, with 87 C § X I. x 8I. Define 8T = TN (I* X 0) and .
0. T =TnN(I%x 1), and call T an (m,n)-tangle if m = [0_T| and n = [04T]. Thus a
link is a (0,0)-tangle, and a general tangle consists of a link together with a collection of
~ proper arcs. All tangles will be assumed oriented and perpendicular to I? x 8I.

A framed tangle is a tangle T equipped with a framing of its normal bundle (up to
isotopy rel 8T} which is standard (i, %j) on 8T (where the sign is chosen so that the frame
followed by the oriented tangent to T is the standard frame on R?). Since we are working -
in 3, there is a natural O-framing on each component of 7', and so the framings may be
N _spec1ﬁed by integers in the usual way. Alternatively, they may be specified by th.lckemng

the embeddings to ribbons in the direction of the second vector of the frammg, as in the
homogeneous ribbon tangles of [RT1).

As for links, one often studies tangles by their dmgmms D in the square I? (obtained
by regula.r projection onto 0 x I?) with 8D C I x dI. Note that the 0-framing of a tangle
T is in general different from the blackboard framing coming from a diagram D of T, m
. which the second vector is always parallel to 0 x I? (see Figure 3.1). '

integer notation ribbon notation
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Figure 3.1
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If the framing on T and the blackboard framing coincide, we call D a good diagram of
T. Any diagram of 7' may be made into a good diagram by adding kinks. It is well known
that every tangle diagram can be factored into the elementary diagrams I, R, L, N and U

shown in F1g;ure32 | B |
7 X A &

I R L N U

Figure 3.2

(with all p0581b1e orientations) using the composition o (when deﬁned) a.nd the tensor
product ® of diagrams (see Figure 3.3).

SoT,:II _.S®-T=_ST

Figure 3.3

"Of course, distinct factored diagrams may represent the same tangle. For example Lo B =
I ® I (with appropriate orientations), which may also be written as = . In fact, the

. following result follows easily from the work of Rezdememter R].

3.4 THEOREM ([Ye], [FY] [T2], [RT1]). Any two factored good d1agrams of a gzven
framed tangle are related by a sequence of the following moves (with all possible orienta-

- tions)

I
2K

@ & =l
(b)/=_

(d)%'=f>' /<\=/\>\
@Y% =CA

together with the zmphczt associativity and identity relations and (.S' 0 T) QS oT) =
(S@S)o(T®T") (i.e. tangles are morphisms of a strict monoidal category, see e.g. [FY]).

B

REMARK: Moves (a)-(d) generate regular isotopy of tangle diagrams [K{] [Tr]. -
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Figure 3.5
Colored framed tangle operators Fr.

Now fix a quasitriangular Hopf algebra (4, R) and define a coloring of a tangle T {or one
of its diagrams) to be an assignment of an A-module to each component of T'. This induces.
a coloring of T as follows: if S is an arc of color V, then assign V to each endpoint of S
where S is oriented down, and the dual module V* to each endpoint where S is oriented up
(see Figure 3.5). Tensoring from left to right, this gives boundary A-modules Tx assigned -
to T (T4 =V and T_=V@W*@W in F igure 3.5). By convention, the empty tensor
- product is C, and so 74 = C if T' is a link.

In the next result we show how to obtain tangle operators T.. — T, for colored framed
tangles T which behave well with respect to compositions and tensor products. This
construction depends on some additional structure on the quasitriangular Hopf algebra
(A, R) (with even more structure one obtains the ribbon Hopf algebras of Reshetikhin—
‘Turaev, cf. Theorem 5.1 in [RT1] and Remark 3.16 below). '

. 3.6 THEOREM. Let u be an mvertible element of a quasi tnangular Hopf algebra (A,R =
)i ® ;) satistying : _ . ,
(a) pap = S5%(a) foralla in A
" (b) Ea’n’-‘ﬁz = Eﬁz#az .
- where [i denotes the inverse of u. Then there exist unique A-linear operators

P =FphET STy

assigned to each colored framed tangle T' which satisfy Frop = FroFr, Frem = Fr®Fm,
and for the tangles given by the elementary diagrams (of Figure 3. 2) with the blackboard
fra.rmng, . .

F =id

Fp =R and Fy, =R!

By =E and FA =E,
. F =N  and E, =N,

where B(f ®2) = f(2), Eu(z ® f) = f(uz), N(1) = ¥ e; ® ¢ and Na(1) = X ¢ ® (ies)
- (for any basis ;). Note that for a-link L (i.e. (0,0)-tangle), FL : C — C is just a scalar.

ProoF: First assign operators Fp : D_ — D.,. to each elementa.i'y diagram D, as in
the theorem. (Observe that orientations are implicit in the definitions of the first three
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\ \ _
operators. For example A and K are assigned R-matrices on U®V and U* @V,
U Vv U v
respectwely) A-linearity follows from Lemma 2.36 (for the crossings), and from the Hopi
algebra axioms and property (3.6a) of p (for the extrema). Indeed, for E: V*®V — C
we have, for all & In 4

- E(a{f ® z)) = f((m(S ®id)Aa)z) where m is multiplication
= f(e(e)z) by the antipode axiom | '
~ e(a)f(2) |
=aB(f®@2).

Similarly N: C >V QV* is A-linear. Fof E,:V®V* — C we have

(a(r ® f)) = Eu(Aa(a ® f))
=B, (3 (@) ® (b f)) where Aac= Y ay & b
= (3 S(bi)uasa)
= F(Q_ S 1S @) by 3.6a

= f(S(m(S@xd)Aa)ym)_

= f(S(e(a)1)uz) by the antipode axiom
= f(e(a)uc) S
= akF,(z @ f).

A similar argument shows that N; is A- hnear Note that the role of g (in the operators |
for the backward extrema) is essentla.l since the maps t ® f + f(z) and 1 — > e Qe;
are not in general A-linear, due to the fact that the permutatmn map P is not in general
A-linear.

Now extend the definition of Fip to arbitrary factored good diagrams D of colored framed

.ta.ngles T by the rules Fpop: = Fp o Fpr and Fpgp = Fp ® Fpr. To show that these

induce well defined operators Fr on tangles, it remains to show that Fp is mva.nant under
the moves (3.4a—€). -

Move (3.4a) follows from RR™! = I = E'R, and (3.4b) follows from the Yang-Baxter
equation of Lemma 2.36 (which holds, by the same proof, in any quasitriangular Hopf

algebra). For moves (3.4c-e), we establish the cases shown in Figure 3.7 and leave the rest
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as exercises.

@ ® ()
Figure 3.7
' For move (3. 7a.), which says (E, ® id)(id ®N;;) id, we have
(B ®id)(id ONp)(z) = (Ex @id)( Yz 0 ¢ @ fes)
= Z ei(#?’)ﬁei -
= ﬁ Z g"(pa;)e,-

“For move (3.7b), which says (id ®Eﬂ)(R ®id) = (B, ® id)(id ®2~1), first note that the
_ inverse of the R-matrix R =} &; ® i can be computed easily using the antipode axiom
- (3.8) | R'=(5® 1d)(R) Z S(ai) ® B;
(see e.g. [RT1, §3.1. 6]), and so-

(1d®E )(R®1d)(a: ®y® f)=(d®F)()_ fiy® iz 8 f)
C o= Zﬁ:yf(#arﬂ:)
= S Bu(S¥ (@) by 360
= (E,®id)(>_ s ® S(a:)f ® Biy)
= (B, 8id)(id@R )= 8y ® 'f)-

Fma,lly, move (3.7¢) says (£ ® id)(id ®R)(Nz ®id) = (id ®E, )R ®id)(id ®N). The
-value of the left and right hand sides on an element = are rea.d:ly computed as (3 a;zfi)z
and (3 Bipai)z, respectively, and these are equal by (3.6b). _ I
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Properties of tangle operators.

Now we establish various properties of tangle operators. We shall always assume that
we are in the setting of Theorem 3.6, so

_ AR

for some fixed quasiti‘iangular Hopf algebra (4, R) and unit g in A satisfying (3.6ab).
We begin with an elementary but useful fact about operators of (1,1)-tangles.

3.9 LEMMA. Let T be a colored framed (1,1)-tangle and V be the color of its (umque)

~ arc component.
(a) If V is irreducible, then Fr is a scalar operator (1 e. a multiple of the identity).
(b) KV is reducible with a unique proper submodule, then FT is the sum of a scalar

operator and a nilpotent operator.

PROOF: Observe that any eigenspace for the operator Fir is a submodule of V (or V*
depending upon the orientation of the arc of T), since Fir is A-linear. The Lernma follows
- immediately by considering the Jordan canomnical form of Fr. 0

- Next we consider how tangle operators behave under direct sums, extensions and tensor
‘products of colors. Parts of this result were stated previously in §6.4 of [RT1). -

3.10 LEMMA. Let T be a colored framed tangle and K be a component of color V. Write
TX for the tangle obtained by changing the coIor on K to X.

(a) IfV = X @Y, or more generally V is an extension of Y by X (i.e. . there is a short
- exact sequence 0 =+ X -V =Y — 0 of A- modules), and K is closed, then

Fr= FTX o+ FTY

(see [RTl §6.4.1] for the case V = X ) Y) '
(b) IV =X &Y and K is an arc between the bottor and top of the tangle, then

Fr=Frx & Fry

where the modules Ty are naturally zdentJﬁed with TX:;; & TY,.
() EFV=XQ®Y, then
Fr = Frxy

where TXY is the tangle obtained by replacing K by two parallel pushoffs of itself (using |
the framing) colored X and Y, respectively. (See [RT1, §6.4.2].)

3.11 REMARKS: (1) Statements similar to (a) and (b) hold for arcs K j Jommg the bottom

“or top of the tangle to itself.
(2) We will prove (a} using the following .sta.tes modelfor FT Fix afactored good diagram
D for T and preferred bases By for each color V. Let P be the set of critical points (i.e.
extrema and double points) of D, and denote the elementary factor of D) corresponding to
a point p in P by Dp (i.e. Dp is the diagram in a small box about p}.
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A state o of D i the assignment of a label o(S) to each component S of D — P as follows:

If S is V-colored, then a(S) is an element of By or B} (the dual basis) according to whether
S is oriented downward or upward. By taking tensor products, a state yields elements

c+(E) in the modules E4 for any factor E of D. In particular, set a’i(p) = o‘i(Dp) and

ox = ai(D) (See Figure 3. 12)

ak b a,b,C,dEth eEB"‘}

. : - oi(p)=a@b,o_(p)=c®d
\p e. : _ : '
A . cr(g) =L0-(g)=0b®e

& d . . | g+ =a,0-=¢

Figure 3.12.
" Define the weight of a state o to be the product
w(o) = [] wp(o)
peP .

where wp(e) is defined as the coefficient of ¢4 (p) in Fp,(o—(p)).
Now consider basic elements of T, i.e. tensor 'products of preferred basis elements. The

~ operator Fr is determined by the coefficients (Fr)zZ of z4 in FT(m ), for all basic :ci in

Ty, and these eﬂdently have the following. states formula
(3.13) (Fryzt = 3 w(a)

“where the sum is over all states ¢ with o1 = z4. _ |
PROOF OF 3.10: For (a) we adopt the notation of the previous remark, choosing preferred

bases By, Bx and By so that Bx C By (viewing X as a subspace ov V) and By is the

projection of By = By — Bx. All state labels from Bx or By will be called X-labels, and

those from By or BY will be called Y-labels.
.- Observe that if ¢ is a state of D with non-zero weight, then the correspondmg labels
~ on the arcs of K must be either all X-labels (written ¢ | ' C X)) or all Y-labels (written
o | K C Y). This follows from the A-invariance of X C V (and dually of Y* C V*),
~ which shows that one cannot move from an X-label to a Y-label while traversing K in the
. direction opposite to its orientation. '
Now for basic z4 in T4, the states formula 3.13 gives

(Fryz; =Y w(o)
= Z w(o) + Z w(o)

o|KCX sKCY
= (Frx)zt +(Fry)zt
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.and so Fr = Frx + Fry.
* “The proof of (b) is similar but easier, and is left to the reader.
Finally, (c) follows from definitions, including the second defining property (2.17b) of
the R-matrix. In particular, the two operators corresponding to a crossing involving K in
~a diagram D for T, and the corresponding crossings in the associated diagram of T7XY,
are equal. We illustrate this with the right crossing shown in Figure 3.14a, where both
operatorsmapX@Y@ZtoZ@X@Y S

\

XY Z
(a) (b)
Figure 3.14

- Indeed, with the obvious notation

Rxgv,z = Pxgv,z o Rxevz
= Pxgv.z o (A ®id)(R)(xevyoz
= Px®y’2 o (Ri3BRn)xevez
=Zﬁfﬁj®ai®_a1
_ i,
= (_RXsZ ®idy) o (idx ®Ry,z)
~where R =Y a; ® fi. An easier argument shows that the dperatbrs corresponding to an

. extreme point of D, for example Exgy and Ex o (id®Ey ® id) for the case shown in
Figure 3.14b, are equal. The result follows by the definition of tangle operators. - O

Orientations.

. Finally we consider orientation questions for the tangle operators Fr= i Bk Tt turns

out that to get a reasonable theory, one must assume that the element ¢ and its antipode

© 5(u) are inverses. Such an element y, i.e. 2 unit in A satisfying

. (a) pap = S%a) for all'@ in A
(3.15) (b} 3. a{ﬁﬁ, > ﬁ,,ya, where R =) a; ® s
(C) S(p) =
is said to be charmed.

'3.16 REMARK: If (A, R,v) is a ribbon Hopf algebm in the sense of [RT1], then 4 = u¥ is
charmed, where u = 3 5(8i)ai. We do not know if a charmed element p in an arbitrary
quasitriangular Hopf algebra (A4, R) gives rise to a ribbon structure (with v = uj).
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Observe that any u satisfying (3.15a) induces an A-linear isomorphism
(3.17) B E,:V-=V*™

for any A-module V, given by E,(z) = (pz)** (= evaluation on puz), i.e. Eu(z)(f) = f(pz). -
Indeed E.(az) = (paz)™ = (§*(a)pz)™ = a(pz)** = aE,(z). (Since this map is
canonically identified with the map E, : V®V* — C in (3.6), we use the same notation.)

3.18 LEMMA. Let T be a colored framed tangle with a preferred component K of color
V, and yu be charmed. o ' ' _ '
(a) K T* is obtained from T by replacing K by —K (opposite orientation) with color
V* (the dual module), then . ' '
, _ Fp = Fp.
where (if K is not closed) Ty and T} are identified by the isomorphism E, of (3.17)
‘between the V-colored endpoints of K and the V**-colored endpoinis of —K. . _
(b) If T~ is obtained from T by replacing K by —K without changing the color, and if
V is self dual by an isomorphism D : V* — V for which E, = £D*D™1, ie. :
- B,
v, L e
D~ /D
Vv '

- commutes up to sign, then .
' ' Fpr=¢Fp-

- where (if K is not closed) T and T are identified by D between corresponding endpoints
of K, and the sign e = £1 is —1 if and only if B, = —D*D~! and K is an arc joining one
end of the tangle to itself. In particular € = +1 if T is a link (i.e. (0,0)-tangle).

PROOF: It suffices to prove the lemma for elementary tangles, and for these it is straight-

foward from definitions.
‘We illustrate the proof of (a) for the two (hardest) cases shown in Figure 3.19ab.

X P o)

AN WA R Valiia

T Vi T ™ T Tr-
(a) (b) (c)

| Figure 3.19

For (3.19a), we have Frr(x Qy) =, Biy®aiz and Fr.(zQy) =3 Biy® B (ai(pz)™).
But these are equal by (3.15a), since Eu{aiz) = (paiz)™ = (S*(ai)pz)™ = ai(pz)™.
For (3.19b), we have Fr(1) = Sei®e =Y s(u)ei ® e’ (note that s(u)ei and fie* are
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- dual bases) and FT-(l) = EE;l((ei)*) ® jie'. These are equal, since s(u)e; = fie; and

E,(pe:) = e = (¢')".
Note (b) follows from (a) by a diagram chase. For example, for the case shown in (3. 19c)

we must show E = a‘Eu(.D ® D~1), where E, = eD*D~!, ¢ = +1. Consider the diagram

The small triangle Al &-commutes by hypothesis, A2 commutes by the A- Imea.mty of D -1
and A3 commutes since S{u) = fi. Thus the outer trlangle g-commutes, as desn'ed The
remaining cases are left to the reader. : . a

3.20 REMARK: It is convement to rephrase the previous lemma using fmmed (or 'mbbon)
graphs, introduced in [RT1], which are formed from compositions and tensor products of

framed tangles and coupons. A coupon can be thought of as an empty tangle (with diagram

O) which is permitted to compose with arbitrary tangles, as shown in Figure 3.21a. The
coupons are thought of as the vertices of the framed graph. Coloring the framed graph
“then consists of coloring the edges (and loops) of the graph by A-modules and the vertices
(i.e. coupons) by appropriate A-linear operators, as indicated in Figure 3.21b. '

AY |
| F:V@W -X"®XQY

T VoW

(a) coupon (b) colored coupon

Figure 3.21

As with colored framed tangles, there is an operator F ¢ associated with a.ny colored framed
graph G. .
Now in Lemma 3.18, the 1dent1ﬁca.t1on of Ty with T in (2) and T in (b) can be accom-

plished by inserting coupons colored with E « and D (and their inverses). For example, the
~ tangle operator equalities (after suitable identifications), illustrated in Figure 3.19 become
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exact graph operator equalities, as shown in Figure 3.22.
P ' v
v .

/1 &1 o=
By U RN | v v
= v¥ = \/ =¢ f\

D-!.

v ' )
v \ Eu \ _ . _ V;’: m D
: V. 5

(a) - - (b) ) “(c)
o Figure 3.22

Note that the operator equality of Figure 3.22c shows that pushing a D*!-colored coupon _

over a maximum changes the associated operator by a factor of ¢, and the same remark
~ holds for minima. As a consequence we have the following corollary of Lemma 3.18. '

'3.23 CorOLLARY. Let K be a closed V'-colored Component of a colored framed tangle T,
and assume that u is charmed and that there is an isomorphism D : V* — V of A-modules

with E, = (=1)™D*D~! for some integer m. If G is a colored framed graph formed by

introducing two D** -colored coupons on K (changing orientations appropriately) at points
separated by p extreme points of K (in.some good diagram of T'), then Fg = (—1)™? Fr.

~ Tangle operators for A

-We now specialize to the quasitriangular Hopf algebras 4 = A (qua.ntlzed sl(2, C)) '

 discussed in §2, with R given in (2.18).

324 THEOREM The element y = K? in A is charmed, i.e. satisfles 3.15a—c.

 The proof will be given below. The associated tangle operators Fp will be denoted by
Jr, in honor of V. F'. R. Jones (see §4):

- '3.25 DEFINITION: For any integer r > 1 and colored framed tangle T', with colormg k,

define -
Jr=Jrx = FT"’ -’R_ .

- Note that the integer r, and sometimes the coloring k, will be suppressed in fhis notation.

If T is a link L, then Jr x is a scalar which will be called the colored fmmed lm}'c zn*uama.nt_

of (L,k).

3.26 REMARK: The ta.ngle operators Jr ) are independent of the orientation on any closed -

component K of T whose color is one of the irreducible modules VvE (1 £k <r). Indeed,
- the isomorphism D : (V¥)* = V* given in Theorem 2.13 satisfies

D*D™' = (-1)*Ex2
(since D*DTI(H) = (—s)Mb3* = (-1)F~1¢g/b3* = (~1)¥"1Eg2(b7)), and so the remark

follows from Lemma 3.18b since K has an even number of extreme points. In fact from
Corollary 3.23, we obtain the more refined result that :

Fg=(— 1)(1~ l)pFT
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"~ if G is the colored framed graph obtained by introducing two D¥!-colored coupons on K’

separated by p extreme points.

PROOF OF 3.24: Properties 3.15a and ¢ are immediate from the definition of 4. In
particdlar KX = sXK, KY =35YK, S(K) =K, S(X) = —sX and .S'(Y) —3Y imply
K’XEK®* = ¢X = Sz(X), KWR? =gy = §5? (Y) and S(K?) = K2. Property 3.15b is

-deeper and is proved in Appendix A. , (.

" We conclude this section with some computatmns of spec1ﬁc tangle operators associated

with the algebra A = A,, using as colors the irreducible modules V¥ (often identified by -

" their dimensions k < r) and the associated Verma modules W[ (for 0 < k < r), defined in

§2.

. 'We begin with a basic result about local mochﬁcatmns of tangles

 3.27 LEMMA. Fix a colored framed tangle T and a preferred component J of color j (1 e.
Vi withj <r). Let Ty be T with a d:s_;oznt k-colored unknot adjoined, let T be T with

the framing on J increased by 1, and let T, be T with a k-colored unknotted meridian to

J a.djomed Then
JT,- = ¢;J7

where ¢cg = [k], cr=1""1and ¢ = %"‘l (interpreted as (—1)*~1k when j = r). In pictures:
' = [k]J
(a) Jgok [%] b;

= j2_1 ;
() Jy, =81

() Jd)k mIlJf

PROOF It follows from Lemmas 3.9a and 3.18b that Jr, = c;Jr for scalars ¢; which

- are independent of orientations. Thus we may find the ¢; by computing the values of the =
. operators on 1 (for i = 0) and e (for: =1, H) where m = l—— , as indicated in F1gure 3 28

. c,e - ' Cpep
cyl o _ o F/ S

() ® ©

Figure 3.28

For (a,) 1+ E,__n ei@e - S ei(K%e) = 3¢ = (%] (Where n = £1) and so

= [k].
For (b), em = YT em®e®e — > ¢™ei ® em ® &' (by Corollary 2.32)

S g™ (Klem)ei = ¢ ™ ey = 17 *~l¢.,, and soc; = ¢/ -1,
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For (c), em = Y i n em@ei®e = 3 gMeiQen Qe 3 ¥ ™en Qe @c (plus terms

which will vanish at the next step) — 3. ¢®™ e} (K%e;)em = 3 q2mi+i =3 . dlem =
%lém for j < r (where n = —’°~§-1-), and so ¢c3 = L—l for j < r. For j = r, we have
¢ = (=11, and so ¢z = Y p._(—=1)F71 = (—1)*- lk O

" We conclude with a global result about links. Recall from Lemma 2.16 that W contains |
V'* as a unique proper submodule. In particular, using the standard basis er—m—1,...,6—m
coming from the inclusion Wj C V=% (where m = ﬂ) VE is spanned by €m,...,eom.

3.29 LEMMA. Ifa colored framed link (L k) has a component of color V7 or W[, then
Jrx =0. :

PROOF: Write L as the closure of a (1,1)-tangle T as shown in Figure 3.30

Figure 3.30
with V = V7 or W¢.

IV =V7", then by Lernma 3.9a, JT is a scalar operator and so Ji i is a scala.r multiple '

of the invariant Jo, of the r-colored unknot. But this is just [r] = 0, by (3.27a).
IV =W, then Jo is still a scalar operator (cf. Lemma 3.9b). For, if ) is an eigenvalue

" for Jy; with eigenspace U, then U is a submodule and so U D V¥, ie. Jr(ei) = Ae;

for ¢ < m. Thus we must show U # V¥ ie. Jr(e:i) = Ae; for some i > m, for then
U = W7 and Jr is multiplication by A. To see Jr(em+1) = Aem+1, for example, linearity
Jr{aemt1) = aJr{emt1) with & =Y shows that Jr(em+1) = Aem+1 + ve—m for some v.
But then linearity with & = K, together with the fact that ep,41 and €—m have distinct
eigenvalues for K, shows v = 0. '

The proof is completed as in the case V = 1" with the observatlon that

r—m—1

JOW: = Z qi

t=—m

) r—1
=" ¢

. =0

=0.
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§4. Skein theory, cabling and the Symmetry Principle.

The computation of the M-colored framed link invariant Jz i (see §1 and (2.12)) directly
from the R-matrices defined in §2 becomes impractical as the crossing number of L and
the colors k; increase. If all k; = 2, however, then J7 i (as a function of ¢ = ¢ (1)) is just a
variant of the Jones polynomial of L (Corollary 4.11) or the Kauffman bracket polynomial
(Corollary 4.13) and can therefore be computed by the Conway skein calculus or (for r = 3,
~ 4 or 6) by topological means. Using this fact, we will give an expression for JL x as a linear
combination of Jones polynomials of certain cables of L (Theorem 4.15). This will yield an
alternative form for the 3-manifold invariant 7.( M) (Theorem 4.17) which can be exploited
- for calculations. _
At the end of this section we prove a symmetry principle (4.20) which describes the
change in Jr k when a color k is changed to » — k. This also leads to simplifications in the
computation of 7.(M), and appears to have interesting applications as well (1nc1ud1ng a
simplified proof of the existence of T,-(M ); see §5 below).

Skein theory, .the Jones polynomial and the Kauffman bracket.
_4;1 DEFINITION: Let L be a framed (unoriented) link. Define |
Jo=1Jrz

where 2 denotes the constant 2-coloring (i.e. each component of L is colored with the
~untwisted 2-dimensional irreducible A-module V?). '
The purpose of this subsection is to prove that Ji is equal to the value of the Jones
polynomial at ¢, suitably normalized to account for the framing (Corollary 4.11), or equ1v— :
alently the Kauffman bracket for a good diagram of L (Corollary 4.13). '
Observe that for the zero framed m-component unlink (O™, we have

(4.2) | C Igm == (s )"

by m applications of Lemma 3.27a.
Furthermore, Jy, satisfies the following skein rela.tlons

4.3 THEOREM. (1) (oriented skein relations) Let Ly, L and Lo be oriented framed links
with good diagrams.(i.e. the framings are the blackboard framings) which are identical
except in a disc where they are as shown in Figure 4.4a. Then

(a) ' : tJL_s_—t—JL_ ={s—35)JL,-
If the framings are adjusted so that Ly - Ly = Lo-L_=1ILo- Lo, then(a)becomesqJL, —
qJL_ = (5 —5)JL,.()

(2) (unoriented skein relations) Let R, V and H denote unoriented framed links with
identical good diagrams except as shown in Figure 4.4b. Then

(a) Jrp=tJy +tJg
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if the two strands in the crossing come from different components of R, and
(b) o - Jr =6(t.fv—t_JH)

if the two strands come from the same component of R, producing a crossing of s1gn e==%£1
(i.e. appearing as in L, of Figure 4.4a if R is oriented).

X X W %N =X
L_ H L

Ly Lo RV
(a) (B

F1gme 4.4 _
" PROOF: Recall from Example 2.37 tha.t action of R on V2 ® V2 is given (in the preferred

- basis) by :
| . 0o i
R:(t)@(_ - _)@(t).
t(s —3)
‘We ﬁnd (e. g by computmg the characteristic polynom1a.l of R) that
(4 5) ' tR — IR~ = (s~ 351,

and (1la) follows. To adjust the framings to become equal we may add a left kink to L4
and a right kink to L_ (see e.g. Figure 3.28b), which changes J;, by t¥° by Lemma 3.27b,
and so the coefficients of Jr, become t£1¢*+® = ¢*1. This give (1b).

For (2a), orient R so‘that the crossing locks like L4, and then (la) yields

(4.6) _ ' . tJR-t_JL““(S—E)JV

Where L is as shown in Figure 4 4b. Now reverse the orientation on one stra.nd 50 that the
same crossing looks like L_. when rotated by 90°, and so

wn ETp 4T = (s — 5Tk

by (1a) again. Multiplying (4.6) by ¢ and (4.7) by # and adding gives (2a). -

For (2b), first suppose ¢ = 1, so (4.6) follows as above by orienting R. Now we may
" locally reorient one strand by introducing two coupons on R, giving the framed graph (see
3.20) R shown in Figure 4.8a, and s1m1la,rly construct L' and H' (Figures 4.8bc).

F R

o o -
P—f/\ X ~

(a) - (b) | (c)
Figure 4.8
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"Asin (4.7) a.bove,' we get—tJp +tJr = (s —35)Ju+. But by Remark 3.26 we have Jgr = Jr
“and Jg = Jr (since our color 2 is odd and there are no extreme points in Figures 4. Sab)
and Jy = —Jg (since there are an odd number of extreme points between the coupons in

- Figure 4. 8c) and so (4 7) is repla,ced by
(49) _ ~tJR+tJL —-'—(S—S)JH

Multiplying (4.6) by ¢t and (4.9) by f and adding now gives (2b) fore = 1.
~ Ife = —1, then the same argument establishes (4.7) and a revised (4 6), with the nght
hand side negated. This gives (2b) for € = —1, as above. l

REMARK: Theorem 4. 3(2) can also be proved directly by computmg the appropriate local -
tangle operators as in our proof of (1).

The skein relations in Theorem 4.3(1b} lead to a variant Vi of the original Jones poly-
nomital V, of an oriented link L (in the variable g), characterized by '

(1) _ . ffo =1
2) L Ve, —qVe_ = (s -g)ffL;

where () denotes the unknot and Ly, L. and Lo are as in Flgure 4.2, (Note that for VL
one swaps ¢ and § on the left side of (2).) In fact

(4.10) | . Vi = Vi(3)

where 7*/2 must be chosen to be —3 on the rlght (i.e., recalling that VL(q) isa polynom_lal '

in ¢/2, we substitute § for ¢, —3 for ¢'/% and —s for ¢=Y/?). Equivalently Vi may be
defined as the specialization of the Homfly polynomial at (ig, (5 — 8)) (see e.g. [L2]).

4.11 COROLLARY. [ L is a framed link, then
I = [l

for any orientation on L.

ProOF: Theright hand side is charactemzed by the same skein relations, (4.2) and (4. 3(1&))
a8 Jr. O
4.12 REMARKS: (1) The values of Vi at certain roots of unity have topological significance,
as they do for V, [LM1], [Lp], [Mu]. In particular, the values at ¢ = ¢ (}), for r =1, 2,
3, 4 and 6, are as follows:

r VL Vi
1 211--1 (_2)n—1
2 det L det L
. 3 1 (_1)11--1
RV A GV5) Lo
d . .
6 VE(-i (=B
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where n is the number of components of L, det L is the value at —1 of the (normalized)

~ Alexander polynomial of L, a is (=1)*"(2) when L is proper (so the Arf invariant is

defined) and 0 otherwise, d is the nullity of @(mod 3) where Q is the quadratic form of L
(represented by S+ S* for any Seifert matrix S of L), and w is the Witt class of Q(mod 3)
in W(Z/3Z) = Z/4Z (see Appendix B). It is well known that |det L| = |H1(M)|, where M

_ is the 2-fold branched cover of $® along L, and d = dim H;(M;Z/3Z) (since any matrix

representing @ is a presentation matrix for H;(M)). Our expression for the value of V7, at

. e( ) may appear unfam111a.r, although it can be shown to be equivalent to Lipson’s.

(2) It is often simpler to use Jp as the basic ingredient rather than Vi. For example,

Jp = 1 is a better normalization than Vo = Vo = 1 since formulas are simpler (e.g. [2]
disappears). Of course Ji, does require a framing on L, but if one chooses a fra.mmg for

which L - L = 0, then Jr = [2] Vi (cf. 4.3(1b)).

The skein relations in Theorem 4.3(2) remind one of Ka,uﬁman s bracket polynomial

[K{] (also see [L2]) in the variable ¢ defined for a link diagram D. Our version Bp(#) is

normalized differently and is characterized by

xe  Bor=()"=(-s-9" (=1

' (2) _ BR=L‘_BV -l—fBH

where (O™ is the standard diagram of the unlink of m components, and R,V and H are

diagrams which are identical except as shown in F1gure 4.4b.

4.13 COROLLARY. If L is a framed link, then
Jr = (=¥ L Bp(it)
for any good diagram D of L. -
Proo¥: First note that L - L is only defined for onented links, but L - L (mod4) is

- independent of the choice of orientation (i.e. (A+ B)(A+ B) = (A~ B) (4 — B) (mod4)).

We prove the corollary by showing that the right side satisfies the same characterizing

' skein relations as Ji, namely (4.2) (obviously) and (4.3(2)). Observe that RE=V-V+1=
. H-H—1 (mod4) if the two strands in the crossing belong to different components of R,
 whereas R-R=V -V +¢ = H-H +e¢ if they belong to the same component. In the former
~ case we compute

(—i)RRBR(it) = (=) i) By (it) + (—i)f" A=Y (—if)Bu(it)
= t((—i)""Y By (it)) + ()" F Bu(at))
and the latter case.
(—i)* R Br(it) = (—i)VV*e(it) By (it) + (=) *(—it) Bu(it)
= e(#(—1)V"Y By (it) — #{(—=) 7 H By (it)).
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REMARK: Alternatively, (4.13) can be proved directly from (4.10) and Corollary 4.11 by
using the well known relation between the Jones polynomial and the bracket

[21VL(q> = (—(it))"*I"V Bp(it)

“(see e.g. [L2] and note that the [2] is there because of our normalization of the bracket,
and the 7’s are there because of the choice of ¢'/? in (4.10)).

Cabling.

The next result gives a formula for the general M-colored framed link invariant Ji k
in terms of Jones polynomials (at ¢ = e (%)) of certain cables of L. (Recall that M =

(1, V1))

We W111 need the following lemma (which will correspond to zero cabling).

4,14 LeMMA. Let (L, k) be a colored, framed link. If 5 is a subImk of L obtamed by
- removing some 1- colored components then . _

Jrx = Jsxs-

_ PRroOF: It was observed in (2.9) that K? acts by the identity on ¥, as does RonVi@V*
~and V* ® V1. Thus we may ignore 1-colored components of L when computing Jy, k. O

Now define a cabling ¢ of a framed link L to be an assignment of nomegétive integers ¢;
- to the components L; of L. The associated cable of L, denoted L€, is obtained by replacing

~ each L; with ¢; parallel pushoffs (using the framing). If ¢; = 0, simply delete L;.

If L is oriented, then there is a natural choice of orientation on L®: for each component -

L; of L, orient the pushoffs so that their sum is homologous in a tubular neighborhood of
L; to Lz or to 0 (depending upon whether ¢; is odd or even). With this ch01ce we say L

-~ and L are compatibly oriented.
" We will use the multi-index notation f(k) = H f(k:), k < nif ki < n; for all i, etc. For

example, (—1)¥ = [[(-1)* = (—1)2 ki (ﬁ) =T] (k ), and Y 1., is the sum over all
Ckwith1 < F;i < ny | | | |

4.15 THEOREM. Let L be a framed link and k be an M-coloring of L. Then setting
n=k-1,

nf2

JLk..- _Z( 1y ( )JL,, ;

n/‘2

J=
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for any orientation on L=, In particular, if I and L*~% are compatibly oriented for all
'j, then

n/2
JLk—[2 353; (~1) (HJ J>VLn 2%

where S is the even colored sublink of L, consisting of all L; with k; even. (By convention
'JLoz--l VLO_'[—2]° a,ndLo LO"“O)

PRroOOF: The first equality is an 1mmed1ate consequence of Corollary 2.15 and Lemmas 3.10
and 4.14. The second equality uses Corollary 4.11 and the last equa,hty follows from the
definition of compatibly oriented. _ . O

‘REMARK: There is an analogous statement if k is only an M-coloring on a sublink § of
L’ . ) .

n/2.
JLk_Z( 1?( )JS“ ~%(L-S)

-wheren=k| S -1.
4.16 EXAMPLES: If K is a framed knot, then

: nf2 |
JI{'L—Z( 1 ( )JKH-—?:

where n = k — 1. In particular

Jrz=Jg2~1
Jra = Jxs — 2Tk
JK,s = JKq - 3.]}(2 -l- 1.

As a consequence of Theorem 4. 15 we obtain a formula for 7.(My) in terms of J ones

'polynonuals (at ¢ = e (%)) of cables of L Recall from §1 that’

r—1

(ML) = ay, Z[k]JL,k

. =
nr o
where ay, = (\/gsin -}) (e ("_3(;_1_:?_1)) “)
4.17 CABLING THEOREM. For any framed link L,

r—2

7(My) = a1 ) (c)Jre

c=0
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= (i.e. sum over all cables c = (ci,...,¢n) With 0 < ¢; <1 —2), where

)

o {(r—c—1)/2
()= > (-1Ple+2+1] (c;"

j=0

Coi e

(i.e. sum over all > 0 withc+2j +1 <r).

The formula 4.17 can be rewritten in terms of the Jones polynomial variant V by using
" the third equation in Theorem 4.15 and orienting cables compatibly:

(4.18) ' IT,-.(M L)' = ar[2] Z.ﬁLc-Lc (c) Ve

where L. is the sublink of L consisting of components L; with ¢; odd, (thus Le—A.1e-% =
Le.L¢ =L, - L.). .

4. 19 REMARK: It is often easier to calculate with cables by first changing all framings of .
L to zero (and a.djustmg by the appropriate power of ¢) and then taking ca,bles using the
0-framing.

_Symnietry Principle.

Flna,lly we state the Symmetry Prmcuple, which allows us to switch a color ktor— k .

" This cuts the number of terms in 7-(Mz) from the order of (r — 1)* to (§ ) , and makes

 possible an elementary proof of the invariance of = under the m-strand k-move for m > 1 -

(see §5).

It is convenient to adopt the notatwn LUK for a framed link W1th a dlstmgmshed
component K. Colorings of L U K will be written 1U k, where 1 is a coloring of L and k
is the color of K. If the colors are selected from the modules V1,V2% ... defined in (2.8),
then as above we identify these modules by their dimensions (also called colors) and so 1
s just a list of positive integers (i.e. l;, or V', is the color of the component L;).

4.20 SYMMETRY PRINCIPLE. Let LU K be a framed link where K has framing a, and
1 =(l,...,1;) be a coloring of L = Ly U++-U L, by the modules defined in (2.8). I
0<k<r, then
' Jruk,1u(r—k) = 82RO T ok

where A = Y event; K - Li- (Note that the exponent of ¢ can also be written as (r - 2)K
K + 2K - E where E is the even colored sublink of L U K for the coloring 1U k.)

Before proving the Symmetry Pnnc1ple, we illustrate its use in the context of 3-manifolds
- ‘given by surgery on a knot. A more systematic study of its applications appears in §8,
including a form of the Symmetry Principle for 7, (Theorem 8.5). Also see the end of this
section for an application to Jones polynomials of cables. '
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4.21 EXAMPLE: For r = 5 and K a knot with framing a, we have

. 4
5(MK) = ax Z[k]JK,k
k=1

= ax([1] + 27k + [31:° Jx + [4]i%%)
= ar((1+i7%) 4+ 21 +i*)JTK).
Thus if @ = 2 (mod4), then 75(Mk) =0. If a # 2 (mod4), then this shows that Jx (and

so also the Jones polynomial of K at the fifth root of unity) is determined by 75(M ), and
thus is an invariant of Mg (cf. Theorem 8.22).

The proof of the Symmetry Principle needs

4,22 LEMMA. Let LUK be a framed link, where K has framing zero, with colorings 1 on

- Land V(i) on K (see above 2.16). Then
Jruruvip) = (-1

where A = Z (- L;.

PROOF: Orient LUK and draw it as a counterclockwise braid with the blackboa,rd_framihg.
We need to inspect three kinds of crossings as in F1gure 4.23. '

\ koA

ViV Vi) Vi Ve VG

even {;

Figure 4.23

In the first two cases, according to Corollary 2.32b, R(e; ®e) = 12/ eQe; and R(e@e,) =
itie ;®e since ¢; has weight t* and a = 1. Similarly in the third case R(e®e) = i"e®e since
. e has weight : =¢". On negatwe crossings we get the inverses R~ He@ej;) =1 “Ye;®e,
R (e; ® e) =i"Ye@e; and R (e ® e) = i "e ® e respectively.

Since K is O-framed, K has an equal number of positive and négative crossings in the
braid diagram and an odd number of maxima. Thus the self crossings of K together
contribute nothing to Jrux 1uvi(y, and (since K* = —1 for V'(2)) the maxima together
contribute —~1. That is, K contributes —1 (whether knotted or not). Hence we may
change the self crossings of K so that K is unknotted, and then L U K can be drawn
as in Figure 4.24. The crossings of K with L; occur in right or left handed pairs which
algebraically sum to K - L;. . So the contribution of pairs of crossings between K and
L; is (~1)2 K-Li_ When [; is odd, then j is an integer so (—1)* = 1 and there is no
contribution. When [; is even, then j is a half integer and (—1)% = —1, so we get a
multiplicative contribution of (— NE-Li _ O
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- Figure 4.24 - : i
PROOF OF THE SYMMETRY PRINCIPLE: Since we have the short exact sequence (2.16)

| 0=V Wl sV FeVi(i)—=0
‘and since Jr x is additive under extensions (3.10a) and Jz,wr = 0 (3.29), it follows that
0 = Jrukuw; = Jrukuk + JLukuvr-k@vi()- ' |

“If the framing on K is zero, then replacing K with color V™% ® V(3) by the 2-cable
(using framing zero) of K with colors V™% and V1(i), it follows by Lemma 4.22 that we

can eliminate the copy of X with color V*(z) by multiplying by (—1)1+A = —z'”_,where '

A=Y cvent; K - Li, and the result follows. . . :
Finally, if the framing on K is a rather than zero, then we can change to framing zero
—_ 2
by multiplying by 7a(-*~1)  Now apply the just proved zero framed case to switch the color

" on K from k to r — k, and then shift the framing back to a by multiplying by-t“((r’k)zfl)_.

- So the net change gives

’ Y2 , — 1.2
JLuK, W(r—k) = ((r=R)=1) 23 el =1 7y e ik

C s(r=2k)a+2)
= TR T ok
1

. We conclude this section with an application of the Symmetry Principle to the study
of the values Jze of Jones polynomials for cables L® of a framed link L at a fized root of
unity g = e(3). | -

A cabling m of L will be called minimal if m < £—1 (i.e. each component of L is
replaced by at most £ — 1 parallel copies). Now an easy inductive argument using the
Symmetry Principle and the cabling formula (Theorem 4.15 and following remark) shows
that for any cabling ¢, Jz< is an integer linear combination of the values Jr= for minimal
colorings m where the coefficients of the linear combination depend only on the linking
matrix of I (and of course on ¢ and ). That is, writing J°(L) for Jre:
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4.25 COROLLARY. For each framed link L and colorings ¢ and m with m minimal, there

. exist integers a% (L) such that

JI(Ly= ), ap (L) I (L),

minimal cablings m

and such that af (L) = a&, (L'} if L and L' have the same linking form.

In practice, the integers a% (L) can be computed easily.

4.26 EXAMPLE: Let r = 5. Consider O-framed knots K and let v® denote the value Jge of
the Jones polynomial of the c-cable of K at e(}). By the Symmetry Principle Ji,2 = Jk 3,
and so by (4.16), v! = v? — 1. Induction shows that v® = f, v! + f._i, where f. is the ¢P
term in the Fibonacci sequence 1,1,2,3,5,.... . ‘
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- §5.. The 3-manifold invariant -(M).

Proof that 7, is a 3-manifold invariant.

If M is described by surgery on a framed link L, then we have defined (1.5 and 1.7)

r—1

Tr(M) =TL = QL Z[k JL k

k—

“where o = b*E %L, b= \/; sinf,c=ce (:"3(:;-_—2)') nz is the number of components of
L and oy, is the signature of its llnkmg matrix. For 7.(M) to be well defined we must -
finally prove Theorem 1.6, that 7z is invariant under K-moves on L, and hence T.,-(M ) is
independent of the choice of framed link used to describe M.

* The proof of Theorem 1.6 depends on an elementary 1dent1ty for Gauss sums. (Recall

tha,tt-—e(dr) and s = e (5).)
5.1 LeMMa: Sps R](RDE T+ = Ble (), |

Proor: Note that

. 47 4r
(s - s) Z[Jk][kl]t" +EI Z(t21k —oJL)(tzu F")ti _Hz_Hz

=l _H

Z(?J'(t(”(””)z él—t”” (J+I))‘) t2il(t(k+(j—1))’-+t(k—(J’-l))’)) :
E==1 o

' 4
i t2jt) Z tk”
k=1
= 2(s%" - si)2v/3re (%) .

~ where the last equality is a standa,rd Ga.uss sum (see [La}). Now E =1 7, by the
symmetries of the bracket [l s

"‘1_ e U1 |
> lkl[Ele T 9r§ (8)

S'—‘S
k=21

()

since 5 — s = 2sin e (—-i) = /2rbe (—%). _ _ O
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Now to prove Theorem 1.6 consider an m-strand K-move L « L° of type ¢ = %1
Choose diagrams for L and L® which agree everywhere except for the tangles shown in

Figure 5.2. _
i m strands " m strands m strands

L L*(e = +1) L= -1)
Figure 5.2 L

‘For any M-coloring 1 of L, let 1U k denote the induced coloring of L“‘ with the new
- ‘component K colored & < r. Then [1U k] = [lj[k]. Since nre =nz +1and 61e = a1 +¢,
- and so age = bc® oy, we have S ' '

r—1

TL = QL Z[I]JL,I
o ' _ I=1 -

r—1 /r-1 :
TLe = aL=_Z (ZUU k]jU,luk)
;- =1 Nk=1 .

r=1 o o '
= ay, Z[l] (bc Z k]JLc',luk)".
Thus to prove Tpc = T it sufﬁces to establish the identity

r—1

(53 b S R =L

) . _ k=1 . _ ) )
for a,ny. fixed M-coloring 1 on L. We will prove (5.3) by induction on the number of strands
- 'm, starting the induction for m < 1 in the next result.

5.4 LEMMA. Identity (5.3) holds for m = 0 and 1, and therefore L is Invariant under
m-strand K-moves form =0 and 1.

PROOF: The proof for m = 0 is a special case of the proof for m = 1 when the color j |
on the strand of L passmg through K is 1, by Lemma 4.14. So we assume m = 1. Then
CJLeluk = lmlts(’ —148 =1 J1. by Lemma 3.27, and so (5.3) reduces to

1

 bet Z [J‘l“]te(;{ ~14+k2 —1) =1.
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- Since these two identities (for ¢ = £1) are conjugate, we need only consider the case
& = +1. But this identity follows from Lemma 5.1, with I =1, since c=e¢ (-3) . O

5.5 REMARK: S° can be obtained by +1 surgery on the unknot, so
’ ' . r—1 . .
(8% = ch[k]ztk =1
k=1

by Lemma 3.27 and the identity established in the proof of (5.4) with j = 1. Furthermore,
it is not hard to show that 7, is the only invariant of framed links under 1-strand K-moves
of the form a® 3 ([T dk;) JL x with value 1 on the 1-framed unknot. (This is essentially
how Reshetikhin and Turaev arrived at their formula.) Indeed, one readily shows as in the
* proof above that for any such invariant - '

r—1 . :
. k +2 2
a’ E (—"[Jb]] tE(J _1+k. _1_)> dk =1
k=1 / :

for all 0 < j < r and € = +1. Solving for the dy, using Lemma 5.1 and the fact
that the matrix (b[j%]) is its own inverse (this is the well known orthogonality relation

B ST A5 E] = 6ix), gives di = befa™[k]. Equating the values for € = &1 shows a = +c

=1

 and the case a = —¢ is eliminated by the normalization on the unknot. Thus a = ¢ and

" dj = blk], so the invariant is just L. : : .
Finally we prove the inductive step, completing the proof of Theorem 1.6.

5.6 LEMMA. Identity (5.3) holds for m-strand K-moves for m > 1 provided it holds for
n-strand K-moves for all n < m. Thus 7, -is invariant under K -moves.

 PROOF: First suppose that I and L are trivial outside of the tangles shown in Figure 5.2,
as shown in Figure 5.7 (with blackboard framings). :

L

Figure 5.7

Using the Symmetry Principle 4.20, we may assume that all colors J of components
J of L satisfy j < §. Indeed, if j > %, then change j tor —j < % on J (and on the
corresponding component J¢ of L?). This changes the left side of (5.3) by

je(r=25)+2(J%-S+k-1)

49




~ where § is the even-colored sublink of L¢ — (J* U K), and leaves the right side unchanged.
“Next change k to  — k on K. Then, using [k] = [r — k], the left side of (5.3) changes by

se(r—20)42(J-S+(r=1)-1)

“ while the right side remains unchanged. Noting that K -§ = J°+ § = |§|, we see that the
net change on the left side is _

izs(f—j—k)-[-z;(K-s-l)+2(r-j+k) =1

-as it is on the right side. :

~ Now by Lemma 3.10c, we may replace two components L; and Lg of L, with colors [
and I, by a single component colored by Vi @ Vi = Vith-1g... g ylti=tal+1 (using

2.13). Thus by Lemma 3.10a and distributivity, it is enough to estabhsh (5.3) when L

-and Lo are replaced by a smgle 3 -colored component for j < r. But this is covered by the

induction hypothesis.
Now consider the genera.l case shown in Flgure 5.8, where T"is an arbitrary tangle. We

will reduce to the special case above (Figure 5.7) using cabhng and skein theory.

T T

Tdbo [ dbo
\\/U@ | K_\j\’

First suppose that I = 2, the constant 2-coloring. Then we prove (5.3) by induction on
- the number of crossings in T'. The induction begins with zero crossings, which is covered by
the special case. (Note that 7' may have maxima and minima, as well as vertical strands,
which simply pull through K, reducing m.) In general, we may smooth a crossing of T
in two ways in both L and L%, and (5.3) follows by induction for each smoothing, using
Theorem 4.3(2). '
Finally, for general I, Jo1 and Jreur can be computed using the cabling formula of
Theorem 4.15 {and the subsequent remarL.) applied to I, and Le K, respectively. This
‘reduces the proof of (5.3) to the case 1 = 2 proved above. O

5.9 THEOREM. 7y satisfies the following three properties
(1) T(M#N) = r(M)r-(N)
(2) m(—M) = (M)
(3) .1_?_(53) =1.
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ProoF: For (1), choose framed links L and L' with M = M, My = N, and so Mryup =
M#N where L'U L' denotes d1s_]o1nt union (L and L’ are separated by a 2-sphere). Note
that

Jrur xuk = JL kI

(this is immediate from the definition of the colored framed link invariants, see the proof
of Theorem 3.6), and so (1) follows from the definition of 7, and d1stnbut1v1ty

For (2), observe that (—Mj) = My, while L is the mirror image (obverse) of L. Now -

(2) follows from the Cabling Theorem 4.17 since Jz, = = Jg and oy, = —07p.
Finally, (3) was shown in Remark 5.5. (Alternatively (3) follows from (1) once it is

- known that 7, is nontrivial, i.e. (M) # 0 for some M.) O

5.10 REMARK: Observe that m(M) = 1 for all M. Indeed TQ(ML) = Jp1 = = 1. In the
subsequent sections we will give formulas for 7,.(M) for small values of r > 2.

Examples.

Computations similar to the one made for §° in Remark 5.5 can be made for §2 x S

and the lens spaces L(p,1), obtamed by surgeries on the unknot with framings 0 and p,
respectlvely For example :

, . o _..r—lnz'_l_- T x
(5,11) | Tr(S. x 8 )—bém = b_\/; (r)

(which approaches oo like r3/? as r — 00), and for even r

-1

(612) . Tr(Rps) = bcg[’”] t?(kg._l) = *\/-;)-sec (27;)

(which approaches 1/ V2 as r — c0)) where the last equality is derived as in the proof
of Lemma 5.1 by expanding, completing the square, and using a Gauss sum. (Note that
RP? = L(2,1).) A similar argument shows that for r odd, 7-(RP*) = 0 (cf. (8. 9)) In

i [KM4], we will give general formulas for 7-(lens space).
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86. The case r = 3.

In this section we give two formulas for 73(M). The first (6.1) depends only on the
linking matrix of L, where M = Mj. It follows that m3(M) (unlike 74(M), see §7) is a

homotopy invariant (Remark 6.2). The second (Theorem 6.3) expresses 73(M) in terms of -

“classical” invariants of M.

Let L be a framed link with n components and signature o. If k is a coloring of L

with all colors 1 or 2, and S is the 2-colored sublink of L, then by Corollary 4.11 and
 Lemma 4.14, Jpx = Js2 = [2]t3%"5Vs (for any orientation on S). In particular for r =3

JL,k — iS-S

since Vg = 1 (Remark 4.12), #? = ¢ and [2] = 1. Thus the 3-manifold invariant (1.7)
reduces to : -

- (6.1 | . (M) = 55

where ¢ = e.(—s) = —J—;@ Here < denotes sublink and - = 0 by convention. (Alter-

natively, 6.1 follows from the cabling formulas in Theorem 4.15 or from the Symmetry
Principle 4.20.) :

6.2 REMARK: Evidently Formula 6.1 depends only on the linking matrix A of L. Since it _

is a 3-manifold invariant, it-must be invariant under change of orientation on L, and under
blowups and handle slides, that is under stable equivalence of A. It follows that 73(My) is
a homotopy invariant, determined in fact by the first Betti number of My and the linking

- pairing on Tor Hy (M) (for it is known that these determine the stable equ1valence class :

of A [KP], [Du], [Wk]).

~ Note that there is an easy direct proof of the invariance of Formula 6.1 under stable
-equivalence of A (giving an elementary proof, using the two moves in [K1], that 73 is a
3-manifold invariant). First observe that the formula is multiplicative under block sums
of matrices (smce ’ is additive). Invariance under blowing up (summing with (£1)) is

- now evident since W ¢! (1 +*1) = 1. Reversing the orientation on a component of L
" (multiplying a row and corresponding column by -1) leaves ¢ unchanged and alters 5-S.by

a multiple of 4 for all sublinks S, and thus leaves the formula invariant. Finally consider
handle slides. Let L' be obtained from L by sliding component L; over L; and then, for
convenience, reversing the orientation on L; (i.e. replace L; by L} = Ly + L; and Lj by

- L} = —Lj)}. Each sublink S of L corresponds to a sublink §" of I/ with S - .5' S5,

namely
S if S does not contain L;

S'=4q 55— (L, + L;j}+ L} if S contains L; and L;
S —L;+(L;+ L}) if S contains L; but not LJ

- (In fact § = S’ as homology classes in Wy,.) This correspondence is one-to-one, and so
Formula 6.1 is invariant under handle slides. :
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The (cumbersome) sum in Formula 6.1 can be eliminated by using Ed Brown’s Z/8Z
invariant A of the linking matrix A of L, defined as follows ([Br], [Ma}): View A as the
matrix of a Z/4Z-valued quadratic form on a Z/2Z-vector space by reducing mod 4 along
the diagonal and mod 2 off the diagonal. Two matrices are Wit equivalent if they represent

" the same form after possibly block summing with copies of (1) @ (—1). It is easy to show

that A is Witt equivalent to a diagonal matrix (mod2). Let n; denote the number of
diagonal entries congruent to j (mod 4) Assume nz = 0. Then the Brown invariant is
defined by _ '

A =n1 — nz {mod8).

If nz # 0, then the form is classified up to Witt equivalénce by its nullity over Z/2Z), and
the Brown invariant is not defined.)

 Observe that if ny = 0 (which is equlvalent to the topological statement that there exists
ain HY(M;Z/2Z) with @ — o — a # 0, see 6.3) then .

B(M) =0 — X (mod8)

T} zin invariant of the 3-manifold M = My, by [K1], since ¢ and A change equally under
blowing up and remain unchanged under handle slides. This will be called the Brown
wmvariant of M. We can now state: :

6.3 THEOREM. Let M be a closed, oriented 3-manifold. Then t3(M) =0 1f and only if
any one of the following equivalent conditions holds:

(1) M has two spin structures with distinct piinvariants mod4 (see Appendix C)
" (2) M contains an embedded closed surface of odd euler characteristic
(3) there exists « in HI(M Z/2Z) with avava#o '

Otherwxse

T3(M) —\/_( " PM)

where b(M) = rk HY(M;Z/2Z), ¢ = e(~1/8) and ﬁ(]\/.[) is the Brown invariant (deﬁned
above).

- PrROOF: First we show the equivalence of the three conditions. Let ©; and ©; be two spin
- structures on M. Following [KT, Theorem 4.11] or [T'1], we have p(©,) — u(©2) = 26(F)
where F' is a surface which is Poincare dual to the class in H'(M;Z/2Z) which measures
the difference between ©; and ©1; F gets a Pin™ structure from O; and S(F) is its Pin™~
bordism class in Q'™ = Z/8Z. Now the odd classes in Q5™ are represented by odd
multiples of RP?, and the even by even, and so the equivalence of (1) and (2) follows.
The equivalence of (2) and (3) is well known, and follows from an elementary geometric
argument (see for example [KT]). :
Now choose a framed link L of n components and signature o with M = M. Orient L
and let A be the associated linking matrix. As above, we may assume that A is diagonal
(mod 2) with n; diagonal entries congruent to j (mod4).
Observe that
(M) = ng + n2 (mod4)
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since 4 is a presentation matrix for H;(M). By Formula 6.1,
T3(M ) = "w

where

S<L

Now, since w (as a function of A) is multiplicative under _block. sum and depends only on
A mod4 on the diagonal and mod 2 off the diagonal, we have

e
- J

3=0
. where wg = \/i, w1 = ¢, w2 = 0 and w3 = ¢. Thus _
' b(M B
w = V2 e = /3 M= g ng =0
0 S ifng >0 -
and so _ o b) :
o TS(M) = V2TTAOD iy =0
-0 if nz = 0
" It remains ‘to show that n, = 0 if and only if all the y-invariants of M are congruent
(mod4). It is known that the spin structures on A{ are in one-to-one correspondence with

the characteristic sublinks C of L (i.e. C-L; = L; - L; (mod ‘?) for all components L; of
L), and their p-invariants are given by

4o =0 —CC+8AH(C) (mod16)

(see Appendix C). .
It is evident that C' is characteristic if and only if it contains all L with L; - L; odd

(since L; - L; is even for i # j by assumption). Now if ng = 0, then (working mod4)

pe =0 — A = B(M) for all characteristic C' (since C - C' = A). If ny > 0, however, then
pc = B(M) if C’ contains an even number of L; with L; - L; = 2, and pc = ﬁ(M) +2
-otherwise. - _ _ =

- 6.4 COROLLARY. If M isa Z/2Z-homology sphere, then
r3(M) = £

where ¢ = e(—3), (M) is the p-invariant of M, and the sign is chosen according to
whether |H1(M)| = £1 or £3 (mod8).

PROOF Since (M) = rk H;(M Z/2Z) = 0, we must show
B(M) = p(M) + 6(M) (mod 8)
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~ where §(M) = 0 if |[H1(M)| = £1 (mod 8), and §(M) = 4 otherwise. :
~ First note that ng .= n2 = 0 (in the notation of the proof of Theorem 6.3). In addition,
after a change of basis we may assume that A is diagonal (mod 4) with m; diagonal entries

congruent to j (mod 8).
Working mod 8 we have
A=ny —na+ns —ny
| +1 i n3 + n5 is even
+3 otherwise.
C-C =ny+ 3n3 + 5ns + Tne |

(0] =35 = {

- where C'is the (unique) cha,ra,cteristié sublink of L. Thus

(M)_a-,\— (M)—I—C C—A
= (M) +4(ns +n5) = (M)+6(M)

. , O
6.5 REMARKS: (1) 73(M) is not in general determined by H;(M) and the p-invariants
of M (whereas 74(M) is, see §7). For example, for M = L(4,1)# L(8,1) one readily

- computes S(M) = £2 whence 13(£M) = £2i. Yet M and -M have the same homology -

and u-invariants.
“(2) Let (M) =rk Hi (M) Then the modified invariant c”(M)T;; (M) (see Remark 1.8) is -
- always a Gaussian integer. This follows from Theorem 6.3 and the eIementary observation

* that (M) = ﬁ(M)+u(M) (mod2).
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87, The case r = 4

In this section we give a formula for 74(M ) in terms of the g-invariants of spin structures

on M (Theorem 7.1). It is derived using Rohlin’s Theorem on the signature of spin 4-
- manifolds from a related formula (7.2) which involves the Arf invariants of sublinks of a
framed link I with M = M. It turns out that Formula 7.2 can be shown directly to be
an invariant of M using only elementary properties of the Arf invariant and [K1], and this
in turn yields a new short proof of Rohlin’s theorem (see Appendix C).

7.1 THEOREM. Let M be a closed, oriented 3-manifold. Then

Ta(M) =) (Mo
©

where ¢ = e (—3; ) and j(Me) is the y-invariant of the spin structure @ on M (the sum is

taken over all spin structures).

 PROOF: Choose a framed link L of n components and 51gnatu1e o with M 1 = M. By
Theorem 4.17,

(M) = V3 e 3 ) e

‘where the doubly cabled components of L® are oppositely oriented, and -
' _ .58 o7 s (e+]
c) = +2j+1](—-1 )
(0= Yte+ 2+ 1117 (° 1)

Here S is the sublink of L which is cabled once (S’ depends on c) and the sum is over all
j>0withe+2j+1 < 4.

First we show that {c) =0 for any c in which some ¢, = 0. Indeed, each j j with j jp =0in
*. the sum can be paired with j', identical to j except that Jp = 1. The corresponding terms

" in the sum differ only in the p* position, where we have [0 + 0 4 1}(—1)° (g) =1 for j

and [0 +2+ 1(-1)* (i) = —1 for j', and therefore cancel.
Now if ¢ has all ¢; =1 or 2, then

C =—S-S\/§"’5

‘where § (as above) is the sublink of all L; with ¢; = 1 ‘and ng is the number of com-

ponents of S. Furthermore, recall from Remark 4.12 that Ji- = = a2 Znons 1, where
a = (1A% or 0, depending upon whether L is proper or not (see Appendix C). But
L¢ is proper if and only i S is characteristic, since the components of L — S are doubled. -

Hence
Jie = (1A

if S is characteristic, and 0 otherwise.
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Putting these calculations together gives

2n n An—nc—
(M) = V2~ Za"cf °(- 1)“(0)\/' e

(7.2)
L - Zcq—c-cq-s Ar(C)

where the sum is over all characteristic sublinks C' of L. It is shown in Appendix C that
characteristic sublinks C of I naturally correspond to spin structures @ on M, and the
associated p-invariants p{Me) are given by ¢ — C - C 4 8 Arf(C) (mod 16) (see Equation "
C.3). Thus Formula 7.2 may be written as in the statement of the theorem. - O

7.3 REMARK: There is, of course, a quicker proof of Theorem 7.1 using the Symmetry
"‘Pnncr.pie 4.20, Whlch we leave to the reader .
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§8. Applications of the Symmetry Principle.

In this section, the Symmetry Principle is used to simplify the formulas for (M), and to
~ gplit (M) into finer invariants. Several applications are given. We begin by reformulatmg .
the Symmetry Principle.

_The function ¢ and the sum my .

" Let L be a framed link and k be an M-coloring of L. Denote the corresponding even
colored sublink of L by Ey. The Symmetry Principle (4.20) describes how the invariant
Ji1,x changes if the color k on some component K is switched to r — &: it is multiplied by

z-(r‘-—?)ff-K+2Ek-K.
Now we give a formula when several colors are. surltched in this Way, and show how to
“apply this to the study of the 3-manifold invariant 7. _
For each sublink S of L, let kg denote the coloring of L obtained from k by sw1tch1ng the

color as above on each component of S. Then applying the Symmetry Prmc1p1e repeatedly,
we have '

| (8.1) R JL ks = z"s“(s)JL k
" for-some Z/4Z-valued function qSk'on the sublinks of L, where
L (8.2) . ¢(K)=(r—2)K-K +2Ec-K (mod4)

for a single component K of color k. Noting that there is a one to one coi'respondencé _
‘between the sublinks of L and the elements of Ha(Wp; /‘?Z), where W7, is the 4—ma.n1fold .
defined by L (See §1), ¢1 may be viewed as a function .

¢k ; Hz(WL; 2/27) — Z/4Z.
8.3 LEMMA. Ifr is odd, then ¢\ is a quadratic enhancement of the Z /27 intersection
form - on Ho(Wy; Z/2Z). If r is even, then ¢y is linear.

PROOF: For r odd, we must show
<,15k(S + T)= ¢k(5') + qﬁk(T) + 9(.5' T) (mod 4)

for any (sublinks) § and T in Ho(Wy;Z/22Z). Note that by (8.2), ¢u{K)+ K - K is even
~(since r is odd), and so this is immediate for § = T = K. The general case now reduces
easily to the case when T'= K and S is an arbitrary sublink of L not containing K.

In this case, consider Sy = Ex N S (the even colored sublink of S) and S1 = § — 5
(the odd colored sublink of §). Now compute ¢i(S + K) by first switching colors on the
‘components of § (this gives ¢x(S)), and then switching the color on K (which adds (r —2}
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K-K+2(FEx+ 51 —50) K = ¢(K) +2(51 — S0) - K(mod4), since the parities of all the
colors on the components.of S have changed). Hence,

$1(S + K) = ¢i(8) + ¢(K) +2(S-K) (mod4)
since §- K = (S1+4 50) - K = (51 — So) - K (mod 2).

- When r is even, ¢#x(K) is even by (8.2). The argument now proceeds as above except
that the parities of the colors on S remain unchanged, and so switching the color on K

simply adds ¢k(K). Thus ¢i(S + K) = ¢k(S) + ¢x(K) (mod 4). ' O

- For any function ¢ : V — Z/4Z on an n- damensmnal Z /2Z vector space V, consider the
Monsky sum [Br] ' :
Z ¢(v)

veV

If ¢ is linear, then my vanishes unless ¢ is identically zero, in which case my = n [Br

Lemma 3.1]. If ¢ is quadratic (i.e. g(v+w) = ¢>('u)+q5(w)—]—‘)v w for some symmetric bilinear

form - on V) then my is either 0 or of the form \/3 e(1/8)?, where d = n + nullityz o7 ¢

and 4 is the Brown invariant of ¢ (see §6, or [Br, Theorem 1.20] for the nonsmgular case).

Now, for a,ny colorlng kof L, let

(849 o mpx=mgyne= O
’ . . . . S<Ty

where T is the sublink of L consisting of all compenents ‘with colors unequal to r/2 (and

- of course mp, g =13 Tk is empty). Note that mg k = mg, forr odd since Ty = L in this

case.
. In view of (8. 1) these sums may be used to compute the 3-manifold invariants r,.(M),

where M = M. In particular, define two colorings k and k' of L to be equivalent if on each '
- component, the corresponding colors are either equal or add up to r. Note that each equiv-

alence class contains 2/Tx! elements, and exactly one of these is minimal (where k is called
minimal if no color exceeds r/2, also written k < r/2 in multi-index notation). Now we

may group the colorings into equivalence classes and rewrite T,.(M Y=ar ), <k<r[k] Jok.

from (1.5) (using [k] = [r — k]): |
8.5 THEOREM. 7.(M) = ar 2049/2 mi k)L x

This reduces the number of terms by roughly a factor of 2" where n is the number of
components in L. Thus it is of interest to evaluate the sums my, x.

8.6 LEMMA. Let L be a framed link and k be a coloring of L. If r is even, then

' { olTel  if ¢y | Tx is identically zero
mrk = :

0 otherwise

where T is the sublink of L consisting of components with colors stnct]y less than r/2 in
- .the coloring k.
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For r odd,

mprx = it B E"mL,l,

where 1 is the constant 1-coloring and Ej is the even colored sublink of L for the coloriﬁg

k.

PROOF: The formula for even r follows immediately from the fact that ¢y is linear

(Lemma 8.3) and the remarks above. For r odd, it suffices to establish the following:

ASSERTION. If k and k' are colorings of L which differ on only one component K, with
colors k and k' respectively, then . '

ML k! ifk=k (mod2)
MR =Ly 0 i k2K (mod2).

The formula in the Lemma then follows by induction on the number of components in Ei |
(sincefor k even, Ex = Ex UK, and so as r is odd, rEx-Ey = rEyw-Ew+2rEy-K+rK-K =

rEw - By + 2B - K+ (r —~2)K - K = rEy - Ew + ¢1.(K) {mod 4)).

- The assertion is obvious for k = k' (mod 2), since ¢k = drr by (8. 7) and so we assume

“that & and k' have opposite parities.
First some notation. We shall write ¢ for ¢i and ¢’ for ¢y these are both quadratic

forms on V HQ(WL, Z/2Z) by Lemma 8.3. Observe that Ey = Ex + K (in V) and so

¢'(S) = qS(S)—!-"(S K) (mod4)
for any S in' V (e.g. ¢'(K) = —¢(K) (mod4)). Also, let Vi be the 1- dimensional Z/2Z-
~ vector space generated by N with N - N =1, and qbi be the- quadra,tlc forms'on Vj g1ven
-'by qﬁi(N) il (mod4) Note that ' - .
. Mgt = 1+:.

" Now to prove the assertion, it remains to show that mg = 7¢(X )mq;r There are three
cases

Case 1: ¢{(K) = 0 (mod4). Then ¢ and ¢’ are eqmvalent i.e. there i is. an isometry T .

on (V,-) with ¢’ = ¢ o T. Indeed, define T(S) = S+ (S K)K for any S in V. (In the
- language of the calculus of framed links, we slide over K each component of L — K which
links K oddly.) It follows that mg = mg = i*Umy.

Case 2 $(K) = +1 (mod4). Then ¢ @ ¢* and ¢' @ ¢* are eqmvalent (as forms on

V @ V4). Indeed, an explicit isometry T is given by T(S) =S+ (S - K)(K + N) for S in
V (e.g. T(K) = N) and T(N) = K. (As framed links, we slide off X and over N each
component of L — K which links K oddly.) It follows that (1 +2)mg = (1 £ 1)mg, since
Monsky sums multiply under direct sums, and so my = iFimy = i¥¥ Ymg.

Case $: ¢(K) = 2 (mod4). Then ¢ ® ¢ @ ¢+ and ¢' ® ¢~ @ ¢~ are equivalent (as
forms on V @ V4 @ Vi). To see this, consider y = ¢ & ¢+ and ¢’ = ¢’ @ ¢~. Note that
Y(K + N) = —1 and ¢/(K + N) = 1, and so we are in the situation of case 2- (with ¢

replaced by v and K replaced by K + N). Thus ¢ & ¢t and ' @ ¢~ are equ1va.1ent It

: -follows that (141i)mg = (1- )2mg, and so mg = —mg = 1*Fmy. | W

60




The case of odd r.

Gombmmg (8.5) and (8.6) we obtam the following formula for Tr(M ) when r is odd
(where M = M|, as usual). :

8.7 THEOREM. Ifr is odd and, then |
C(M)=mg0f Z - §7B B k)JzL k,
: 0<k<r/2 '

- where Ey is the even colored sublink of I for the colloring k.

We now derive some consequences of this formula.

' :Spllttlng for odd r.
Observe that there is a natural quadratm form ¢, on (Hg(WL, yA / 22),-) glven by -
| ¢L(5) (mod 1) |

with a.ésocia.i_:ed Monsky sum _ _
(88) _ ' mp = Mg, = ZZSS 7 e( )T3(M)
. _ S<L
: where the last equa.hty follows from the formula for 7'3(]1/.[ )in (6.1). It is rea.dﬂy verified .
' that
' {mL 1fr_.3(mod4)
m =
Lt if =1 (mod4)
and so we deduce from Theorem 8.7 that . split's as a product for odd r:
8.9 COROLLARY. Ifr is odd, set

(L) = V2" (i:g-)-ap Z' B B ] T,

8
T 0<k<r/2

" with the + or — sign chosen according to whether r = 3 or r = 1'(mod4). (Here n is the
number of components in L and o is the signature of the linking matrix of L.) Then

. o { r3(M)ri(L) ifr =3 (mod4)
M TN BODL) ifr=1 (modd).
- In particular (M) = 0 whenever r3(M) = 0. |

- The Corollary suggests that o(L), if invariant under the moves of the calculus of framed
links (KX -moves), would be a more useful invariant of M = M, than r,.(M) because it would

. not vanish for “trivial” reasons. It is evident that it is invariant when 73(M) # O since

73(M) and 7-(M) are, and in fact it is invariant in general:
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8.10 THEOREM. IfL is a framed link and r is odd, then r](L) (defined in (8.9) ) is invariant
under K-moves on L, and hence defines an invariant 7/(M) of the associated 3-manifold
M = M7y,

PRrROOF: We adopt the notation of the proof in §5 of Theorem 1.6 (which established the
invariance of 7-(M)). In particular we have a K-move L « L¢ of type € = +1, a fixed
~coloring 1 of L, and induced colorings 1U% of L* for each k (the color of the new component

- K). Note that K - K = ¢.
 Let E denote the even colored sublink of L — K for the coloring 1U % (this is independent

- of k), and as above Ey and Ef,, denote the even colored sublinks of L and L* for the

colorings 1 and 1U %, respectively. Observe that
811 ' | .Es _{EUK ifkiseven '
(811) WET L E if k is odd.

It folloﬁs that _ .
| Ef - Eiye = E - Ey+ €6 (mod4)

where

o { 1 #k=E-K (mod2)

*Tlo #¥k#E-K (mod2),

since £ - E = E; - E; + e(E - K)? (by the way framings change under K-moves, see. §1)
Using this, the proof of the Theorem reduces (as in the proof (1. 6)) to the identity

-,(8.12) (1=ibe Y ke o = Jra,
' 0<k<r/2 -

. which is the a.nalogue of (5.3). _
To prove (8.12), consider the contribution s = (1 — 157 }bc"e Eﬁkr[k]JLs,luk of each color’

'k to left hand side. Usmg the Symmetry P11nc1ple (4.20) we have
(813) 3 = bef([k)Jpe ok + [r — kM L qugr—n))-

Indeed, [r — k]Jre 1u(r—t) = zs("_”"'?(Eluk'K) [k]Jpe qup = 65D+ (k] e 1k (since B, -

K = § (mod?2) by (8.11)). Thus to prove (8. 13) it suffices to show (1- )T =

14 35(r=2+28  which is readily verified, :
Now the left hand side of (8.12) can be rewritten using (8.13) as’

bc® Z (&1 Le 1k
0<k<r :
But this is just the left hand side of (5.3), and so (8. 19) follows. O

As an application, we illustrate the use of Theorem 8.10 in studying the manifolds K,
obtained by surgery on K with integer framing a. Recall from Example 4.21 that the value

of the Jones polynomial of K at the fifth root of unity is an invariant of K, provided the
. framing a # 2 (mod 4). This is in fact true for all a. In particular, by Theorem 8.10

os(Ka) = V/3e (‘g) ax(1+ @ 2PVil(@)

is an invariant of K, (where ¢ = ¢(1/5), and the right hand side is obtained using (4.10)

and (4.11)). It follows that Vi (g) is as well. We have proved:
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8.14 THEOREM. Let K and K' be knots in S* whose Jones polynomials have distinct
values at the fifth root of unity e¢(1/5). Theén the 3-manifolds K, and K| (obtained by
surgery with framing a) are distinct for each integer a.

Homology spheres and the Casson invariant.

‘For another application of Theorem 8.7, consider the 3-manifold K, obtained by p/q
Dehn surgery on a knot K in $%. Then we have: o

' 8 15 COROLLARY (periodicity for homology spheres for odd r). If'r is odd, then Tr(K ) /n) =
(K1 /(n_,_r)) for every integer n. The same statement holds for the mmnants 7).

. Proor: K, /o may be obtained by surgery on a two component link L consisting of K
with the zero framing together with a meridian J (unknotted) of K with framing —n.

Observe that the linking matrix of L has zero signature. (Note that it follows imme-
diately that Tr(Il1/n) = Tr(Iu/(n+4r)) by the definition {1.5) of 7+ and the way that the
invariants Jz x change under change of frammg (3.27b).) One readily computes myz,1 = =2
and so by Theorem 8. 7 :

7‘r(ﬁl/n)—z"J2 Z L AL S
0<J,L<r/2 .

- where j and % are the colors on J and K 1espect1ve1y, and EJU;, is the associated even -

colored sublink of L as usual.
 'Evidently Ejux - Ejur is 0 if j is odd, and is —nor2—mnif jis even (dependmg, upon
whether & is odd or even), that is .

Bor By =2 - Dk~ )+~ 1) (mod4)

Also we have

.'k —n(i2_
JL,jUk:%]lt G*-1

by Lemma 3.27c. Thus

o (K1 ) = 252 Z U][jk]if('—’(i—l)(l‘—l)+n(3'2—1))t—n(iz—l)JK’k
0<j,k<r/2 '
= 932 Z U][jk](-—l)(j_l)(k_1)qn(j2_1)(r2_1)/4JK,k
| 0<jk<r/2

since i = t” and ¢ = ¢*. (Note that (r® - 1)/4 is an integer since r is odd.) It is now
evident that changing n to n + r does not change 7, since ¢" = 1.

The analogous result for 7/ follows immediately from Corollary 8.9 since 73( K /n) =1
by Corollary 6.5, whence 7 (I‘llﬂ) = 7+(K1/n).
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8.16 EXAMPLE: Let r = 5. Then 5% = 2sin? (£) = (2 — ¢ — ¢*), and a straightforward
‘calculation from the last formula in the proof of the previous proposition yields

() = 32— 0 = W + 2P + I - ™)),

where Jx = JK,2 as usual. :
It is illuminating to write this formula, in terms of the reduced Jones polynomial Wy of

K, defined by Vk(z) = 1 — P(2)Wgk(z), where P(z) = (1 — z)(1 — z®). (That Vi can be

so written follows from the evaluations (4.12) Vi (1) = Vx(w) = 1, where w = ¢(1/3), and

Vi(1) = 0. Note that P(1) = P'(1) = P(w) = 0. The polynomials Wy are tabulated in -
Jones’ original papers [J1] [J2].) Now, since Ji = [2](1 — P(9)W (7)) by (4. 10) and (4.11),

we compute
(8-17) 75(Kim)=1-(1+ 9’)(1 — M Wr(9).

_ (Reca.ll that ZJ_O ¢’ =0.)

There is an 1nterest1ng consequence of this formula, relating the Casson invariant \ =

A K, /n) (see [AM]) with 7 = 75(X1/,). (This relationship was first observed experimen-
‘tally using data generated in Mathematica [Wo].)

 First recall from Casson’s surgery formula that A = ZA% (1) where Ax dénotes the

normalized Alexander polynomial of K. But Vi (1) = —3A (1) by a well- known skein.

computation [J2, p. 369}, and so
(8. 18) _ | CA=nWik (1)

since P(l) = P’(l) =0 and P”(l) —6.

Next observe from (8.17) that  is an element of the ring Z[q] of cyclotomic mtegers in

the cyclotomic field Q[g] (where ¢ = ¢(1/5)). Cons:der the map
T 2] — Z/5Z

given by T(ZX;¢%) = TA; (mod5) (= —tr(TAj¢’) (mod5)). Observe that T is both an
- additive and a multiplicative homomorphism (i.e. T(a + ) = T(a) + T(B) and T(af) =
- T(a)YT(8)). Evidently T(r — 1} = 0 {or equivalently tr(r — 1) = 0 {mod 5)). .
Noting that T(Wk(3)) = Wk (1) (mod 5), it follows from (8.17) and (8.18) that

A=nt ((1 + ql)(_l = q3")) (modS).

forn # 0 (mod5). (fn=20 (7m0d5), then A =0 (mod 5).) |
The last expression is in fact independent of n. To see this, write

l—7 _l—r
QL+gl-¢") 1-¢
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‘where u; = —‘1- An easy computation (using the fact that ] J_l(l ¢’) = 5) shows that
T(u;) =7 (mod5) for j = £1 (mod5) and T(u;) = —j (mod5) for j = £2 (mod5). It
follows readily that '

T

(8.19) | | AET(i:q). (mod 5).

(Note that this holds even if n = 0 (mod 5), for then 7 = 1 by (8.17), and so the right hand
side is 0 as expected.} Thus the mod5 Casson invariant is determined by 7. In summary,

“we have

8.20 THEOREM. Let M be a homology sphere obtained by Dehn surgery on a knot in §3,
and let g be the fifth root of unity e(1/5). Then 75(M) is a cyclotomic integer (i.e. an
element of the ring Z[q]). Furthermore, the element a{M) = rs(M) — 1 = 75(M) — 75(S®)
- has zero trace, is divisible by 1 — g, and satisfies

AM) = tr (C{(TM(I)) (mod 5)

where A denotes the Cassonjnvarlant '

8.21 REMARK: The theorem holds equally well for connected sums of homology spheres,
each of which is obtained by Dehn surgery on a knot in S°.

The case of even r.
From (8.5) and (8.6), we obtain the formula

(8.23) | w(M)y=oar Yy 2K]JL
' o0<k<r/2
. - bk|Te=0
 for even r, where as usual M = M}, and Ty is the sublink of components whose colors are
less than r/2 for the coloring k.

Observe that the condition ¢k | Tk = 0 can be replaced by the more restrictive condition
éx = 0. For if ¢y # 0 on some r/2-colored component K, then the Symmetry Principle
applied to K yields Jp x = —J x (since ¢y is even valued for r even), and so Jg x = 0.

Furthermore, the condition ¢y = 0 holds if and only if
By - K=K K (mod?2) if =0 (mod4)

Ey-K=0 (mod2) if r=2(mod4)

for each component K of L, where Ey is the even colored sublink for k. A coloring k
satisfying (8.24) for all K will be called a characteristic coloring (since for r divisible by 4
this is just the condition that Ey be a cha,ra.ctemstm sublink of L, see Appendlx C). Thus
we have : '

(8.24)

8.25 THEOREM. If r is even, then _
(M) =ag > 21Tl [k] T, )
O0<characteristick<r/2

. where T is the sublink of L consisting of components with colors strictly less than r/2 in
the coloring k.
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-Homology spheres.

For an application, consider once again the homology spheres K/, obtained by 1/n
Dehn surgery on a knot K in 5* (cf. Proposition 8.15). :

8.26 COROLLARY (periodicity for homology spheres for even r) Ifr is even, then 7-(K1/a) =
7r(&1/(nt(r/2))) for every integer n.

ProOF: The argument is analogous to the proof of (8. 15), and we adopt the notation used
- there. Using Theorem 8.25 in place of Theorem 8.7, we obtain

r(Kij) = B2 3 Tyt ][5 K700 Jyc .

0<cha.ra.cterxstlc Juk<r/2

‘Nowifr=0 (mod4), then j U k characteristic means that jand k+n are odd. If r =2
(mod 4), then it means that j and k are odd. In either case, j is always odd and so j2 —1

- is divisible by 8. Thus the term ¢n(i*=1) (which is the only term that depends on n) can
be rewritten as (¢2)™" for some integer m. Since ¢* has order r/2, the Corollary follows.

O

Sphttmgs for even r.

Recall from (8.9) and (8 10) that for odd r, the invariant (M) can be written as a
" product of two other invariants of M. It turns out that for even r, it can be Wr1tten as a
sum of invariants.

For r divisible by 4, these are invariants of spin structures on M . That this should be so
is suggested by the fact that the only terms which contribute to 7.(M) come from colorings
-whose even colored sublinks are chamctemstzc, and characteristic sublinks correspond to
spin structures. '

8.27 THEOREM. Let M bea 3—man1'f01d and © be a spin structure on M. Choose a framed
link L for which M = My, and let C be the characteristic sublink correspondmg to © (see
Lemma C.1). Fr =0 (mod4), then

(M, 0) = ar > 2Tl (kT2
O0<k<r/2 with Ey=C

is an invariant of the spin manifold Mg. Furthermore,

(M) = ZT,.(M 0)

where the sum is over all spin structures—on M.

REMARK: 7.(M, O} can equally well be written as

(8.28) (M,0) = ar > (K] 77 x

0<k<r with Ep=C
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using Lemma 8.6 and the fact that & and r — k have the same parity (for even r).

PROOF OF (8.27): We must show that the right hand side of (8.28), denoted (L, C), is

 invariant under K-moves (L,C) « (L%, C*) of characteristic pairs (see Appendix C). Here

CE—{C-I-K i#f C+K is even
lc if C+ K is odd

is the characteristic sublink of L® (Remark C.2), where C denotes both the characteristic

sublink of L and the corresponding sublink of L® and K is the new component of L¢ (as -

usual).
Proceedmg as in the proof of Theorem 1.6 in §5, or Theorem 8.10 above, the proof of

the invariance of r.(L, C') reduces to the identity

(8.29) - be? E (k)L ok = Jr,1
- 0gk<r
k=C-K (mod 2)

- for any coloring 1 of L with By = C. | '
To prove this identity, first assume that C- Ix is even. Then for odd r’., we have qSluk(K )=
(r~2)e 42 K=2+2C-K = (mod 4), and so by the Symmetry Principle (4.20),

(8.30) [r — ]JL= u(r—k) = —[L]JLe k-

it follows that the condition & = C - K (mod 2) may be omitted in the sum in (8.29), as

the additional terms cancel in pairs, and so (8.29) reduces to the identity (5.3).

I C - K is odd,-then for -even k we have oy () =2+ 2(C+ K)- K = 2 (mod4),
and (8.30) follows. This (8. 29) holds in this case as well, and so the first statement in the
. Theorem is proved.

. The last statement in the Theo:em follows 1mmed1ate1y from Theorem 8.25. o

8.31 EXAMPLE: If r = 4, then 74(M,0) = ¢*(Me), Where c = e(—3/16). Indeed, since

b= 1/2 and [2] = V2, we compute 74(M,0) = c“Jc,g/\/: , where o is the signature of

a framed link L with M = My and C is the characteristic sublink corresponding to ©.
Using Corollary 4.11 and Remark 4.12, it follows that (M, @) = ¢?—C-C+Ar(C) = cu(Mo)
' (Note that this yields a proof of Theorem 7.1 without cabling, cf. Remark 7.3.)

-For r = 2 (mod 4), the invariant 7,.(M) splits as a sum of invariants, one for each element
in HY(M;Z/2Z). Indeed, the only terms which contribute to the computation of 7.(M)
- come from colorings whose even colored sublinks E intersect each component of L evenly

~ (where M = M7p). Such sublinks E are in one-to-one correspondence with elements o of

HY(M;Z/2Z). In particular, « is the unique class which is one on meridians of £ and zero
-on meridians of L — E.

8.32 THEOREM. Let M be a 3-manifold and « be an element of HY(M;Z/2Z). Choose
a framed link L for which M = M, and let E be the sublink corresponding to « (see
-above). If r = 2 (mod 4), then

(M, ) = az 2 2Tl K] T e
0<k<r/2 with Ex=F .
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is an invariant of (M, a). Furthermore,

(M) = ZT,—(M a)

where the sum is over all elements « in H'(M;Z/2Z).

The proof is similar to the proof of Theorem 8.27 and is left to the reader. Note that
one uses a calculus for pairs (L, E), w1t11 E . K even for all K, where the K-move replaces

E by E' given by

,_{E if £-K iseven
" | E+K if E-Kisodd.
8.33 EXAMPLE: If @ = 0, then the corresponding sublink E is empty, and so to compute

7+(M, Q) we only consider odd colorings of L (Where M= M L). It follows readily that

Tﬁ(M 0) NG Z Jss
S<L

since b = 1//12, c=i"1and [B]=2
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Appendix A. Identities in A.

As noted after (2.20), the relation YX = XY — [H] may be generalized to Y"X =
XY™ — [n][H +n — 1]JY™"1. A more general formula is

I s e T e P

0<i<min(n,k)

(where [H -;- = [H+m]...[H+m i+ 1]/[711), which follows by induction on k usiﬁg

the identity [a][H + ¢+ 8]+ [B][H +c—a] = [a + b|[H + c]
In particular, we will need (A.1) when k = n:

._(A.Z_) _ | yrxn - Z( 1),[ } ],o[ ~—i1+z'] [ .

0<i<n -

- For our purposes, it is convenient to éxpand the term
' — ; 1 5 = = . ' -
(4.3) [H_. 2,1 J”] = W(m — K?)(sK* ~35K?%).. (s K® ~ 5IKY

in powers of K:

A.4 LEMMA. (K2 — R2)(sK? — 5K?).. (s"1K? —§1K?%) = Dogi~1) e K

where ¢;; = t(23-D0-1) L’] (The e_xponent of K arises by choosmg j K%’s and (i — j) |

&)

" PROOF: We use double induction starting with the cases j=1 (Where cii = s i1 =

- #ii-1) i the coefficient of K%) and j = 0 (where ¢;p = 37" “Hi-1) = FG-1) s (—1)F times
 the coefficient of K?%%).

Recursively, ¢;; = Si_lcl'_..l,j_l — 3= c.;_l,j for j < i, s0 ¢;; is determined by cxx and cgo

for k < _7 But $(2i-9(-1) [;] satisfies the same recursive formula, using the quantized

- Pascal relation _ .

’ s i1 i—1

A5 B I L ] + [ : ] :

(4.5) A ° [J] ? [J -1 J
Using (A.3-4) we may rewrite (A.2) as

112 i1
(AG) Yan — Z (__1)_7 [ ] [] z [ ]Xn-zyn— Ir4_7—21
' 0<ji<i<n - (s—35p |J

‘We are now in a position to complete the proof of Theorem 3.20.

69




.A.7 THEOREM. The identity

Z a; K8 = Z BiK%a
| is satisfled in A, where R = Y a; ® f5; is the R-matrix given in Theorem 2.18.

PROOF: Using (2.18), the left hand sideis § cnat X" K K2Y " K® = 3 cpaps™ oD XY " K@ H0-2

and the right hand side is cnapY "KPK2 XK =3 ¢y bs"(b+2)Y"X"K“+b+2 where the '

sums are over all 0 K n < r and 0 < a,b < 4r. Mu1t1plymg by 4rK? and subst1tut1ng for
" Cnab, the left hand side becomes ™

(A.S) | . Z (3 - 3) ab+(b+a)n—3ﬂxnyn]'ra.+b-—4 Z _/\annYnI{P
“and the right hand side becomes _
(Ag) . E (S - 3) tab —{b+a)n— 3n.Xnanra+b E pnpxnynl'{p

summed over all 0 <n<r and 0 < p < 4r. It remains to show that coefficients Anp and
pnp of XY™ K? are equal for all n and 2
- From (4. 8) we compute

. i (5 - S) a,b+ b+a n—-3n
=3 e

o Z (s —3)" ° -—-(p+4)a--(p+1)n
1
0<a<4r [ ]

a+b—4=p (mod 47‘)

=3 (s = 3)" ?—pa—2p—a—(p41)n
0<a<dr [n] ' _
~ where the last equality is derived by replacing a by a+2, and noting that the sums 3 g, car

~and 375 qcur—p 8T equal.
To compute pnp, first use (A.6) to move Y“ past X" on the left side of (A4.9)
Z ('S - 5) tab (b+a.)n-—-3n( 1)] [?] t(OJ z)(z Y Xn-—tYn 1I;a+b+4g—2z
y ol EOED]
<n<r
0<a,b<dr
02 <i<n

It follows as above that pn, is

. —\ni+i : ‘ .32 . .
Z _ (s —5) + taz—a(p-—4j+2i)+(n+i)(p-—4j+2i+3)+(‘2j—i)(z’_—-l)(_1)3' n + 2 [4]! K
[n + ]! 2 (s —3)r |7

][]

0<a<4r
L Li<r—n

Z (s—3)" g2’ ~pat(pntdnt2jp—aj®—4jn~25)+i(2j+2n-+4)

!
0La<4r [n]
0<j<i<r—n
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- where the second equality follows by cancellation and substitution of a — 2; + ¢ for a.
Since n and p are fixed, Anp and pnp have a common factor :

== v et

— g)
!
(]! 0<a<4r

If p is odd, then C = 0. Indeed, P2;1 is an integer in this case, and so we can replace a
by a + £5* in the sum: ' '

Z taz—pa.:tz::iaz Z taz-na'

0<a<dr 0<a<4r

. But #2r-e+1)?—(@r—atl) _ y=2r+a’—a - —t“2_“, since t¥” = 1, .and so the terms in the sum
on the right cancel in pairs. Thus App = ppp, = 0..
For p even, we divide Anp and pnp by €, and it remains to show that
(4.10) e e L D G s “] H
_ 0<j<i<r—n ' : J

where m = pn + 3n + 2ip — 452 — 4jn — 27 is independent of 1.

* It is straightforward to check that the term on the right hand side of (A.10) corresponding

toi =4 = r—n—1is equal to the left hand side. (Note that p is even, (—1)* = $2r(r=n—1)
and [njz]=[;]_=linthiscase.) R

We now finish by showing that for fixed y < r — n— 1, the sum over i on._ the right of

" (A.10) is zero. Factoring out (—1)7¢™, it suffices to show

.(A.ll) : Z £i(2i+2n+4) [”;”] [”] =0.
i<i<r—n _ 7
It is convenient at this point to use the binomial g-coefficients [2] = gk(n=k) [Z] (see

2.29). The left hand side of (A.11) then becomes

2

j§i<r.—n j<i<r—n

The last sum is just 3 cicrp ¢'[i +n],...[i —j +1];. To see that this is zero, note that
the product of brackets ranges from a high of [r — 1}, when i = r —n — 1 to a low of [1]

when ¢ = j. Thus we may extend the range of ¢ to 0 < ¢ < r, as that only adds terms -
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containing a factor of either [r], = 0 or [0]; = 0. Hence the left hand side of (4.11) is a
multiple of

r—1 . ' : | _
ir: ) . - 1 i 3‘ n Z‘ﬂ-. .
Zq’[z—i-n]q...[z-—-]+1]q=-—(q_1)n+qu(q+ —-1)...(q J'H—l)
- =0 i . . .

gn'i'j

1 =1 :

S | et |

e + (ak+1)‘l+bk)
== DL DI |

g =1 ( i
_ 1 _ (r-—l AN
= T 2t q,)
’ (q - 1) 1 k N i=0 o

-0

 since the sum of the rt*-roots of unity is zero. . : | (|




Appendix B. The Jones polynomial' at the sixth root of unity.

In this appendix we derive an expression for the value of the variant T7L of the Jones
polynomial at ¢ = e (§) (see Remark 4.12). There are of course sumlar1t1es between our
derivation and that of Lipson [Lp] for the Jones polynomial V.

Let A be a symmetric matrix over Z/3Z. The corresponding quadratic form is classified
up to Witt equivalence by its nullity d4 and Witt class w4 in the Witt group W(Z/3Z) =
Z/4Z (see e.g. [MH]). These invariants may be computed as follows: diagonalize A (over
7 /3Z) writing all entries as 0 or £1. Then d4 is the number of diagonal 0’s, and w4 is the
trace (or signature) viewed as an integer mod 4. '

Set

Aa = VB (i),

" . Note that A multiplies under block sum. If A is the mod 3 reduction of a matrix representing
the quadratic form of a link L, write Ap = A4. -

B.1 THEOREM. Vz = Ay at g=e(3).

Proor: Let L. (¢ = +,—,0) be as in Figure 4.4a. Choose correéponding connected Seifert
surfaces F; which locally appear as in Figure B.2 and coincide otherwise,

Figure B.2

With reépeét to suitable bases of Hy(F.), the éssociated symﬁletrized_Seifert matrices A,

satisfy : _
. _ a * _ a _l_ 2 *
A.{.—(* Ao) g,nd ‘4‘_—( N Ag)'
By a change of basis (first diagonalizing Aq mod 3) we may arrange that either
Ar=(a)®B, A-=(a—-1)®B, Ao=B(mod3)

(for Ag nonsingular), or

Aﬁ(g'g)@ﬂ A-E(agl 3)&33’ Ao=(0)® B (mod3)

- for some matrix B. Here & denotes block sum.
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Now set

d.=da, —dp

We =Wy, —WB |

M= AaAp = VB (=),
 If Ay is nonsingular, or. Ao is singular with & # 0, we have |

d do W w_' Wy A.;. A /\o.

| dy d_
a=0 100 0-10 43 4 1
¢=1} (mod3) 0 10 1 00 —i+v3 1
a=2 000 -1 10 i —i 1
b0 001 0 00 1 143

- For Ap éingula.r with b = 0," the d. are 1 more than the corresponding d, in the nonsingular
~case, and the w. remain the same, and so the A; go up by a factor of V3. Now for
g=e (-é-) = % + Jgéz', s—3=e (ﬁ)— e (—11—2) = ¢, and one readily verifies that

At — A~ = (s~ 8
~in‘all cases. Multiplying by. Ap gives |
q)\L+ — Q_)\L_ = (S — .§)/_\LD

d.
O

since Az, = Aa, by definition. It is evident that )\unk;mt =1, and so Vy = AL as desire
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Appendix C. p-invariants.

Let M be an oriented, closed connected 3-manifold. A spin structure © on M can be
viewed as a homotopy class of trivializations of the tangent bundle Tps over M-point [K2].
It is well known that M has a spin striicture, since ws(7as) = 0. It follows by obstruction
theory that the number of distinct spin structures is equal to the number of elements in
- HY(M;Z/27) = H(M;Z/2Z).
~ Recall that the y-invariant of Mg is defined to be the signature (mod 16) of any smooth,
compact spin 4-manifold W with spin boundary Me,

w(Meo) = a(W) (mod 16).

This is well defined by Rohlin’s theorem, which states that the signature of a smooth,
closed spin 4-manifold is divisible by 16. -

-+ Now suppose that M is described by a framed link L, so M = M = GW, (see §1). A
sublink C of L is characteristic if C- L; = L; - Lj (mod 2) for all components L; of L, and

the pair (L, C) is then called a characteristic pair.

C.1 LEMMA. There is a natural one-to-one correspondence between the spm structures
on M1 and characteristic sublinks of L. -

- PROOF: Assign to any spin structure © on My the sublink C of L consiéting of all com-
ponents L; such that © does not extend across the 2-handle in Wy, attached to Li. An

elementary geometric argument shows that C must be characteristic (see e.g. §3 of [MK]).

The map carrying © to C is one-to-one. Indeed, if C is assigned to some other spin
structure ©', then © and ©' agree on the link L' in My, which is the core of the surgery
on L. Since H = Hy(Myp;Z/2Z) is carried by L', we have © = ©' by obstruction theory.

It remains to show that there are exactly |H| characteristic sublinks (as this is the
number of spin structures). To see this, recall that the mod 2 linking matrix A of L is a
presentation matrix for H, and so |H| = [ker A|. But C (viewed as a column vector of 0’s

and 1’s) is characteristic if and only if AC = D, where D is the main diagonal of 4, and-

s0 the number of characteristic sublinks is [ ker A| as well. O

If § is a spin structure on My, and C is the correspondmg characteristic subhnk of L,
then the spin manifold (M7, )e will be denoted by M, c.

C.2 REMARK: The argument in [K1] on the calculus of framed links for orlented 3

manifolds yields a calculus of characteristic pairs for spin 3-manifolds. In particular,
Mpc = My ¢ as spin manifolds (i.e. there is a diffeomorphism between them which

preserves spin structures) if and only if one can pass from (L, C) to (L',C") by isotopy in -

5% and a combination of the following two moves of characteristic pairs (cf. §1):

MovE 1 (blow up). Add (or delete) a disjoint unknotted component with framing +1 and
replace C by C' = C + K.

MovEe 2 (handle slide). For some i # j, slide L; over L; to get L = L; + L; and replace
C by. .
C if C does not contain L;

C'={ C—(L;+L;)+ L, ifC contains L; and L;
C—Li+(Lj+ L) ifC contains L; but not L;
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_(cf. Remark 6.2). Asin [FR], these moves may be combined into one, the K-move, defined
~asin§l (Figure 1.3) with
o = { C+K ifC-Kiseven
“lC  #C-Kisodd
' Here, C denotes both the characteristic sublink of I and the corresponding sublink of L'.

Note that it can happen that My ¢ = M, ¢ for some C' # C'.

" Now let (L, C) be a characteristic pair. Note that C is a proper link (i.e. characteristic
as a sublink of itself, or equivalently L; - (C — L;) is even for all components L; of C),
and therefore has a well defined Arf invariant Arf(C). If L is oriented, then define the
- p-tnvarient of (L,C) to be

(€4 - WL,C)=0~C-C+8Ari(C) (mod16)

- where ¢ = ¢(W) is the signature of the linking matrix of L.
C.4 THEOREM. u(L,C) is an invariant of the spin manifold Mrc.

PRrOOF: By the previous remark, it suffices to show that u(L,C) is independent of the -

orientation on I and is invariant under moves 1 and 2 of characteristic pairs.

First suppose that the orientation on a component K of L is reversed, giving (L', C").
Evidently ¢ remains unchanged. If C does not contain K, then C - C and Arf(C) are
unchanged as well, and so u is unchanged. K C contains K then homologically C' =
C—2K,andso C'-C'"=C"- C’ 4K - (C — K). Thus the invariance of u follows from the
fact tha.t Af(CY= Ad(C) + 3 LK - (C - K) (mod 2), or equivalently

( 1)Arf(C’) —Arf{C) _( 1)11(((: K)

(Note that K -(C— K) is even since C is characteristic.) This fact can be proved by elemen-
tary methods using Seifert surfaces, but it is quicker to use the formula for the Jones polyno-
mial at 7 (Remark 4.12), which gives (— 1)) -AH(C) — Ve, (7)(Ve(4)) 7}, and the Jones
reversing result (see Proposition 4.3 of {L2]), which gives V(i) = (- 1)2K (C- K)Vc(z)
(Note: Jones’ reversing result can be proved using (3.26) and (4.11).)

If L is changed by Move 1, then ¢ and C-C cha.nge equally (by 1) and Arf(C) remains
unchanged, and so p is unchanged .

If L is changed by Move 2, sliding L; over L; to get L} = L; + Lj, then ¢ is unchanged,

and C - C and Arf(C) change only if C contains L;. In that case, since u is independent -

. of orientation, we can change the orientation of L; after the handle slide (L} = —Lj).

- Then homologically C' = C, and so C' - C' = C - C. Also Arf(C") = Arf(C), since the Arf
invariant does not change under orientation preserving band connected sum, and evidently
we can get C from C' by summing L} and L} appropnately Thus p is unchanged. O

C.5 COROLLARY. u(Mic) = p(L,C).

PROOF: It is known that (L, C) may be changed by moves of characteristic pairs to (L', C")
with C' = 0, and so Wy is a spin 4-manifold bounded by My ¢ [Ka]. Thus u(Mrc) =
o(Wi) (mod 16) = (L', C") = w(L,C). |
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REMARK: Normally Rohlin’s theorem is used to show that the g-invariant is a Z/16Z
invariant (rather than a Z/8Z invariant as the algebra of intersection forms predicts). One
may, however, reverse the order of things by showing the invariance of y from the calculus
* of framed links (Lemma C.4), and then deduce Rohlin’s theorem:

C.6 CoroLLARY (Rohlin’s Theorem). If W is a smooth, closed spin 4-manifold, then
a(W) =0 (mod 16). .

PRrOOF: Using smoothness, decompose W as a handlebody with one 0 and one 4-handle.
‘We may assume that W has no 1 or 3-handles, since they may be changed into 2-handles
by surgery (preserving the spin structure and signature o). Now Wy = W — (4-handle)
= Wi, with My = §3, for some framed link L. Since Wy, is spin, the characteristic sublink
corresponding to the (unique) spin structure on S° is empty, and so u(L,8) = o(Wi)
(mod 16). But % = Mj as well, and so (L, 0) = p(0,0) = 0 by (C4). Thus o(W) =

. o(Wi) = 0:(mod 16). _ O

Whether this proof is really easier depends on ones view of the calculus of framed hnks
Whose proof ([Kl]) uses Cerf theory :
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