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ym these two points of view gives a globally defined heat operator £ — A. Covariant
astant sections of the connection are then solutions to the heat equations

ere A=1,...,39g—3.
This point of view leads to the flatness of the connection, for
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1 globally defined holomorphic dlfferentla,l operator on L. Conmdermg it loca.lly, it
1 be written as
dAp BAA

wever, as shown in [3], the symbols of A 4 and Ap Poisson-commaute when consid-
d as functions on the cotangent bundle of M. This means that [A,, Ap] is, like
* two derivative terms, a second-order differential operator. When, as happened
our situation, the map H°(S*T) — H'(D'(L)) is injective, then the cohomology
uence of (##) tells us that every second-order operator on L is first-order. On the
.er hand the hypothesis of the proposition, that no vector field preserves L, tells
that it must be zero-order and by compactness of M a constant.

The connection is thus projectively flat as required.

(The necessary hypothesis is satisfied for the Jacobian and automatically satisfied
non-abelian moduli spaces which have no global holomorphic vector fields [3].)
The details of the above outline of the connection may be found in [4]. The
rearance of the heat equation in the context of symplectic quotients of affine spaces

reated by Axelrod, Della Pietra and Witten [2] where a direct computation of the
vature appears. :

iy [A-‘h AH]
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Evaluations of the 3-Manifold Invariants of
Witten and Reshetikhin~Turaev for 31(2 C)

ROBION KIrRBY AND PAUL MELVIN

In 1988 Witten [W)] defined new invariants of oriented 3-manifolds using the
Chern-Simons action and path integrals. Shortly thereafter, Reshetikhin and Tu-
raev [RT1] [RT2] defined closely related invariants using representations of certain
Hopf algebras A associated to the Lie algebra si(2,C) and an r** root of unity,
g= e2rimfr W briefly describe here a variant 1, of the Reshetikhin-Turaev ver-
sion for ¢ = €?™/7, giving a cabling formula, a symmetry principle, and evaluations
at v = 3, 4 and 6; details will appear elsewhere.

Fix an integer » > 1. The 3-manifold invariant . assigns a complex number
(M) to each oriented, closed, connected 3-manifold M and satisfies:

(1) (multiplicativity) 7.(M#N) = 7.(M) - 7-(N)

(2) (orientation) 7.(—M) = (M)

(3) (normalization) 7,($%) =1

(M) is defined as a weighted average of colored, framed link invariants Jp,
(defined in [RT1]) of a framed link L for M, where a coloring of L is an assignment
of integers k;, 0 < by < r, to the components L; of L. The k; denote representations
of A of dimension k;, and Ji x is a generalization of the Jones polynomial of L at
q.

We adopt the notation e(a) = 2™, 5 = e(), t = (L), (so that ¢ = s? = ¢*),
and

ki _ =k; 1,"_’&
[k} - 3 .i - sin )
$—3 sin :
DEFINITION: Let
4 (M) =ar)y_[klJox
k

where oy, is a constant that depends only on r, the number n of components of L,
and the signature ¢ of the linking matrix of L, namely

(5) ar = b = (‘/gsing)n (e (:E(—-;:—z)))a
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and
(6) (] = []1ks)-

i=1

The sum is over all colorings k of L,

Remark: The invariant in [RT'2] also contains the multiplicative factor ¢” where
v is the rank of H;(M;Z) (equivalently, the nullity of the linking matrix). If this
factor is included, then (2) above does not hold, so for this reason and simplicity
we prefer the definition in (4).

Recall that every closed, oriented, connected 3-manifold M can be described by -

surgery on a framed link L in $*, denoted by My, [L1] [Wa). Adding 2-handles to
the 4-ball along L produces an oriented 4-manifold Wy, for which 6W; = M, and
the intersection form (denoted by z - y) on Hy(Wy; Z) is the same as the linking
matrix for L so that ¢ is the index of Wy. Also recall that if My = My, then one
can pass from L to L' by a sequence of K-moves [K1] [F-R] of the form

+1 full twists

Figure 1

where I~ I = L - L + (I K)°K - K.

The constants af, and [k] in (4) are chosen so that (M) does not depend on the‘_
choice of L, i.e. 7.(M) does not change under K-moves. In fact, one defines Jrx
(below), postulates an invariant of the form of (4), and then uses the K-move for -

one strand only to solve uniquely for ay and [k]. It is then a theorem [RT2] that
(M) is invariant under many stranded K-moves.

To describe Jp x, begin by orienting L and projecting L onto the plane so that

for each component L;, the sum of the self-crossings is equal to the framing L; - L;,
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Removing the maxima and minima, assign a vector space V¥ to each downward
oriented arc of L;, and its dual V¥ to each upward oriented arc as in Figure 2.

Each horizontal line A which misses crossings and extrema hits L in a collection of
points labeled by the V¥ and their duals, so we associate to A the tensor products
of the vector spaces in order. To each extreme point and to each crossing, we assign
an operator from the vector space just below to the vector space just above. The
composition is a (scalar) operator from C to C, and the scalar is J, Lk The vector
spaces and operators are provided by representations of A.

To motivate A, recall that the universal enveloping algebra U of si(2,C) is a 3-
dimensional complex vector space with preferred basis X, Y, H and a multiplication
with relations HX — XH = 2X, HY —-YH = -2Y and XY =YX = H. To
quantize, U/, consider the algebra U} of formal power series in a variable h with

sinh 28

coefficients in U, with the same relations as above except that XY -Y X = =

sinh 4
H+Z=Hp2 o | Setting ¢ = c*, and then by analogy with the above notation,
s=¢e"? t = e”", 3= e M2 and [H] = 2 a': , the relations can be written

HX = X(H+2), HY = Y(H ~2), XY - Y X = [H]. It is convenient to introduce
the element K = t¥ = ¢ and K = f*. Note that K = K™}, KX = sXK,
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KY =3YK and XY - YX = K=K _g).

We want to specialize Uy at h = 22 (so ¢ = €>™/7) and look for complex rep-
resentations, but there are difficulties with divergent power series. It seems easiest
to truncate, and define .4 to be the finite dimensional algebra over C generated by
X, Y, K, K with the above relations

KK =1=FKK

KX =sXK
KY =35YK
2 _ 2
) XY - YX =[H]= .I.{........;fm
as well as
X' =¥"=0
Ki=1.

Aisa compiex Hopf algebra with comultiplication A, antipode S and counit ¢
given by ‘
AX=X@K+KeX -
AY=YRK+EKQY
AK=K@K (AH=H®@1+1@H)

SX =—-sX
(8) $V = _s
= —3Y
SK=EK (SH = ~H)
IE(X) =¢e(Y)=0
e(Ky=1.

There are representations V* of A in each dimension k > 0 given by

Xej=[m+j+1]ejm

(9) Yej=[m—j+1ej
Ke,- = Sjej
|
where V¥ has basis em,€m_1,...,6_n for m = 5-?‘- The relations in A are easily:

verified using the identity [a]{b] — [a + 1]{b— 1] = [a — b+ 1]. For example, the 2 and’
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3 dimensional representations are
01 _ {0 0 _f{t 0
=0 0) v=(1 ) = x=(5 %)

02 o 0 0 0 s 0 0
x=(0 0 [1}), Y=([1] 0 o) and, K={0 0 0
00 0 0. [2) © : 005

respectively.

It is useful to represent V* by a graph in the plane with one vertex at height j for
each basis vector e;, and with oriented edges from ¢; to ej4; labeled by [m%j +1]
if m % 7 + 1] # [r] = 0, indicating the actions of X and ¥ on V. Figure 3 gives
some examples, using the identities [j] = [r — j] = —[r +j].

[2m] T.l[Z] 7[111‘.1[11
[2m-1] ﬂm =
. 2 T.lu] fj e
[1] ‘l[2] {1
) | 21}
1=[11T f2m] - | (Wi} 1=-1
v v? Vig=5)
Figure 3 i B

The Hopf algebra structure on A allows one to define A-module structures on the
duals V* = Home(V, C) and tensor products V@ W = ¥V ®c W of A-modules V
and W. In particular, (Af)(v) = f(S(4)v) and A(v@w) = Ad-(v@w) for A € A,
feV* veV,we W. Thus the vector spaces in Figure 2 will be A-modules and
the operators will be A-linear.
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The structure of .A-modules for k < r and their tensor products Vi @ V4 for
i+ j — 1 < r is parallel to the classical case and is well known:

(10) TuEOREM [RT2]. If k < r, then the representations V* are irreducible and
self dual. Ifi+j—1<r, then Vi@V’ = @ V* where k ranges by twos over
{z+]—1 i+g—3, i+7—5,...,t—j+1}
(11) CoroLLARY. Ifk < r, then
A k—1—
V= —11( , ) VEyk=1-2s
? A MRS IS
where the sum is over all 0 < j'< ﬁ.

Here we have written U =V - W tomean U W =V, jV =V &---® V and
Jj times

Vel =v ® @ V. This corollary is the key to cur later reduction from arbitrary
colorings to 2-dimensional ones.
The Hopf algebra .4 has the additional structure of a quasi-triangular Hopf alge-
bra [D], that is, there exists an invertible element. R in 4 ® A satisfying
RA(AYR™' = A(A) forall Ain A
(12) (A @id} R} = Ry3Ra;
(id®A)R) = RizRiz’

where A(A) = P(A(A)) and P(A®B) = B®A, Riz = R®1, Rys = 1 ® R and

Rys = (P ®@id)(Rz:). R is called a universal R-matrix. Historically, R-matrices

have been found for Us, A and other Hopf algebras by Drinfeld [D], Jimbo [},

Reshetikhin and Turaev [RT2] and others. We look for an R of the form R =
Y chad XK @ Y™K, and recursively derive the constants cnqs from the defining
relation RA(A)R"” = A(A). This approach was suggested to us by A. Wasserman
who had carried out a similar calculation. -

(13) THEOREM. A universal R-matrix for A is given by

- i (S_g)n‘ab+(b—a)n+n FI R n b
= Z o t X" K°@Y"K

1%

where the sum is over all 0 Sn < r and 0 < ¢, b < 4r and [n]! = [r][n — 1]...[2)[1].

(14) COROLLARY. R acts in the.module V¥ @ V¥ by

R&, & e; = Z (5 [;;]T)n m:; :.":]:2]' [Tnt —i";_];nl t‘h‘] —2n(i

—_11)—-1'1(n+1)6i+n ® €jumn
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where k =2m +1, ¥ = 2m' + 1, and £ = [pllp~ 1]...[n + 1).

ExaMPLES: In V? @ V2, the R-matrix is
t t(s ,
®e e(t) -
/

with respect to the basis e;/; ® €1 /2, 12 ®e_y2, e_1/2 @ e1y2, and e_1/2 ®e_1/2,
and

(15) B=PR=(t)a (f {(Sig)) ® (1),

In Vi@ Ve,

0 0 7 ‘
1 0
k=@ olo 1 -g e o)
(1 q- 9) (g (a~-(1+4d) (-9 - )) (1 - q)

It is now possible to assign operators to the following elementa.ry colored tangles
[RT1):

w Sid

X >k=PR
X >R'=R1p

—;EwhereE(fo)=f(x),fe V*,x_e v

= Eyz where Eplx @ ) = (K2 x)

ap 2

~»NwhereN(1)=3,¢,® ¢

— Nz where Npa(1) = 5, ¢ @ B,

Figure 4

oA o i 8t A e 4 R R T
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From these elementary tangle operators, define [RT1] .A-linear operators Jg:,k for
arbitrary oriented, colored, framed tangles T, k. If T'is a link L, then we obtain the
scalar Jg i. The invariance of Jz, i under Reidemeister moves on L is well known;
the Yang-Baxter equation (id @R)(R@id)(id @R) = (R®id)(id ®R)(R® id} is the
key ingredient, and it follows easily from the defining properties (12) for R. Note.
that Jgx is independent of choice of orientation of L.

EXAMPLES: The following examples are easily derived from the R-matrix and the
irreducibility of V¥:

— [£]

i
2
5 -1

]
]

o

- ruﬁ-n

oS-

A
A

tangles (scalar) operators

Figure b
With this definition of Jy k, we have completed the definition of To(My). The
examples in Figure 5 can be used to check the one-strand K-move, or conversely,
they may be used to solve for the coefficients of Jg,x in the definition of Tr(My).
When all components of L are colored by the 2-dimensional representation, then
Jiaz = =" Ji is just a variant of the Jones polynomial. First note that from (15) R
on V2 @ V? satisfies the characteristic polynomial

tR— iR = (s — 3)I.
Then, adjusting for framings, J, satisfles the skein relation
(16) | gJr, 375 = (s — )z,

{see [L2] for background on skein theory). If Vy = V(q) is the version of the Jones
polynomial {for oriented links) satisfying this skein relation and Vyggnos = 1, then

it follows that ‘

am Ji = o= 2T
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Remark: the relation between Jy, 3 and Vi is important because the values of V3,
at certain roots of unity have a topological description, as they do for the usual
Jones polynomial Vg, [LM1], [Lip], [Mur]. In particular, the values at ¢ = e(1/r),
for r =1, 2, 3, 4 and 6, are as follows:

r Vi Vi /
1 an-1 ' (—-—2)“‘1
(19 L
4 a2 a(—v2)"!
6 V=i (—VBH(~i)

where n is the number of components of L, det L is the value at —1 of the (normal-
ized) Alexander polynomial of L, a is (—1)A{5) when I is proper (so the Arf invari-
ant is defined) and 0 otherwise, d is the nullity of Q{mod 3) where @ is the quadratic
form of L (represented by 5 -+ §* for any Seifert matrix § of L), and w is the Witt
class of Q(mod3) in W(Z/3Z) = Z/4Z. It is well known that |det L] = | H1{2)),
where M is the 2-fold branched cover of 5% along L, and d = dim Hy(M;Z/3Z)
(since any matrix representing Q) is a presentation matrix for H;(M n.

PROPOSITION. If S is a sublink of L obtained by removing some 1-colored compo-
nents, then

(19) Jox = Jsys-

Using (11) and (17) we obtain a formula for the general colored framed link
invariant Jz y in terms of J or V for certain cables of L. In particular, a cabling c
of a framed link L is the assignment of non-negative integers ¢; to the L;, and the
associated cable of L, denoted L¢, is obtained by replacing each L; with c; parallel
pushoffs (using the framing).

(20) THEOREM. Using multi-index notation,
k13
Joge =Y (-1 ( Jl ") Tpe-1-3
k]
ifk—=1-j k-1-3 pke1-3) o
=B (* J)tu T s

for any orientation on L¥=1~% where the sum is over all 0 Li< -’,;.-‘-

R U R i e ca e
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ExaMrLES: If L = K = framed knot, then

. Jxa=Jdg1 -1
(21) Jica = Jgs —2J
Jis = Jdga — 3T + 1.

(22) THEOREM. 7.(ML) = ar Y. {c}Ji- where the sum is over all cables ¢ =
(c15.s¢n), 0S¢ Sr—2, @y, is as in (8), and {c) = Y ;[c + 2§ + 1](~1)] (C:I.H)
where the sumisover allj 2 0 withc +2j+1 < 7. '

Remark: a formula like this motivated Lickorish [L3] to give an elementary and
purely combinatorial derivation of essentially the same 3-manifold invariant as 7.
The proof reduced to a combinatorial conjecture whose proof has been claimed
by Koh and Smolinsky [KS]. This elegant approach is much shorter and simpler.
However it may be less useful because the above algebra involving .4 organizes a
great deal of combinatorial information.

For example, using (20) one can give a recursive formula for Jg, » = Jy, for the
unoriented, n-component, 1-framed, right-handed Hopf link H,,:

Ju, =1
Ju, =132
(23) ' w2 -
T, ="+ [2n] + 37 (-1)41 (“ e ) JH, o
k=1

Using deeper properties of A [RT2], one obtains a closed formula:

' n—1
n-—22 —oky2
(24) Ju, =23 ( . ) [2(n — 2k)t("=28)",
' k=0
It is not clear how to derive such formulae in a combinatorial way from skein theory.

(25) SYMMETRY PRINCIPLE: Suppose we are given a framed link of n + 1 compo-
nents, LUK, L=L;U.--ULy,, withecolors l = U---Ul, on I.and kon K. I
we switch the color k to r — k, then

Jruk ur—k = Y LuKuk

where v = i"™(—1)***4, 4 is the framingon K and A = ¥
VI

even

WL = K(4
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Use of the Symmetry Principle enables one to cut the number of terms in 7.(M},
from the order of (r — 1)" to (§)". It also has interesting topological implications

ExaMPLE: For r =5 and L = K with framing a > 0, then

k=1
= a(1+ [2]k + B (-1)*" Tk +4°°(-1)")
= ag(l + i+ ([2] +[3]i")Jk) for a even
= ax(l+i*)(1 + [2]*#**Vk) since [3] = [2]
=0 fora=2 mod 4.

(26)

For a £ 2 mod 4, this shows that V}. is an invariant of My.

Next we discuss the evaluations of 7,(M) when r = 3, 4 and 6. Note tha

(M) =1
For r = 3, .
1 & -5.5
(27) (M) = —x¢ Z 2
‘/é S<L
where M = My, c = e (—% = 1772-‘- and < denotes sublink and we sum over al

sublinks including the empty link (¢ ¢ = 0). It is not hard to see how the formul:
follows from (4} since components with color 1 are dropped (19); it also follows fron
the cabling formula (22).

Evidently, Formula 27 depends only on the linking mairix A of L. It is not hard tc
give an independent proof of the well definedness of (27) by checking its invariancs
under blow ups and handle slides as in the calculus of framed links [K1]. This mean:
that 73(M) is an invariant of the stable equivalence class of A (where stabilizatior
means A @ (+1)). It follows that 3(M) is a homotopy invariant determined by
rank Hy(M; Z) and the linking pairing on Tor H;(M; Z), for these determine the
stable equivalence class of A. :

The cumbersome sum in (27) can be eliminated by using Brown's Z/8Z invarian
B associated with A. View A as giving a Z/4Z-valued quadratic form on a Z/2Z
vector space by reducing mod 4 along the diagonal (to get the form) and reducing
mod 2 (to get the inner product on the vector space). A is stably equivalent to
diagonal matrix and then 2 = ny; —n3; mod 8 where n; is the number of diagona
entries congruent to i (mod 4). Observe that

(28) (M) =0 — § (mod§)

is an inva,riant of M = M.
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(29) THEOREM, If all u-invariants of spin structures on M are congruent (mod 4),
then b (at

T3(M) = \/5 ! )Cp(M)
where (M) = rank Hi(M; Z/2Z), ¢ = e(—3%) and p(M) is as above. Otherwise,
T3(M) = 0. :
(30) CoROLLARY. If M is a Z/2Z-homology sphere, then

Ta(M) = £cr(3D)

where ¢ = e (~4 ), u(M) = p-invariant of M and the = sign is chosen according to
whether {H,(M; Z)| = £1 or +3 (mod8).

(31) REMARK: 73(M) is not always determined by Hy{A; Z) and the p-invariants
of M (although 74 is, see below). For example, if M = L(4,1) # L(8,1), then
p(£M) = £2 so t3(xM) = +2¢, yet M and —M have the same homology and
p-invariants.

(32) THEOREM. 74(M®) = T o c*M®) where ¢ = e(—%), #(M,0) is the -
invariant of the spin structure © on M and the sum is over all spin structures
on M.

The keys to the proof are these: use the cabling formula (20) to drop 1-colored
components, keep 2-colored components and double 3-colored components; the un-
doubled components turn out to be a characteristic sublink and hence to correspond
to a spin structure; at r = 4, the Arf invariant (18) comes into play; finally,

(33) #(M,@) =0 —~C-C+8 Arf(C) mod 16

is a crucial congruence where C is a characteristic sublink corresponding to O.

The congruence (33} is well known in 4-manifold theory [K2], being a generaliza-

tion of Rohlin’s Theorem. It turns out, motivated by (32) above that we can give
_a purely combinatorial proof of (33) without reference to 4-manifolds.

At present, we have no general formula for 75( M) in terms of “classical” invariants
of M, although it is plausible that one exists. Indeed, it is immediate from the
Symmetry Principle {25) and the cabling formula (20) that 74(3}) can be expressed
in terms of Jones pollynomials of cables of L with each component at most doubled.
.If the linking number of each component L; of L with L — L; is odd, then doubled
components may also be eliminated.} Now, since the Jones polynomial of a link at
2 () is determined by the quadratic form of the link (see 18) it would suffice to
show that the quadratic forms of these cables are invariants of M.

A
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In particular if M is obtained by surgery on a knot X with framing a, then it
can be shown that

s YT
(M) = %(l + 25 4 g(l +(-1)2)%Vk)
/

where ¢ is 0 if a = 0, 1if a > 0 and -1 if @ < 0. It follows that rg(M) is
determined by g and the Witt class of the quadratic form @ of K. Thus, for odd q,
or a = 0, 7¢(M) is determined by H;(M; Z) (with its torsion linking form, needed
to determine the sign of ¢ when a is divisible by 3). For even g, one also needs to
know Hy(M;Z) with its torsion linking form (which determines the Witt class of
Q) where M is the canonical 2-fold cover of M.

We are especially grateful to N. Yu. Reshetikhin for his lectures and conversa-
tions on [RT1] and [RT2], and to Vaughn Jones, Greg Kuperberg and Antony
Wasserman for valuable insights into quantum groups.
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