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[ I TN hl,;ho for te[4 — 1, 7], then g, is an isotopy by moves (each
supported by some B;) connecting g, =%, to Or = Rq.

Seetion 7 of the paper shows how the above results can be extended to
the relative case in which one considers a manifold pair (M, N), where N is
a locally flat proper submanifold of M. Thus, close imbeddings of a subset
U of M whose images of U\ N agree {as sets) are isotopic so that the image
of UN N stays invariant during the isotopy. Furthermore, if the imbeddings
agree pointwise on U N N then the isotopy is fixed on U N N. The above
corollaries have the appropriate generalizations to the relative cagse. In
particular, Corollary 1.2 can be substantially strengthened when € is a
proper submanifold of M. If 4,: N— M, tc I, is a proper isotopy of a mani-
fold N into M, then , is locally flat if for each (x, t)e N x I, there iz a
neighborhood [f, ¢] of ¢ in I and there are level preserving imbeddings
a:B* x [t, 6] > N x I and B8: B® x B x [t t.] — M x I onto neighbor-
hoods of (x, £) and (he(x),_t) respectively, such that the following diagram
commutes.

B* x 0 x [ty t] © B* X B™™ X [t £,]
- Je
N x ——— M x TI.

B, t)=(he(x),t)

If N ig a locally flat proper submanifold of M, then this is equivalent to
saying that for each (z, )¢ N x I, the isotopy h, extends to some neighbor-
hood U x [, ¢] of (z, t) in M x I in a level preserving fashion.

COROLLARY 1.4. (Isotopy extension theorem for topological manifolds.)
Let hy: N— M, tel, be a locally flot proper 1solopy of a compaet manifold
N into a manifold M. Then h, can be covered -by an ambient isotopy of M,
that is, there is an isotopy H,: M — M, tel, such that H, = 1, and h, =
Hh for all t.

Corollary 1.1 has been proved independently by Cernavskii [3], using a
convergent stretching-shrinking process on homeomorphisms instead of
using torus homeomorphisms. ‘Also, a version of Corollary 1.2 has been
proved by Lees in [12], where he uses it to prove a topological version of a.
well-known immersion theorem from the differentiable ‘and piecewise linear
categories. ' '

2. Notation and definitions

All manifolds are assumed to be metrie, but are otherwise arbitrary, If
U is a subset of a manifold ¥, a proper imbedding of U into M is an im-
bedding /: U — M such that 2~@M) = UnoM. An isotopy of U into M is

¢
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a family of imbeddings k,: U— M, te I, such that the map i U X [— M
defined by Ah(w, £) = h.(x) is continuous. An isotopy is proper if each im-
bedding in the isotopy is proper..

If C and U are subsets of M with C U, let I{U, C; M) denote the set
of ‘proper imbeddings of U into M which are the identity on C, and let
KU; M) denote I(U, @; M). Let I(U, C; M) be provided with the compact-
open topology. Thus a typical basic neighborhood of ke I(U, C; M) is of the
form N, (K, &) = {ge I(U, C; M) | d(9(x), i(x)) < ¢ for all xc K}, where K is
a compact subset of U, € > 0 and d is the metric on M. '

Suppose X is & space with subsets A and B. A deformation of A into
Bis amap ¢: A x I— X suchthat | 4 x 0 =1, and p(A x 1)C B. If P
is a subset of I(U; M) and ¢: P x I —I(U; M) is a deformation of P, we
may equivalently regard @ as a map @: P x I x U— M such that for each
he Pand t< I, the map @k, ¢, .): U~ M is a proper imbedding. Thus a de-
formation of P is simply a collection {#,: U— M,teI{he P} of proper
isotopies of U into M, continuously indexed by P, such that &, = h. All the
deformations of the paper will be deformations of a neighborhood P of the
inclusion %: U< M in the space I(U; M), and they will leave the inclusion
fixed, If W is a subset of U, a deformation ¢: P x I — I{U; M) is modulo W
if pth, )| W ="nh|W forall he Pand t¢ I. _

Suppose @: P x I — I(U; M) and ¥ Q x I— I{U; M) are deformations of
subsets of I{U; M), and suppose that @(P x 1) = Q. Then the composition of
Y with @, denoted by ¥ o, is the deformation + *@: P X I—>I(U My
defined by

o(h, 28) ifte0,1/2]

¥ b, 1) = Wp(h, 1), 2t — 1) _ ifte[1/2,1] .

Let B* be a euclidean n-space and let B* = [—1, 1j"c B*. In general, let
aB* = [—a, a|* for a > 0, and let {a, b]B* = bB* — int aB*. We regard S*
as the space obtained by identifying the endpoints of [—4, 4] and we let
¢; B* — S* denote the natural covering projection, that is, e(x) = (v + 4)
mod, —4. Let T" be the n-fold product of S'. Then aB" ean be regarded as
a subset of T~ for @ < 4. Let e”: B* — T* be the product covering projection
and let ¢**: B* x R*— B* x T* be the map 1z X e*. These maps will each
be denoted by e when there is no possibility of confusion. '

3. Propositions

Let D" be the unit n-ball in B* and let S** be its boundary. We regard
8*1 % [—1,1] as a subset of R* by identifying (z, £) with (1 + ¢/2)-z. The
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following proposition is a sort of s-version of the generalized Schoenflies
theorem [1]. It is a special case of a theorem of Huebsch and Morse [16, Th.
1.2] and has also been proved by Gauld [15].

ProrosITION 3.1. (Canonical Schoenflies theorem.) There exists an & > 0
such that for any imbedding f: 8" x [—1, 1] — B* within ¢ of the tdentity,
F18% extends canonically to an imbedding f: D* — R*. The tmbedding fis
canonical in the sense that £ depends continuously on f and if f =1, then

F=1L

Proor. It suffices to choose ¢ > 0 so that f(S*~* x —1)c int 8/4 D* and
S8 x Q) B* — 3/4 D*. The idea of the proof is to canonically define a
map p: f{8** x [—1, 0]) — el (int £(S*)) such that the only non-degenerate
inverse set of p is p~'(0) = f(S"* x —1) and such that p| f(8*" =1, Then
£ can be used to extend f|8" to f by defining f(0) = 0 and F|D* — 0 =
ofw=, where w: 8™ x (—1,0] — D" — 0 is the honieomorphism defined by
®(@, t) = (1 + )-2. If it happens that 7 is not the jdentity when f is, then
let = 1: D" — D and replace f by fr—. _

The construction of ¢ mimies the techniques used by Kister to show that
an origin preserving imbedding of R” into RB* can be deformed to be a
homeomorphism [10, Th. 1]. These techniques are also written down in [11,
Lem. 3]. Because of these references we omit the details here.

If M is a manifold, then a collar for 8M is an imbedding o: 8 x [0, 11— M
such that ¢ |0M x 0 = 1,,. The existence of such collars was proved in [2].
The following proposition is proved by an elementary application of one of
the techniques of that paper. We will henceforth adopt the custom of
identifying a collar with its image.

PROPOSITION 3.2. Let M be ¢ manifold with a collar M x [0, 1] and let
Gy and V, be compact subsets of 3M such that C,C int,, V,. Let U be a subset
of M such that V, x [0, 1] cint U. Then there is a neighborhood P of the
wnelusion n: Uc M in KU, V,; M) and a deformation @: P x I--» KU, V, M)
of Pinto I|U, VU C, x [0,1/2]; M ) such that @ is modulo the complement
of an arbitrarily small neighborhood of V, x [0, 1].

PrOOF. Let W be an arbitrary neighborhood of V, x [0,1] in U and
choose P so that e P implies that V, x [0, 1] c A(W). Let A: Vo— [0, 1] be
a map such that MC)) = 1 and Mfr,, V) = 0. For each ¢t< [0, 1] let

W, ={@s)e V, x [0,1]}0 = s < ta(x)}

and define a2 homeomorphism v,: W, — int W, — W, by linearly stretching
the fibers over the boundary points, that is, v,(z, s) = (z, 2[s — ta(x)/2]) for
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each (x, s) ¢ W, — int W,,,. Extend v, via the identity to a homeomorphism
o M — W,,— M. For each ke P, define an isotopy h,: U— M, te[0,1],
by '

wthr, . on U — W.p

B =
’ 1 on W, .

Then by =h, 2| V,UC, x[0,1/2] =1 and b, |U—-W=5~r|U-— Wforeach
t. This defines the desired deformation.

4, 'The main lemma

The following lemma is a special case of the main theorem, which in
turn is proved by repeated applications of the lemma. The absclute case
(z = 0) of the lemma was proved by the second author in [9, Th. 4]. The
lemma will be generalized further in § 7, in order to handle the case where
deformations leave fixed a submanifold of the given manifold. In §8, we
present an alternative proof of the lemma which makes use of a different
technique to produce the intermediate homeomorphism of B* x 1™,

LEMMA 4.1. There is a neighborhood Q of the inclusion #: B* X 4B"C
Bf x R* 4n I(B* x AB", 8B* % 4B"*; B* x R*) and a deformation ¥ of Q
into '

I(B* x 4B*, 8B* x 4B" |} B* x B"; B* x R")

modulo 3(B* x 4B") such that ¥(7, t) = % for all .

ProoF. Let C be the set [1/2, 1]1B* x 3B". It is convenient to work with
imbeddings which are the identity on C. This can be arranged by applying
Proposition 3.2, which says that there exists a neighborhood @, of 7 .in
I(B* x 4B, 3B* x 4B*; B* x R") and a deformation _ '

vror @y X [— I(B* x 4B*, 3B* x 4B"; B* x RE")

of Q, into J(B* x 4B*, dB* x 4B* U C; B* x R*) such that +, is modulo
d(B* x 4B"). Note that +,(p, t) = 7 for all ¢.

The main construction of the lemma is as follows. Given an imbedding
heI(B* x 4B* 8B* x 4B~ ) C; B* X R") which is sufficiently close to the
inclusion 7, we construet a homeomorphism g: B* x E* — B* x R", continu-
ously dependent upon A, such that ¢ |[8B* x R* | Bf x (B* —int3B") =1
and g| B* x B* = k| B* x B*. The deformation of the lemma is then defined
by composing an isotopy of g with z. The homeomorphism ¢ is produced by
suceessively lifting maps as indieated in the diagram below.
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BxRr =~ T R
o -
B* x R N Bt x R*
| |
ks
Bt T — Bt x T
U ol U
Bt x Tr — 3D* x 3D* —=5 B* x T* — D* x D»
N . N
B¥ x T — 2D% x 2D 22, B* . T* — D* x D»
u . hi . U
B* x (T —2D" — B (T — D"
Jai la
. _
B w 4B~ — B* x R

The neighborhood @, of 7 which appears in the proof will always be
understood to be a neighborhood of the 1nclusmn map 7 in the space
I(B* x 4B", 3B* x-4B" |l C; B* x R™.

Let D*, 2D, 3D*, AD" be four concentric n-cells in T* — 2B" such that
JjD*cCint (§ + 1)D™ for each j. Likewise let D*, 2D*, 3D*, 4D* be four con-
centric k-cells in int B* such that 1/2B* — D* and 7D* C int (j + 1)D® for each
4. Asexplained in [9, Prop. 3] or [13], there exists an immersion ey T —Dr s
int 3B*. By the generalized Schoenflies theorem [1], we can assume that
o, | 2B is the identity. Let « denote the product immersion

1 xa:B*x (T" — D*)— B* x int 3B .

If he I(B* x 4B", 9B* x 4B* U C; B* x R*) is close enough to 7, then %
can be covered in a natural way by an imbedding A: B* x (T* — 2D") —
B* x (I* — D") (see diagram). This is done by defining %, to agree locally
with a~ha. Thus, let {U;|1 < ¢ < ]} be a finite cover of T* - int 2D" by
open subsets of T — D" such that for any two members U, U, which have
non-empty intersection, a|(U; U U,) is an imbedding. Let {W;|1 <1 7}
be a cover of B* x (I"—2D") by compaet subsets of B* x (7™ — D*) such that
W, U, for each 4. If ¢ is chosen small enough and if Q, = I\Jﬁg(r;_t(u.:-;1 W), e),
then % e @, implies that he(W,) c a(U,) for each i. For such an & we can
define the lifted map h,: B* x (T*—2D") — B* x (T*— D) by letting &, | W, =
(| U)~*he | W, for each 4. Then 4, is an imbedding which lifts 2 and depends
continuously on h, and is such that if 2 is the inclusion then so is A,.-
Furthermore, &, | (B* — D* x (T* — 2D = 1.
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From this latter property it follows that k, can be extended via the
jdentity to an imbedding

hy Bt x T* — 2D* x 2D"— B* x T" — D* x D"

TLet D™ = D* x D*. We can now apply the canonical Schoenflies theorem
{Proposition 8.1) to extend A, | B*x T*—3D™ to a homeomorphism of B*x T*.
For if @, is sufficiently small then 4 e @, implies that A,{ (3 1/2 D™ —21/2 D™)
ig close to the identity and therefore %, |0 3D™: § 3D™ — int 4D™ extends to an
imbedding %,: 3D™ — int 4D™. Define a homeomorphism h,: B*x T~ B*x T"
by letting
byl BY x T* — 3D™ = h,| B* x T* — 3D™ and h,|3D" = k, .

By the construction, h, depends continuously on % and if % is the inclusion,
then A, is the identity. .

Now if &, is sufficiently close to 1, then A, lifts in a natural way to a
bounded homeomorphism 4,;: B* x R* — B* x R (where bounded means that
the set‘{u h(x) — 2| |we B* x R"} is bounded). We can define A, so that it
locally agrees with e, similar to the way that A, was defined. For if U
ig any subset of Bf x B* of diameter < 4, then ¢ | U is an imbedding. For each
ze B* % R*, let b, | U,(w) = (¢| Us(x))hee | Ui(z), where Uy(x) denotes the open
§-neighborhood of . Then A, depends continuously on &, h,|6B* X B* =1,
and b, =1ifh, = 1.

Let 7: int 3B™ — R™ be a homeomorphism which is a radial expansion
and which is the identity on 2B™ = 2B* x 2B". Extend &, via the identity
to a homeomorphism ki B* x B*— R* x R* and define a homeomorphism
b B* x R®— B* x R by

Y hiy on B* x int 3B”"
hy = .
1 on B* x (B* — int 3B%) . .
The continuity of &, follows from the fact that k] is bounded. Now A; has
. the following properties:
(1) hy|8B* x R*U B* x (R* — int3B") =1
(2) aevhy(x) = haey(x) for xe B* x 2B h;'(B* x 2B*), and
(3) h; depends continuously on £, and if ~ = %, then A, = 1.
Property 3 implies that if @, is small enough, then #,(B* x B") < B* x 2B~
whenever ke @, Thus, since wey|B* x 2B* = 1, property 2 implies’ that
_hy| B x B* = h|B* x B*. Therefore i, is the desired map g mentioned at
“the beginning of the proof. : _
To complete the proof we show how to use g = &, to deform £ to be the
identity on B* x B™. Extend g wia the identity to a homeomorphism
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g: RB* x R*— B* x R" and define an isotopy g,: B* x R* — > B* x B te 0, 1],
by using the Alexander trick on g, that is,

tg(—%—:n) if¢>0

g:(x) = { '
x _ iftt=0.

Define a deformation

V2@ x I— I(B* x 4B", 3B* x 4B™; B* x R
by 4y (h, t) = g7'h: B* x 4B" — B* % R*. Then ¥, deforms @, into

I(B* x 4B, 3B* x 4B" U B* x B*; B* x E").
If @, is small enough so that % e @, implies that A{B* x #4B") 1 B* % 38B" =
@, then 4, is modulo (B* x 4B"). Note that v,(y, t)} = 7 for all ¢, Finally,
let @ be a neighborhood of % in I(B* x 4B*, 6B* X AB™; B* x B"), @ Q,,

such that ¥,(Q x 1) @,, and let ¥ = 4,+3, |Q x I. Then 9 is the desired
deformation of the lemma.

5. The main theorem

The following theorem is the main result of the paper. Essentially it
says that if U is a subset of a manifold M and if C is a compact subset in
the interior of U, then any proper imbedding of U/ into 37 which is sufﬁciently
close to the identity ean be isotoped to an imbedding which is the identity
on , such that the isotopy itself is a continuous function of the imbedding.
The theorem is proved by applying Lemma 4.1 to the handles of a carefully
chosen handlebody eover of C.

. THEOREM 5.1. (1) Let M be a topological manifold and let C and U be
subsets of M such that C is compact and U is a neighborhood of C. Given
any neighborhood Q of the inclusion n: UcC M in I(U; M), there is a neighbor--
hood P of 7in I(U; M) and a deformation @: Px I—Q of P into I(U, C; M).
Furthermore, @ is modulo the complement of a compact neighborhood of Cin
Uand o, t) = n for all tcI.

(2) Suppose in addition to the above hypotheses that {D,, D, +--, D} is
a finite collection of closed subsets of M, each with a neighborhood V, in M.
Then @ can be chosen so that the deformation @ |[P NI, Un V;, My xI
takes place in U, UN D M ) for each 1.

Note. The deformation ¢ constructed in the proof has the additional
property that if ke P is such that 2| UNnaM = 1, then @k, §) | UN oM =1
for all t. Also, part 2 of the theorem holds for pairs (V;, D) in M where D,
is closed and V; is a neighborhood of D, in oM.
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ProoOF. The main portion of the proof is devoted to proving the follow-
ing statement. Given subsets C, D, U and V of M such that C is compact,
D is closed, U 13 a neighborhood of C and V is a neighborhood of D, then there
s @ neighborhood P, of n in KU, UNV; M) and a deformation @: Py x I—
KU, Un D; M) of P, into U, UN(C U D); M) such that ¢ is modulo the
complement of a compact neighborhood of C in U and @, t) = n for all L.
Part 1 of the theorem follows easily from the statement (letting D=V=p),
for if ¢ is a given neighborhood of % in I(I/; M), then there is a neighbor-
hood P of 7 in P, such that (P x I) c Q. Part 2 follows from the statement
by means of an induection argument which is given at the end of the proof.

Henceforth it will be understood that all deformations of subsets of
IU; M) fix the inclusion and are modulo the complement of a compact
neighborhood of C in U.

The proof of the statement is divided into two cases.

Casel. C - DNoM = @. Let {(W, h)|1 < ¢ = r}be a finite cover of
C = D by coordinate neighborhoods which lie in U, where z;: W, — R™ is a
homeomorphism. Express C— D as the union of » compact subsets C,, -+, C,
such that C;c W;, and let D, = D U U, C; for 0 < i =< r. The proof of
case 1 is by an induction argument on 7. At the ¢** step we assume that
there exists a neighborhood P; of »: U M in (U, UN V; M) and a defor-
mation @;: P; x I— KU, UnN D; M) of P; into KU, UNV,; M), where V; is
some neighborhood of D1 The induction starts trivially at 4« = 0 by taking
Vo=V, P,=IU, UNV; M) and @, to be the identity deformation. We
show how in general the inductive assumption can be extended fo hold true
for i + 1. |

Identify W;,, with-R™ in order to simplify the notation. Then C,.,isa
compact subset of R™ and V;N B™ is a neighborhood in R™ of the closed
subset D; N R™. There exists a finite cell complex pair (X, L) in R™ such
that (K, L) has a handlebody decomposition with the following properties

1) D,NnC;,,c Lcint(V; N R™),

2 C..ckK,

8 K—LND;=©,and

(4) if A is a handle of K — L and if % is the index of A, then there is
an imbedding p: B* x B*— R™, m = k + n, such that u(B* x B*) = A and
B x R*) N (D; UL UKF — 4) = #(3B* x B"), where K* denotes the union
of all handles of K of index < k..

The construetion of (X, L) is standard, but for completeness we indicate
how it is done. First, choose a compact neighborhood N of C.., N D; in
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FIGURE 1

“hint(Vyn B*). Thus C,,, — N and D, — N have positive distance apart. Let T
be a triangulation of B* of mesh < &, where & > 0 is to be chosen small. Let K|
and I, be the subcomplexes of 7' generated by the simplexes of 7 which
intersect C;,, UN and N respectively. Then (X, L) is a simplicial pair in 7.
Let 7" and T denote the first and second barycentric subdivisions of T and
let K= U{st (3, T")|oe K} and L = {5t (&, T") | o € L,}, where & denotes
the barycenter of ¢ and st (¢, 7") is the subcomplex of 7" generated by all .
the simplexes which intersect ¢. Each handle st (5, T) is a polyhedral
m-cell, Define its index to be dimension ¢ and let K* denote the union of all
the handles of index < k. The two basic properties of the handlebody de-
composition of K are

{a) if A and A’ are two different handles of the same index, they are
disjoint, and :

(b) if A is a handle of index %, then the pair {4, A N K*') is homeo-
morphie to the pair (B* x B”, 4B* x B,

The fact that (K, L) has properties 1, 2, and 3 listed above follows
immediately from the definition, assuming ¢ is chosen sufficiently small.
Property 4 follows, for example, from property b above and the fact that
94 is collared in R™ — int A. For a more detailed treatment of these facts,



DEFORMATIONS OF SPACES OF IMBEDDINGS 73

see [8, pp. 2331L.]. :

Assume that A, +++, A;, ---, A, are the bandles of K — L subscripted
in order of increasing index. We proceed by induction on j to alter the
imbeddings in I(U, UN V;; M) a step at a time in neighborhoeds of the
A/s. Tor each §,0=j=s, let Dj=D;U LUUs; A, and assume
inductively that for some neighborhood P} of 7: UC M in KU, UnV; M)
there exists a deformation @j: P} x I—I(U, UnD; M) of P;into I{U, UN
V}; M) where V; is some neighborhood of Dj in M. (If 7 =0, the main
inductive assumption gives precisely the information that is needed.) Con-
sider A, and the imbedding z: B* x B"— R™ given in property 4 above. By
re-parametrizing the R* coordinate if necessary, keeping B" fixed, we can
further assume that p(3B* x 4B")Cint V.

According to Lemma 4.1 (replacing B* x B* by B* % 2B*) there is a
neighborhood @ of the inclusion 7, in I{B* x 4B", oB* x 4B*; B* x R") and a
deformation v of Q into I(B* x 4B™, 0B* x 4B* |J B* x 2B*; B* x K*) modulo
3(B* x 4B") such that (7, t) = 7, for all t. Let Q" be a neighborhood of %
in I(U, Un V}; M) such that ke @ implies that hp(B* x 4B p(B* X E")
and g hp|B* x 4B~e Q. Then ¥ can be used to define a deformation
W@ x I—I(U, Un Dy M)yof @ into (U, UN Vi.; M) as follows, where
V:,, is a neighborhood of D, to be defined. If he @', define an isotopy

he U— M, te 0, 1], by '

h on'U — p(B* x 4B7)
(s th on p(B" x 4B") .
Then h, = h and b e U, UN Vi,; M) where Vi, = [V} U u(B* x 2B")] —
p(B* x [2, 4|B"). Let ¥'(h, 8) = h- By the continuity of ¢} there is a neighbor-
hood P, of » in (U, UN V; M), P, C Fj, such that @i(P), x 1) Q.
Let

& =

Pipr = V(@) | Phy X 1) Piyy X I KU, UND; M)

Then ¢}, is the desired deformation, that is, @}, deforms P}, into
U, Un Vi M).

At the completion of the subinduction argument on j, the main induetion
argument can be continued by taking P, = P, Visy = Vi, and @y = -
This completes the proof of case 1. '

Case 2. C—DnN oM+ . The idea of the proof of case 2 is to use a

boundary collar for M and case 1 of the proof to. initially deform the
imbeddings to the identity on a neighborhood of € — DN M. The defor-
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mation can then be completed by applying case 1.

Let 9M x [0, 1] be a boundary collar for M. Without loss of generality
we ean assume that C = C -~ D and that D is compact (since we can assume
that U is compact and that D — U). Let C, D,, U, and V, be subsets of
0M and let ¢ > 0 be such that C, is compact, D, is closed, U, is a compact
neighborhood of C;, and V, is a neighborhood of D, and

C N (OM x [0, 5e]) < intyy C, % [0, 5], U, x [0,5e] cint U,
D (oM x [0, 5e]) < int,, D, x [0, 5¢,and V, x [0, 5] c V.

Let C, be a compact neighborhood of C, in 6 M such that C, c int,, U,.

The deformation ® produced for this case is the composition of three
deformations ¢,, ¢, and @;. The first deformation @,; P,x I— I(U, U D; M)
deforms a neighborhood P, of 7 UcCcM in KU, UNnV; M) into
I{U, UN(C, U V); M) modulo U — U, x {0, 5¢], where

Vi={(V—aMx [0,5e]) U D, x [0, 5¢] ,
which is a neighborhood of D. The second deformation @, which is defined
using Proposition 3.2, deforms a neighborhood Poofpin (U, Un(C,UV,); M }
into _
U, UN(C, x [0, 2¢] U V;); M) modulo U — T, x [0, 5¢] .

At this stage the problem ean be redefined so that case 1 of the proof applies,
which leads to the definition of @,

Definition of @,. It follows from case 1 that there is a neighborhood P,
of the inclusion %,: U,coM in I(U,, U,N V,;0M ) and a deformation @,; P, x J—
IO, U, n Dy dM) of P, into U, U,N (C.U Dy 0M) modulo fr,, U,. Let
P, be a neighborhood of : Uc M in I(U, Un V; M) such that ke P, implies
that | U,e P,. Given he P, use the deformation ?, to define a level pre-
serving homeomorphism o2 U, x [0, 5] — U, x [0, 5¢] by letting

o1U X ¢ = (] Uy~ 0| Uy 2=1).

Then ¢ is the identity on fr,, U,x [0, 55] U Uy xbe and 0 | C,x 0=k | U)~| C,.

Extend ¢ to all of M viag the identity. Then ¢: M — M is isotopic to 1;

modulo M — U, x [0, 5¢] by the isotopy o, M-— M, te |0, 1], where o, is
defined by . .

1 on M — oM x [0, £]

‘T {B:‘o‘&t on dM x [0, ¢]

where 8,: M X [0,t] - oM x [L — ¢, 1} is the homeomorphism which sends
(2, 8) to (@, s + 1 — £). Let p,(h, t) = ho,. '
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Definition of @, It follows from proposition 3.2 that there exists a
neighborhood P, of 7 in (U, UN (C, U V,); M) and a deformation @,: P,xI—
U, UNV,; M) of B, into

U, UN(C, % [0,2¢8] U V); M) modulo U — T, x [0, 5] .

One may take the V, x [0, 1] of the proposition to be C; x [0, 4¢] and may
choose U, x [0, 5¢] to be the arbitrarily small neighborhood of V, x [0, 1].
It follows from the proof of the proposition that an 1mbedd1ng which is the
identity on U N V, remains so during the deformation.

Definition of @, Let Cy= C—3Mx [0, &) and let D;=D U (CnaMx [0, ]).
Then C, U D, =CUDand C;NoM = . Let V, = C, x [0,2¢] U V,, which
is a neighborhood of D,. By case 1, there is a neighborhood P, of n: UC M '
in I(U, UN Vg M) and a deformation @;: Py x I— I(U, U N Dy; M) of P; into
I(U, UN(C; U Dy); M). This defines @,

To eonclude case 2, let P, P, be a neighborhood of 7: U< M in
KU, U0 V; M) such that @,(P, x 1) P, and @p(P; x 1) x 1)C P, and
define

@ = @@, | P, % 1) Py x I— KU, UN D; M) .

Then ¢ is the desired deformation.

We turn now to part 2 of the statement of the theorem. In order to be
able to apply an induction argument we work with a generalized version of
the statement given at the beginning of the proof, namely, suppose C is &
compact subset of M with a neighborhood U and suppose that D, D, D,
are closed subsets of M with neighborhoods V, V,, -+, V,, respectively. Then
there is a neighborhood P, of the inelusion n: Uc M in I U, UNnV; M) and
a deformation @: P, x I— KU, UN D; M) of Py into KU, Un(CU D) M)
such that

(PN IU, UN Vi; M)] x I)c< KU, Un D;; M)

For each i and such that @ is modulo the complement of & compact neighbor-
hood of C in U and @(,t) =7 for all t. Part 2 of the theorem follows
easily from this statement, letting V =D = &.

The proof is by induction on g. The case ¢ = 0 is simply the original
statement. In general, at the (g+1)* step, the statement is proved by making
two applications of the statement with the value ¢, first to deform the
imbeddings in a small neighborhooed of C 1 D,,, and then to complete the
deformation on the rest of C, away from D,,,.

Choose compact sets C, and C, in int (U N V,.,) such that C, is a neigh-
borhood of C 1 D,,; and C, is a neighborhood of C,. Let U =UNV,, Let
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C, be a compact subset of C such that C, N Dyyy=@ and C - C,cC,. Let
U, = U — Dy, which is a neighborhood of G,

Figure 2

For each 7, 1 =1 < ¢, let V! be a closed neighborhood of D, such that
Vicint V.. Likewise let ¥V’ be a closed neighborhood of D such that
Vicint V. Let D)= VIand D' = V.

By applying the induction hypothesis to the space I(U,, U, N V; M) and
extending the deformation so obtained by the identity deformation on U— U,
it follows that there exists a neighborhood P, of 7in (U, UNV; M) and a
deformation @.: P, x I-» (U, UN D'; M> of P, into KU, Un(D'uCy; M)
such that

([P N KU, UNVy; M)} x I)c (U, Un D M)

for each 4,1 =4 < q. If we define Dy, to be D,,,, then this last inclusion
also holds for 7 = ¢ 4 1. Applying the induction hypothesis again, this time
to the space I{U,, U,N(V'UC); M), and extending the deformation so
obtained vig the identity deformation on IJ — U, it follows that there exists
. a neighborhood P, of » in (U, Un(V'UC); M ) and a deformation @,: P, x I—
IU, Un (D U Cy; M) of P, into K U, UN (D UG, U Cy; M) such that
Pd[P. 0 KU, UN Vi M| x I)c LU, Un Dy; M)
for each 4,1 <7 < q. If we define Vi to be D, then the inclusion also
holds for i = ¢+ 1. Let P, be a sufficiently small neighborhood of 7 in P,
such that ¢,(P, x 1) C P,and define @ to be the composition ¢ = @@, | P, x 1.
Then ¢ is the desired deformation of the statement. This completes the
proof of the theorem,
6. Proofs of the corollaries

‘Let J(M) denote the group of homeomorphisms of a2 manifold M, pro-
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vided with the compact-open topology. It is well known that J((M) is a-
topological group. '

PRroOF OF COROLLARY 1.1. Since (M) is a topological group, it is
enough to prove that JC(M) is locally contractible at the identity. This follows
immediately from part 1 of the theorem since JC(M) = I(M; M) and {14} =
- I(M, M; M).

Corollary 1.1 is in general no longer true in the case that M is not
compact, since the compact-open topology is not fine enough to measure
when two homeomorphisms are close enough to be isotopic. For example,
let X be the space obtained from S* x R' by deleting a countable number of
small open discs, each centered at a point (1, p), p an integer, and let M* be
the unbounded 2-manifold obtained by sewing a copy of T — int B* to each of
the boundary components of X. For any compact subset of M there is a
homeomorphism which is the identity on the compact subset but is not
isotopic to the identity since it may do some twisting of the manifold out
pear infinity. However, there is a certain class of manifolds for which
Corollary 1.1 does hold true, namely those which are interiors of compact
manifolds. In this case, M = int @ has an open collar 8Q x (0, 1) induced by
a collar for 8Q in @. The simplest example of such a manifold is *. The
following corollary was proved for this special case in [el.

COROLLARY 6.1. If M is a manifold which is homeomorphic to the
interior of a compuct manifold Q, then the homeomorphism group F (M ) of
M iz locally contractible.

ProoF. Let 3Q x (0, 1) be an open collar for M, induced by a collar for
§. Let C = M — 4@ x (0, 1/2), which is compact. By Theorem 5.1 there is
a neighborhood P of the identity in J((M) and a deformation of P into
(M, C), where JC,(M, C) denotes the subgroup of homeomorphisms which
are the identity on C. There is a natural deformation of J(,(J, C) into {1 "
by making use of the open collar. By composing these deformations, it
follows that P deforms into {1,} and therefore JC(M) is locally contractible.

Another topology for the homeomorphism group J((M) which makes it
into a topological group is the majorant topology. A typical basic neighbor-
hood for a homeomorphism h: M — M in the majorant topology is of the
form :

Ny(s@) = {g € IM) | d(g(), hix)) < e@) for all ze M},

where d is the metrie for M and &: M — (0, ) is an arbitrary map. This
topology is independent of the particular metric chosen for M. We denote
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J(M) with this topology by I n(M). Little can be said about deformations
of subsets of 7, (M) that does not immediately follow from Theorem 5.1,
since any two homeomorphisms which are connected by a path in JC,.(M)
must agree off a compact subset. However, by redefining the notion of de-
formation for this case we can say something about when nearby homeomor-
phisms are isotopic.

Let P and S be subsets of (M), A fine C° deformation of P into S is
& map ¢:PxIx M— M such that for each (h,t)e P x I, the map
Ph &, )1 M—Mis a homeomorphism with @(#, 0, _) = » and @{h, 1, Ye S.
If Q is a subset of JC,(M) and @(%, ¢, -}€Q for each & and ¢, then we say that
the deformation takes place in Q.

Using this definition we have the following corollary.

COROLLARY 6.2. Given any neighborhood Q of Ly in F (M), there is a
tietghborhood P of 1 in Q and there is a majorant deformation @ of P into {14}
such that @ takes place in Q.

PROOF. The proof uses a standard technique that is often used to con-
struct isotopies of a closed subset of a manifold by composing a countable
_number of isotopies, each of which is supported by some member of a locally
finite compact cover of the closed set. Assume without loss of generality
that M is connected. Let {(U,C)|1l <i < o} be a countable collection of
pairs of compact subsets of M such that for each i, U; is a neighbor-
hood of C;, M = U, int C; and U, N Uy @ only if |4 —j| £1. We ean
assume that @ is of the form @ = Ni(e(@)), where & M — (0, ) is some
map. Let ¢; = inf &(U;) for each 4. It follows from part 2 of Theorem 5.1

(etting U = U, C=C,, V, = Cp, U Ceiryy and D, = U, — C;)) that there is
a sequence {9} of positive numbers such that if P, is defined to be the
neighborhood N, (U, ;) of : U, M in K(U,; M), then there is a deforma-
tion @y Py x I— K Uy; M) of P, into (U, Cy; M) such that @,, deforms
Py [(Uy, Uy N (Couy UCy, s M ) into {7}, @.; takes place in N,(U,, ¢,), and
P is modulo fry, U,;,. Likewise, there iz a sequence {d,;_,} of positive numbers
such that if P, ., is defined to be the neighborhood N,(U,._,, 85:.) of
9 Uy M in KU,_,; M), then there is a deformation Doyt Py, x T
HU;_;; M) of Py, into KU, Coo i M ) such that ¢,,_, takes place in

Nv( Useyy min {&,; y, 850, 8us})

and @, is modulo .er Uit Let 8t M— (0, co) be such that sup 8(U) < 3,
for each ¢ and let P be the 4(z)-neighborhood of 1y in JC,(31). Define a de-
formation @: P— I, (M x I } by



DEFORMATIONS OF SPACES OF IMBEDDINGS 79

o(h), = {gvz.,-,,t(h | Uy_yy 20) on U,_, for t¢ [0, 1/2], and
h on M — U.g Uniy
P(0), = {qogi(gv(h)uzl Uy 2t — 1) - on U,; for te [1/2,1], and
Phhe on M — U.q: U

Then @ is the desired deformation.

Remark. The technique used in the above proof can also be used to
generalize Theorem 5.1 to the consideration of proper imbeddings of a
neighborhood U of a closed subset C of a manifold M. In this case I(U, C; M)
is provided with the majorant topology and the deformations considered are
majorant deformations, defined in a manner analogous to the above definition.

PRrOOF OF COROLLARY 1.2. Let h,: U— M, te I, denote the extended
proper isotopy. Consider an arbitrary {,€I. By Theorem 5.1, there is a
neighborhood P of the inelusion %: &, (U} = M in I{(k,(U); M) and a deforma-
tion @: P x I— I(h.(U); M) of P into I(h.(U)s he(C); M) such that @ is
modulo fry k, (U). Let N(t,) be a sufficiently small neighborhood of ¢, in I
such that ke P for all te N(£), and define a partial isotopy H, . M-
M, te N(t), by
hobs P~ ki) 1) : on A,(U)
1 on M — h(U}.

Then k.| C = H, .k, | C for all € N(%).

The proof now proceeds as in the piecewise linear case {7]; see also
[8, p. 150]. Using the compactness of I, choose a partition 0=1, <#, --+ <i,=
1 of I and a collection of isotopies H,,: M— M, te [t t;+,], such that k, | C =
H, | C for te [t t;.]. Let H, = 1, and assume inductively that there is
an ambient. isotopy H.: M— M, te[0, 4], such that A,|C = Hh|C for
te [0, #;]. Extend H, to the interval [t ¢;.,] by letting H, = H, H;} H,, for-
t€ [t tip. Then H;: M— M, te [0, 1], is the desired covering isotopy for h,.

Remark. Corollary 1.2 has various improvéments, just as in the piece-
wise linear case [7, 8]. For example, if D is the track of C under A,, that
is, D = Uses 2:(C), then H, may be chosen to be the identity off any given
neighborhood of D. Also, if 2| UN M = h,| UN 60 for all ¢, then H, can
be chosen so that H,|oM = 1.

ProOF OF COROLLARY 1.3. We first show that there is a neighborhood
P of the identity in JC(M) such that each ke P can be canonically written
as a composition & = Ak, , -+ h, of p homeomorphisms such that %; is
supported by B; for each 4. This is proved by making p applications of part
2 of Theorem 5.1 (with the value g = 1; actually, all that we use is the

Hzo,a =
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statement given in the first paragraph of the proof of the theorem). First
it is necessary to shrink the cover {B;} p times in order to provide some
cushioning neighborhoods. For each 4, 1 <i < p, let B, = B; and let
{B:;!1 =7 = p} be a collection of p compact subsets of M such that
B;;cintB;;,, 147 =p, and such that M = U.<i<, B;,,. For each 4,
1=+ = p, Theorem 5.1 implies that there is a neighborhood P, of 1, in
IM, Ussksir Bri; M) and a deformation o, P; x T— FC(M } of P; into
I(M, Uy s5: Bris M) such that @, is modulo M — B, and ¢,(1,, %) = 1, for
all ¢ (we a_i'e applying the theorem with C = B,,, U= B,;,, D, = Wisisin Brs
and V, = U.zizi-y Biioy). Let P be a sufficiently small neighborhood of 1,
in JC(M) such that each of the deformations @ --- @, | P x I is defined.
For he P,let g, = h and let g; = @ - -« x,(h, 1). Then g, = 1, and there-
fore h = (07'¢,-,) - - - (9:*9){(97'0,) expresses k in the desired manner. Clearly
this process depends continuously on k, so that if h: M — M, tel, is an
ambient isotopy such that A, ¢ P for all ¢, then %, can be expressed as a com-
‘position of ambient isotopies %, = Pop,ilipsye v+ Ryt M — M such that for each
%y b, is supported by B,.-

Now let ,: M—M, t e I, be an arbitrary isotopy. Let 0=t,<t,<+-- <t,=
1 be a partition of I such that for each 7, 0 < 5 < n, and each te [E; £50.]s
ki e P. For each g, define an ambient isotopy g,,.: M— M, tel, by

1 | L ift<t,
G5 = hah;;-l if t_.,- == t5'+1
b, i I 64, < 2.

Then A4 = GnyytGnay *** Gor and 9;:€ P for each 7 and £, By the above
remarks, each isotopy g;,, can be expressed as a composition of isotopies with
the desired properties, and therefore so can A7

Let N be the normal subgroup of F(M) generated by homeomorphisms
which are supported by a proper ball in M, where a proper ball is defined to
be a ball B such that BN M = @ or B aM is an (m — 1)-ball. It follows
from the corollary that N is the subgroup of homeomorphisms which are
isotopic to the identity, since one may choose to cover M by proper balls.
Note that N is open by Corollary 1.1. If MM = @&, it is known that N is the
smallest normal subgroup of JC(M) [4] (if M = @, then this relation is no
longer true, ‘since the smallest normal subgroup is generated by homeo-
morphisms which are supported by balls in int M).

7. Relative resulis

In this section we examine the problem of extending the results of the
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preceding sections to the consideration’of proper manifold pairs (M, N). A
locally flat vroper manifold pair (M, N) is a pair of manifolds such that N
is a locally flat submanifold of M, properly imbedded as a closed subset. In
general when considering an imbedding 4: U — M of a subset U of Mand a
deformation @ of %, one would like @ to have the property that if & is in-
variant on N (L.e., A(UN N) < N), then @k, ?) is invariant on N for all ¢
(andlikewise if | UN N =1, then @(h, ) | UN N =1 for all t).. We indicate
in what follows how it is possible to obtain this property by strengthening
the proofs of the lemma and the main theorem.

If g <mn, we regard Ri=R*x0 as a subspace of B* in the usual
manner. This induces natural inclugions B'c B* and Tt T'".- If A and B.
are subsets of a space X and if 7 A— X is' a map, we say that % is tnvariant
[respectively, the identity] on Bif (AN Byc B[h|AN B =1]. ,

Remark 7.1. In the statement of Lemma 4.1, we can furthermore re-
quire that the deformation v have the following property. If an imbedding

heQc I(B* x 4B*, 6B* x 4B™; B* x R")
is invariant [identity] on B* x 4B for aﬁy g, 0= ¢ H_<; % — 1, then ¥(h, 1) is
invariant [identity] on B* x 4B7 for all t.

Proor. In order to obtain this property we require that the immersion
a: B* x (T* — D*) — B* x int 3B* in the original proof have an additional
_property. Let the n-ball 4D* T — 2B" be chosen in such a manner that
4D T7 = 4D7, a g-ball, for each ¢, 1 < ¢ < n — 1 (for example, let 4D* = |
e([3, 5] x [—2, 2]*™"), where ¢: R* — T™ is the covering map of §2). Then the
original immersion @, T* — D* — int 8B* ¢an be chosen so that a,| T* — D*
is an immersion of 77— D® into int 3B¢ for each ¢. This can be accomplished
by constructing «, inductively (on ), using [6, Th. 4.7] coupled with [5,
Th. 5.7]. Let @ denote the product immersion 1 x a;: B* X (T* — D" —
B* x int 3B*. The proof of the lemma now proceeds as before, taking care
to see that the various deformations of the proof preserve the desired in-
variance properties. The initial deformation v, will do so if one chooses a
natural collar for 6B* x R™in B* x R* when applying Proposition 3.2. The
canonical Schoenflies theorem, Which_' is used to extend k| to A, preserves
‘the invarianee properties of %, because the shrinkings and expansions used
in the proof: of the theorem are natural. Thus, if  is invariant [identity]
on B* x 4B, then &, will be invariant [identity] on B* x T'. The remaining
portion of the proof carries through without further modification.

Remark 7.2, Suppose (M, N) is a locally flat proper manifold pair. Then
‘the deformation @ in the statement of Theorem 5.1 can be assumed to have
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the additional property that if an imbedding 4e Pc I U; M) is invariant
{identity] on U N N, then @(h, t) is invariant [identity] on U N N for all £,

ProoF. We first indicate how ease 1 of the proof of the theorem can be
modified so that the deformation ¢ has this additional property. The idea
is to initially deform the imbeddings to be the identity on UN W, where
Wy is some neighborhood of (NN C) U D. The deformation can then he .
completed by applying the original case 1 of the theorem.

Let p = dim N, and let {(W;, )|l <7<} be a finite collection of
coordinate neighborhoods of M which lie in U and cover N NC — D, such’
that A;: (W, W, N)—(R™, R")isa homeomorphism of pairs. LetC,, ---, C,
be a collection of compact subsets of NN C — D which cover N N C — D,
such that C; c W, for each 4. We proceed now as in the original proof, using
the same induction argument. The definition of D; is the same, and the
induction hypothesis carries the additional assumption that if % is invariant
[identity] on NV, then ®y(h, ) is invariant [identity] on N. At the (i + 1)*
step, the construction of the handlebody pair (K, L) is modified as follows.
First, construet a handlebody pair (K, Ly} in WeyN N = R? satlsfymg
properties 1 through 4, with m replaced by p (so that in particular the
handles have dimension p). If ¢ > 0 is chosen small enough and if (K, L) is
defined to be (K, Ly) x ¢B™?, then (K, L) is a handlebody pair in W,,,
satisfying properties 1 through 4. The handles of (K, L}y will have index < p
and the imbedding g of property 4 will in addition be a map of pairs such
that g (B* x R*, B* X R*%) — (R™, R*) and (p(B* x B"), u(B* x B¥) =
(4, 4n N). The subinduction argument now proceeds as before, carrying
along in the induction the additional invariance condition. At the completion
of the induction arguments, one has a neighborhood P of the inclusion % in
KU, UnV; M) and a deformation @: P x I— KU, Un D; My of P into
(U, UN Wy; M) such that ¢ satisfies the invariance property, where W, is
some neighborhood of (NN C) U D. The deformation can now be completed
either by applying the original case 1 to appropriately chosen subsets of
C U D and U, or by continuing the above proof in the manner of the original
proof, being careful to carry out subseguent deformations away from N.

The proof of case 2, when C — DN oM = », is just the same as the
original proof except for one additional observation. This is that there
exists a collar 0:9M x [0, 1] — M for M such that ¢ |{IN x [0, 1] is a collar
for N, i.e., 60N x [0, 1])c N. This relative version of the collaring theorem
is an easy extension of Brown’s original proof [2]. It is only necessary to
start with local collars for 3} in M with the property that they restrict to
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focal collars for N in N. If such a relative collar is used in the proof of
Proposition 3.2 and in the or1g1na,1 proof of case 2, then the deforma.tmn @
defined there will have the desired invariance propertles ‘This completes the
proof of Remark 7.2. '

As noted already, the corollanes admit natural extensions to the re-
lative ease. For example, considering Corollary 1.1, let (M, N) be a proper
manifold pair and let JC(M, N) [respectively H (M, N)] denote the subgroup
of homeomorphisms of J({M) whlch are 1nvar1ant [identity] on N. Then we
have

COROLLARY 7.3. Let (M, N) be a compact locally flat proper manifold
‘pair. Then the homeomorphism group JH (M) of M is locally contractible in
such a manner that the contractions take JC(M, N} into itself and JC,(M, N)
into itself. Thus, in  particular, J(M, N) and JC,(M, N) are locally
commctzble ‘ ' '

We turn now to the proof of Corollary 1.4,

Proor oF COROLLARY 1.4. As in the proof of Corollary 1.2, it suffices to
show that the isotopy %,: N— .M can be -covered locally with respect to %,
that is, for each t,€ I there is a neighborhood N(%,) of ¢, in I and an isotopy
" H,: M— M, te N(t), such that h, = Hh,, for te N(t). It is enough to con-
gider the case {, = 0. We can assume without loss of generality that (M, N)
is a locally flat proper manifold pair, with N compact, and that s, = 1.

It follows from the definition of local flatness of %, and the compactness
of N that there is a finite collection {U;|]1'<1i=r} of open subsets of M
which cover N and an ¢ > 0 such that for each i, the isotopy %.| U;N N,
te [0, €], admits a proper extension to U, say hi,: U,— M, t<[0, €], such
that h;, — 1. The idea of the proof is to use Remark 7.2 above to show that
if &, < ¢ is chosen Smali enough, then x,: N— M, t€ [0, )}, admits a proper
extension to some neighborhood U of N. It then follows from Corollary 1.2
that k.. N— M, te [0, ¢], can be covered by an isotopy of M.

In what follows it will always be assumed that the various isotopies are
defined for ¢ in the interval [0, €], and that ¢ is to be replaced by a smaller &
whenever it becomes necessary. Let C,, ---,C, be a collection of closed
subsets of N which cover N such that C; c U, for each 4. Let D, = U, ;= C;)
and assume inductively that there is a neighborhood V; of D; in M such that
k.| V; N N admits a proper extension to V;; say g;: V;~» M, such that g, = 1.
We show how this hypothesis can be extended to hold for some neighbor-
hood Vi, of D,,,, for sufficiently small values of .i. ' ' '

~ The basic idea is to replace the extension A, Uss: — M by one which
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agfees with g,‘ V;— M on some nelghborhood of D, N Ci+r Let U, and Ube
compact neighborhoods of D; N C;,, such that U,cCint Uand Ucint(V:n U,,+1),
and let ¢ be small enough so that s, U) C 0V N U,y for all te]0, el.
Consider g;%h; .| U, Wh1ch is l on UN N and 1 when ¢ = 0. If we let '

= {(07%enne| U)| e [0, ]},

then it follows from Remark 7.2 that if e is sufficiently small, there is a
deformation @: P x I'— I(U; M) of P into KU, U; M) modulo fr, U such
that (h, §) | UN N=1forallhe Pand te I. Thus we can define an 1sotopy
f i DTz+1 — M by _ :

Pivre ‘ on Uy, — U
g;sv(g;‘lh‘;ﬂ,,, n - onU.
Then £, is an extension of &, | U, N N and 7, agrees with g, on U,

It remains to use f, to extend the germ of the isotopy g, over some
neighborhood V., of D,,,. Let W,, W, be compact neighborhoods of D;, C;,,
in V., Uy, respectively such that W, n W,cint U,. Let V.., = W, U W,
and extend the isotopy g,| W.: W, — M to V,,, by letting g, | W, = fe| W IT
¢ is sufficiently small, then g,: V,,,— M, t¢ [0, €], is a proper isotopy which
extends k.| V;,, N N. This completes the proof,

fn:

8. Alternative proof of Lemma 4,1

" The first half of the proof of Lemma 4.1 was concerned with taking a
proper imbedding A: B* x 4B*— B* x R" which was cloge to the identity
and producing a homeomorphism k;: B* x T*-» B* x T* which agreed with
k on B* x 2B*. The principal tools used in this construction were the immer-
gion @ of B* x {T* — D™ into B* x int 3B and the canonical Schoenflies
theorem, We give below an alternative proof which does not use either of
these devices. The following lemma is proved in sufficient generality so that
the relative version of Lemma 4.1 (see Remark 7.1) also follows from it.

LEMMA 8.1. Let h: B* X AB* > B* X R* be a proper vmbedding. If h is
sufficiently close to the identity, then there is a homeomorphism h: B*x T* —
B* x T with the Jollowing properties

(1) k| B* x 2B* = h|B* x 2B,

(2) % depends continuously on h and if h = 1, then b = 1,

(8) if h|0B* x 4B = 1, then k |0B* x T = 1, and

(4) of h is invariant [identity] on B* x R* for any ¢, 0 < g=n-1,
then b is invariant lidentity] on B* x T (see § 7 for definitions).

~ ProOF. The lemma is proved by using an e-version of the following
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theorem about the factorization of maps. If & > 0, let ¢,;: R' - S' be the
covering projection defined by e,(%) = e(dx).

THEOREM (M. Brown, 1964, unpublished; also [14, p. 535]). Let X a,nd
Y be compact Hausdorff spaces and let h: X x R— Y X R be a homeo-
morphism. Then there exists a § > 0 and a homeomorphism g: X X §'—
Y x 8! suckh that the following diagram commautes,

Xx[-LU—H5Y xR
llxxea ' linyXe,s--;—'-
xx8 Ly xs.

The proof of this theorem, except for some eonnectedness arguments, is
implicit in what follows.

In order to avoid excess notation, we will prove only the case k& = 0.
For general k, the proof is exactly the same except that everything is
multiplied by B*.

_ Let a,: (—6, 8) x T**— R" be an imbedding such that . ((—6, 6) X Tq)
R+ for each ¢, 0 = g = n — 1. Such an imbedding can be constructed in-
ductively by starting with #» = 1 and, in general, by obtaining «,, from «,
by regarding R* as the subset (0, o) x RB*~* x 0 of E**' and by rotating R*
about the axis 0 x B* x 0 in B**'. If care is used during the construc-
tion and if A is adjusted when. completed, then we cdan further assume that
@,]|2B™ == 1 and : ‘

0, ((—6, 6) T cint4B* .
Let & denote this final imbedding «,,.
Let h: 4B"— R™ be an 1mbeddmg Ifhis suﬂimently close to the identity,

then ha(]—4, 5] x T"'“l)c a((—6, 6) x T7-%) and therefore we can define an
imbedding

h, = a—'ha: ['—"4 5] x T*— (—6, 6) x T**.

At this point we make use of the idea of the theorem mentioned above.

- Let @, = —32/3, b= —81/3, a,=41/3, and b, =4 2/3. Define a
piecewise linear homeomorphism w,: B — R by @) = ¢ for ¢ = b, @,(t) =
t+ 8 for t < a, and let. @, map the segment [a, b] linearly onto the
segment [a,, b,]. Let A, @ and @ be piecewise linear homeomorphisms of
R x T** onto itself given by A(f, %) = (t — 8, ), ® = @ X Ly, and & =
A o '

If the imbedding A, [~4, 5] x T"* — R x T** is sufficiently close to
the identity, then we can define an imbedding A, [—4, 4] X T*'— R x T
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by letting h, = pdk, | [—4, 4] x T, where 3: D; — Bx T* is an imbedding
with domain D; = @h,([—4, 5] x 7") and is defined by

- {(ml)m(mrl on D5 N A{[—4, 5] x 7'
P11 elsewhere on D;

Then £, depends contmuously on h,and h, =1 if A, =1 (gee the diagram

below).
; 1 ‘bhl ®) Pk, (B)
5 .HIWJ_L g Ly
b
a i
4 TN e TN o et
y(4) Bhy(4) Déhy(4)
_ S .
l Iy 7 (0] P
¥ or
—2r . @=1 | p=1
i . here . ;l-( )r here
By |- N I . LT
i ao r C(,O _______ \
—4 N NNAA TN e
S I (~4) \ _ M By {—4}
(@R ™!
here
tg—8f-————
AVAVAYE
@hy(—4)
FIGURE 3

By definition, h,\ = M, on {4} % T, Thus b, = (e X Dihofe x 1)~ T*—
T* is a well defined map which makes the diagram below. commute.
Furthermore, 7, is 1 — 1, and therefore a homeomorphism, if h is close
enough to the 1dent1ty

[—4, 4] x T* %5 B x ot

lexl Jexl

St x P, gy e
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Thus %, is the desired homeomorphism 7 of the lemma. In general, the
invariance properties of h are preserved by h, because the stretching and
shrinking homeomorphisms are invariant on the appropriate subspaces.
This completes the proof.

Remark. The above lemma can be strengthened so that the homeo-
morphism k: B* x T*— B* x T* actually inherits stronger invariance pro-
perties from /4 than those given by property 4 of the lemma. For example,
property 4 can be replaced by

4} if H 1s a subspace of R* x R* generated by a subcollectwﬂ of the
standard basis vectors for R* x R™ and if h is invariant [or the identity]
on H, then ko 4s imvariant [identity] on By X Th, where By X Ty =
e(HN B* x B").

Note that this property can be reflected in the deformation ¥ defined in
Lemma 4.1, Such a version of the lemma would be useful, for example, if
one were considering homeomorphisms of manifold n-ads (M; Ny ++-, N,)
where each N; is a proper locally flat submanifold of M and the various com-
binations of the N;’s intersect nicely (transversally, for example).

To prove this version of the lemma, one uses = applications of the
factorization idea used in the proof instead of one application. Thus,
starting with the given imbedding A: B* x 4B™ — B* x R*, one produces a
gequence of proper imbeddings = hy, ky, » -, k,,, Where

hyt B* x T9 x (4 —j/n)B*i— B* x T7 X R
ig such that &; and h;y, agree on B* x T¢ x 2B™, Each imbedding is pro-
duced directly from the preceding one by “identifying” B* x T x {3} x4B=—!
with B* x T? x {—8} x 4B*¥* to produce B* x T+ x 4B"—f—‘. The final
imbedding %, is the desired homeomorphism /.
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