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A POTENTIAL SMOOTH COUNTEREXAMPLE IN DIMENSION 4
TO THE POINCARE CONJECTURE, THE SCHOENFLIES
CONJECTURE, AND THE ANDREWS-CURTIS CONJECTURE
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WE DESCRIBE & homotopy 4-sphere T, built with the usual zero and 4-handle and two 1-
handles and two 2-handles (Figure 28). Of course £* is homeomorphic to 8* [Freedman] but
considerable effort has not led to a proof that T* is diffeomorphic to $4. £+ has the following
virtues: _

(A) Although it is easy to construct smooth homotopy 4-spheres (e.g. the Gluck
construction on knotted 2-spheres or via non-trivial presentations of the trivial group), this is
the only (except $*) example we know without 3-handles and with so few handles altogether.

(B) The presentation of the trivial group arising from I* (see §2) is {x, y|xyx = yxy,
x* = y*}, it is easy to show that this group is trivial, but it seems difficult to do so using
Andrews—Curtis moves ([1] or [10] 5.1). '

(C) Let I, be T without the 4-handle; then we can add two 2-handles and two 3-handles
and a 4-handle to get (smoothly) S$* (see §2). Applying the topological Schoenflies theorem to
9%, in 5*, we see directly that I, is homeomorphic to B, S

(D) 9Z,is an interesting smooth §* in §*. The smooth Schoenflies conjecture is unsettied
indimension 4 and 0%, is a good test case. So in §4, we give a critical level imbedding of 6%, in
§* (Fig. $1-S11). Scharlemann [12] has used critical level imbeddings to prove the conjecture
for genus 2 imbeddings; this one is genus 51. . E

(E) X, is the result of the Gluck construction ona knot K in $* (Fig. 16). K is constructed
from two distinct ribbons for the 8, knot (see [11]). _

Z was first defined as the double cover of a certain exotic RP* of Cappell and Shaneson
[7]. It was built by decomposing RP* into a 2-disk bundle over RP? and the non-trivial 3-

‘disk bundle over S*, and then replacing the latter by a punctured 3-torus bundle over §* with
010
monodromy ( 0o 1). We thought we proved (in [4]) that the double cover T of this
—110
exotic RP* was diffeomorphic to S*. However Iain Aitchison and J. H. Rubenstein ([2],[3])
discovered an error (the last sentence on page 77 of [4] states that a framing is zero when it
should be odd). We actually proved that £* is the Gluck construction on a knotted 2-sphere in
§* (this was discussed in Remarks 2 and 3 of [4]). As mentioned above, we are still unable to
prove that £* is diffeomorphic to $*. In the meantime however, Fintushel and Stern [8] have
constructed, by different methods, an exotic RP* whose double cover is $%. Note that both
these exotic RP*s are homotopy RP*s which are s-cobordant to RP* and then
homeomorphic to RP* by Freedman’s recent proof of the topological s-cobordism theorem
for many fundamental groups including Z/2.

After some definitions in §1, we begin in §2 with a handlebody description of * from [4,
Fig. 5]. We simplify this handlebody presentation by sliding handles over other handles and
by handle cancellations and births to get the properties of Z* mentioned above in (A), (B), ©
and (E). It is worth remarking that it is usually hard to see how to add a cancelling pair of
handles {a birth) in any useful way; this is done with a (2-3)-pair in Fig. 19 and later in Fig, 35.

Some problems are suggested by this work:

(1) Does every homotopy 4-ball with boundary $3 smoothly imbed in §4?

(2} Do the results of this paper hold for the other fake RP*s of [3]?
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(3) Is §* the double of Z,?

{4} Classify the different ribbons for a ribbon knot.

We would like to thank Andrew Casson for helping us in simplifying the fundamental
group calculations.

§1 .

First, liere are some definitions and notation. I-handles were described in {4] by drawing
their attaching maps, i.e. by drawing two 3-balls in §* = éB*. They may also be described by
an unknotted circle with a dot on it to distinguish it from the attaching map of a 2-handle (see
[5], p. 260). This dotted circle means: delete from B* the thickened, unknotted 2-ball which
the circle bounds, obtaining B* w 1-handle. Any arc going through the dotted circle goes over
the 1-handle. This notation has the virtue that replacing the dot by a zero is the same as
replacing the 1-handle by a 2-handle, i.e. surgering $' x B* to §2 x B2 This notation can be
extended to the case where the dotted circle is a slice knot and we are meant to delete the
thickened slice from B*. Since a slice knot has more than one slice (just connect sum any
knotted 8$2) it is necessary to somehow specify the slice to be used; when the dotted knot is
ribbon, this may be done by carrying along dotted arcs indicating whlch ribbon moves on the
knot give the r1bbon disk.

§2

Figure 1 is our starting point; it is a picture of the zero, one and two-handles of %, the
double cover of Q (the fake RP#). It comes from Fig. 5 of [4] by changing the notation for the
one-handle a,, (which is attached to the balls of the origin and at <o) to the “dotted circle”, and
by adding the last 2-handle y with framing-1 (not 0 as erroneously claimed). The framing of
the &, and f;, i = 1,2, 3, are given by the normal vector field lying in the plane of the paper.
There are three 3-handles and a 4-handle which are not drawn.

Before 7 is added, but after the 3-handles are added, the boundary is S* x $? and what is
missing is B? x §2,i.e. 7 and the 4-handle. The core, 0 x S2, is the “knotted” 2-sphere K in Z*.
If we perform the Gluck construction on K we get S*, since removing K x B* means
removing y and the 4-handle, and replacing K x B* with a twist means adding y with 0-
framing and the 4-handle; but this was what was proven in [4] to be $*. Conversely then, Z* is
the Gluck construction on K in §%.

We can see K by seeing 0 x §2 in §! x §2, the boundary before 7 is added. Since the S*

x S2isjust $! x 8T3 where T3 is the punctured 3-torus, we can take O x S tobe [ —1,17*

Fig. 1.
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followed by surgery on a;, a3, a3 and «,, o, a3, the three 1-handles and 2-handles of T3 x

[—1,1]. Thus an equator for 0 x §% = K is a circle close to and parallel to the dotted circle
representing a,; call this equator A,. One of the hemispheres it bounds in K is just the
obvious flat 2-ball bounded by a,, call it H_; the other, H . , is harder to see because it goes
over the handles. H _ looks unknotted, but it isn’t. If we cancel a,, a,, and g, with 8,, 8, — §,,
and B, then H_ turns into a ribbon disk for the 8, knot in §3, Fig. 16, as we shall see later.
Similarly, if we turned our handlebody upside down and cancelled a, with y (with framing 0
soas to sec K in S*)and «,, a,, and «; with the 3-handles, then H, would become a different
ribbon disk for 8,, (Figs. 15, 16). .

We want to begin simplifying the description in Fig, 1 of * It turns out that a, and «, are
cancelled by 3-handles, and if we show this first then in later versions of Fig. 1 we will not have
to draw o, and «;. To see that o, and o, are cancelled, go through the steps in [4], but carrying
along a, and y. In going from Fig. 7 to Fig. 8 of [4], a,, (as a dotted circle) will be pulled over 1-
handles, and then as a,, a, and a; are cancelled, a, becomes a knot (8, in fact). Remember
from the introduction that a knotted dotted circle must have a preferred ribbon disk which is
to be removed (the same as adding a 1-handle if the dotted circle is unknotted). The three
circles, oy, o and o3, in Fig. 13 of [4] become the unlink tangled with a,; we get Fig. 2.

If we slide «, over «, it also becomes parallel to «,. Then slide both o, and «, over o, SO
that they become unlinked (with zero framings). Then o, and a, contribute two copies of §1

x 8% to the boundary whichis S x $24 S* x §%4 S* x $2. Thus &, and o must be cancelled
by 3-handles. To put it another way, in Fig. 1, o, and a5 may be slid over the other handles
(excepting a, and y) until they become an unlink separated from the rest.

Now we change the notation for the 1-handles in Fig. 1, switching to dotted circles. This is
shown in Fig. 3, where o, is not drawn even though it is there. The attaching circles in Fig 3
are drawn with care for their framings are determined by the push off which lies parallel in the
figure. Thus the push off for #; has one left crossing which, when straightened out, gives one
fuil left twist with its pushoff, hence framing — 1. Similarly 8, has framing +2 and B gets

To go from Fig. 3 to Fig. 4, we do some simple isotopies and slide 8, over a, and f, over
as, thereby changing their framings. Next, slide 8, over g, as indicated in Fig, 5, cancel a ; and
B by erasing them, and isotop to Fig. 6.

We continue in Fig: 7 by sliding , and f, twice (algebraically zero) over B, and then
cancelling f; and a, by erasing them. Further isotopies give Figs. 8 and 9.

Now we want to describe K as the union of two ribbons for the 8, knot. Remember that
Fig. 9 plus a 3 and 4-handle is £*, and that if we remove the 4-handle and y then we have the
knot complement §* — (K x int B®) = * — (K x int B%). Also recall that a copy of K consists
of a hemisphere H _ equal to the obvious disk bounded by the equator A, =a,of K ,anda
hemisphere H , which is harder to see. Shrink 8,, turning a, into a ribbon knot, as in Fig. 10;

Fig. 2.
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Fig. 8. Fig. 9.

Fig. 12,

the ribbon move is indicated by a dotted arc which can be isotoped along the band to putitin
a convenient position. Now cancel g, with #, by sliding over #, eight times, obtaining Fig. 11.

A sequence of isotopies (Figs. 12, 13 and 14) end with the 8, knot, a dotted line indicating
the ribbon move, and a 2-handle. The reader can check that this is the same knot as in Fig. 2
with «, in the same position and the dotted arc giving the same ribbon move. The other
ribbon is given by a,. Figure 15 has a movie of K in $# and simultaneously a handlebody
description of §*— K. We begin at the left with an unlink, and two 3-handles and a 4-handle
(one 3-handle cancels the 4-handle) which are not drawn. The middle picture is a slice of X the
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8, knot just after a ribbon move has occurred and a 2-handle has been added to $4 — K. The
left hand picture is the unlink again just after another ribbon move and another 2-handle has
been added. Finally the two 1-handles of $* — K are given by dotting the unlink (see also [ 5]).
Figure 16 is a more artistic way of drawing the 8, knot with its ribbon moves; this picture
makes obvious an orientation reversing involution of the 85 knot which switches the ribbon
moves (just rotated by = and reflect).
_ Weredraw the left hand picture in Fig. 15 and add y to get Fig. 17; together witha 3 and 4-
handle it gives £* Cancel b, and y to get Fig. 18. (This figure is actually —Z%). :
-Next, we add a cancelling 2-3 pair, with the 2-handle added to a circle parallel to the twist
(Fig. 19). This circle must be trivial on the boundary, S* x §2, of the link in Fig. 18. To check
‘this, draw a circle g parallel to the “twist” circle, blowing up a — 1 circle and changing both
+ 1 framings to 0, slide u over the — 1 circle so that it links only the — 1 circle, surger the 1-
handle to a 2-handle by replacing the dot by a zero, and shrink a 2-handle as in Fig. 20. Then
change the shrunk 2-handle to a 1-handle, slide the — 1.2-handle over the 2-handie which
cancels the 1-handle, and cancel. Isotopies and a few slides reduce to the simple link in Fig. 20
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Fig. 16.

Fig. 17.. Fig, 18.

Fig. 19. ' Fig. 20.

which shows that g is trivial in the boundary so that we may add a cancelling 3-handle along
the 2-sphere that u defines. ' ' o :

Now slide a 2-handle over the 2-handle g so that it becomes unlinked from the twist, and
note that its framing changes to — 1 (Fig. 21). The — 1 handle cancels the 1-handle which
leaves two 2-handles and two 3-handles. We want to turn this handlebody over to get two 1-
handles and two 2-handles; this is done by drawing the dual 2-handles, ¢ and <, changing the
interior to the handlebody 0°0° via handle slides while carrying along ¢ and z, and then
changing this unlink to two 1-handles (Figs. 21-28). - ' '
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Fig. 21. Fig. 22.

Fig. 26. Fig. 27.

To get to Fig. 22, we blow up a — 1 circle parallel to the twist, eliminating the twist and
changing framings to zero; then slide the new — 1 circle over the O-framed 2-handle and blow
it down changing framings as indicated. Surger the 1-handle-and isotop to get Fig. 23. Two
handle slides give Fig. 24. Another isotopy leads to Fig. 25. To remove the full right hand twist
between the +1 and + 2 curves, we blow up a — 1 curve around them, slide it over the lower
horizontal 0 curve and blow it down, obtaining Fig. 26 (note the framing changes). An isotopy
gives Fig. 27 which is invariant under rotation by = followed by reflection.
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Fig. 28. Fig. 29.

-Now blow down both the + 1 and — 1 handles, isotop to Fig. 28 and surger the 0 curves to
1-handles. This figure is worth examiniation; it is a non-trivial picture of a homotopy 4-ball
with boundary S3, it has symmetry, and it gives an interesting presentation of the trivial
group.

Labeling the 1-handles by x and y and starting at the arrows, we read off the relations

1=yx 2yxy 2x(xy Ix71) and - i)

1= yx 2yxy 2x(y~'x"1y) so we deduce 2)
xy x =y x"ly or ' 3
XyX = yxy. 4

-Using (3) and (4) we see that (1) becomes
. 1= yx~2(m)y” 22y %71
= yoxy Iy | o)
= x"3(pxxy? '
= x—5y4

This presentation {x, y|xyx = yxy, x5 = y*}isseento be the trivial group as follows: xyx
— yxy implies that y = ()7 x(yx) so y® = ()X () = (X)) = x7Ty0x
=x"'x’x=x=y* so y=1 and x = 1. (Note that this proof works for the group
{x, yixyx = yxy, x**1 = y"})

We do not know whether this presentation, let along the original one with relations (1)
and (2), can be trivialized by Andrews—Curtis moves (see [1], {10] Prob. 5.2); if so, then T4
would be homeomorphic to $* by a standard argument [1].

We shall show that Z* is homeomorphic to §* by adding two 2-handles to the handlebody
of Fig. 28 in such a way that the new manifold is $2 x B?4 §? x B*; then two 3-handlesand a
4-handle can be added to give S*. Since the boundary of Fig. 28 is $3, an application of the
topological Schoenflies theorem gives that Fig. 28 is homeomorphic to B*.

Add the 2-handles as in Fig. 29 and do the obvious two handle slides over the new
2-handles to get Fig. 30. Cancel the two 1-handles with the 4 1 and — 1 handles to obtain 52

x B24 S2 x B? in Fig. 31. This finishes a rather long series of moves which shows that £ is
homeomorphic to §*. '

§3
It is interesting to have an example of a framed link L of two components, with framings
and linking number all zero, whose 4-manifold W, has boundary §* x §24 5 x §* butis not
obviously S2 x B4 §2 x B2.Itis easy to construct nontrivial links with 0W, = S* x §%4 §!
- % §? by adding an unknot to a ribbon knot, e.g. Fig. 32; but in these cases W* is obviously §
x B24 S% x B2.1f L has one component, then W * = $* x $2 implies that L is slice [9] and
may imply that L is the unknot. ' o
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Fig. 30. Fig. 31. Fig. 32.

Our example begins with Fig, 9 and we cancel a, and y to get Fig. 33. We want to add a
cancelling 2-3-bandle pair with the 2-handle § being attached to an unknotted circle parallel
to the twist in Fig. 33. We need to know that & represents a trivial circle with framing zero in
the boundary of Fig. 33. To see this we construct a diffeomorphism of the boundary to S!
x 8% = 3(0°) and check that é is trivial. The first step is to shrink &, change it to a 1-handle
and change a, to a 2-handle (see Fig. 34). Cancel o, with B, by first sliding twice over §, and
then erasing «; and B,. Surprisingly, a, and & become the unlink, as can be seen after g long
isotopy.

So add the 2-handle é and slide B; ovef § so that the end of 8, no longer goes through the
twist, Fig. 35, Shrink 8, (Fig. 36)and cancel a, and 8, by sliding over §, eight times and then
erasing @, and f§,. A further isotopy gives our example in Fig. 37. One can independently
check that the boundary in Fig, 37is §* x $24 S* x §2. First, blow up a — 1 circle parallel to
the twist, thus removing the twist; then slide the — 1 circle over o, using a band connected sum
along the dotted arc and isotop the — I circle to the other end of a, ; finally blow down the — 1
circle and check via isotopies and a few handle slides that one obtains the unlink.

Fig. 33. ’ Fig. 34.
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T4 would be diffeomorphic to §* if the smooth 4-dimensional Schoenflies conjecture
could be proved. It may help in analyzing this conjecture to have a non-trivial example of an
imbedded S2 in §%. To this end we draw (in Figs. $1-S11) a “movie” of 8(Z*-4-handle} = §3
in S$*. For simplicity we refer to this §* as JZ,.

Our starting point is Fig. 29 which is a framed link picture of S*. In it we can see 0Z, as
8(0-handle) with surgery on the 1-handles and the 2-handles with framing + 1. We want to
cancel the 1,2 and 3-handles so that §*is constructed with only a 0 and 4-handle; as we cancel
handles we keep track of 9%, and also isotop it to a critical level imbedding. This means that if
we think of $# as ($% x R) U { — 00} U {+ o0}, then projection to R is a Morse function, f:
8%, — R, when restricted to 8Z,. Figures S1-S11 show f ~(t;), for increasing i.

Assume that 3 x (— o0, 0] U { — o0} is the O-handle of § *. Then except for the surgeries,
9E, U S x 0. We begin with Fig. S4 which shows the boundary of {S* with two §° x B™'s
and two §* x B¥s removed}. This 2-manifold can be thought of as four §%’s (the boundaries -
of the two §° x B¥s) and twenty two tubes connecting them,; the tubes correspond to the
boundaries of the attaching maps of the two handles. The interior of {S? with two S° X B¥s
and two S x B¥s removed} has been pushed down into $ x (— 0, 0) and is drawn in Figs.
$1-$3. First, the surface in Fig. $4 is “unknotted” by an isotopy as in Fig. 83; next the obvious
holes are filled in as we pass sixteen critical points of index 1 to reach Fig, 52; then we unknot
again by an isotopy, fill in three holes to get a 2-sphere; (Fig. S1) and finally cap off outside.

To proceed upwards from Fig. S4, we must see what happens to 0Z, as the 2-handles slide
as in Figs. 29, 30. The reader should work through the lower dimensional case in which F is
the boundary of B> U 2-handle, a second 2-handle is added to B*,and the first 2-handle is slid
. over the second. To begin with, push F into B> except for the S x $° which remains in 8B*
(see Fig. 38). Then, using a collar $2 x [0, 1] on éB? weseethe §* x §° get pushed around the
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attaching circle of the second 2-handle as we simultaneously push the first 2-handle and F
over the second 2-handle (Fig. 38). In Fig. 39 we draw the same case but in dimension 4.
Notice that we freely add collars to B3 (or B*) when pushing F (or 0Z,) around, and similarly
we fatten the 2-handles when convenient. '

To get from Fig. 84 to Fig. $6 we must push 0Z, as we slide two 2-handles; the picture is
more complicated than Fig, 39 because there are 1-handles present and the 2-handles go over
them. Figure $5 shows part of the movie between Figs. S4 and S6. We see what happens as the
—1 2-handle (not drawn since it lies inside the obv1ous tube) slzdes over the drawn 2- handle
and then begins to isotop off the 1-handle. :
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The same technique is used in the handle stides going from Fig. S6 to S8. In Fig. S8, the
tori parallel to the O-framed circles are isotoped away from the rest. To see what happens
when the 1 and 2-handles are cancelled, it is enough to examine the case in dimension 3; thisis
left to the reader. From Fig. S9 to Fig. S10, we pass four critical points of index 2. Finally in
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And continue 10 add 2 — handles to
tongitudes and 3 — handles to 2— spheres

Fig. S11.

Fig. 810 we cap off each torus by passing a critical point of index 2 and then index 3, as
indicated in Fig. S11.

This description of X, has one critical point of index 0, 51 of index 1, 58 of index 2 and 8
of index 3. Many of these can be cancelled, but we have not tried to simplify the movie; it is
simply the translation of the handlebody picture. We humbly offer 8%, to the devotees of the
Schoenflies conjecture.
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