ERRATA FOR "NEW METHODS FOR (φ, Γ) -MODULES"

Thanks for Annie Carter and Peter Wear for reporting these. Last updated 25 Jan 2019.

Example 1.3.6: in the display, \mathbb{F}_p should be \mathbb{F}_q , the residue field of F.

Lemma 1.5.4: in line 10 of the proof, "smallest norm of a norm" should be "smallest norm of a root". In line 12, $\bar{R}_0 = 0$ should read $\bar{R}_0 = 1$.

Theorem 1.6.2: in the last paragraph of the proof, "tu is divisible by p^n " should be " p^n is divisible by tu."

Theorem 1.6.4: in the first paragraph of the proof, \bar{u} must be nonzero. In the equation x = Trace(y) + pz, the left-hand side should be $x/(p/t)^{m-1}$.

Lemma 1.7.4: Equation (1.7.4.1) should read

$$|\overline{x}_n - \overline{y}_n|' \le c^{1/r} p^{n/r} \max\{p^{-m/(p^m r)} \epsilon^{1/(p^m r)} : m = 0, \dots, n\};$$

we include a derivation of this below. This does not affect the construction of $x \in W^{r-}(F)$ or the estimate $|x|_r \leq c$; however, the proof that x_1, x_2, \ldots converges to x when x = 0must be modified, as the corrected estimates do not suffice to imply this. Instead, for each i, we simply repeat the preceding argument for the sequence $\{x_i - x_j\}_{j>i}$ to deduce that $|x_i|_r \leq \sup\{|x_i - x_j|_r : j > i\}$, which implies that $x_i \to 0$.

We now derive the corrected version of (1.7.4.1) stated above, by induction on n. For i = 1, ..., n, let z_i be the quantity obtained from $[\overline{x}_{n-i}] - [\overline{y}_{n-i}]$ by truncating the sum after the p^i term; then

$$p^{n}[\overline{x}_{n} - \overline{y}_{n}] \equiv x - y - \sum_{i=1}^{n} p^{n-i} z_{i} \pmod{p^{n+1}}$$

and so

$$|[\overline{x}_n - \overline{y}_n]|_r \le \max\{cp^n\epsilon, \max\{p^i |z_i|_r : i = 1, \dots, n\}\}.$$

By the induction hypothesis,

$$\left|\overline{x}_{n-i} - \overline{y}_{n-i}\right|' \le c^{1/r} p^{(n-i)/r} \max\{p^{-j/(p^j r)} \epsilon^{1/(p^j r)} : j = 0, \dots, n-i\};$$

using Remark 1.1.7, this implies

$$|z_i|_r \le cp^{n-i} \max\{p^{-k}p^{-j/p^{j+k}}\epsilon^{1/p^{j+k}}: j=0,\ldots,n-i; k=0,\ldots,i\}.$$

This bound is only valid for i > 0, but if we take i = 0, then the right side is no less than $cp^n \epsilon$ on account of the term j = k = 0. Consequently, we may take the maximum over $i = 0, \ldots, n$ to deduce that

$$[\overline{x}_n - \overline{y}_n]|_r \le cp^n \max\{p^{-i-k}(p^{-j}\epsilon)^{1/p^{j+k}} : i = 0, \dots, n; j = 0, \dots, n-i; k = 0, \dots, i\}.$$

We may weaken the bound by replacing p^{-i-k} with $p^{-k/p^{j+k}}$, and then rewrite the bound in terms of m := j + k to get

$$|[\overline{x}_n - \overline{y}_n]|_r \le cp^n \max\{(p^{-m}\epsilon)^{1/p^m} : m = 0, \dots, n\},\$$

which yields the desired result.

Lemma 2.4.2: the application of Theorem 2.3.5 in the first paragraph of the proof is not quite appropriate, because we do not assume the presence of an action of Γ . What we are really using here is the proof method of Lemma 2.3.4; that is, we construct L' from Lby a sequence of Artin-Schreier extensions obtained by trivializing the action of φ modulo successive powers of p.

Lemma 2.4.4: in the statement, "basis of W(L)" should be "basis of M". In the proof, $\varphi^d(U_n)$ and $\varphi^d(U)$ should be $\varphi(U_n)$ and $\varphi(U)$, respectively.

Lemma 2.5.1: In line 3 of the proof, there should be no factor of $|\overline{\pi}|'$ on the right side. In the next line, c = 1 should be $c = (|\overline{\pi}|')^{-1}$.