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1. Introduction

Let ∆ be a finite set. Let K be a complete discretely valued field of characteristic p with
perfect residue field k. For each α ∈ ∆, let GK,α be a copy of the absolute Galois group
GK of K, and put GK,∆ :=

∏
α∈∆ GK,α. Let RepQp

(GK,∆) be the category of continuous
representations of GK,∆ on finite-dimensional Qp-vector spaces.
The purpose of this note is to compare various possible definitions of the de Rham property

for objects of RepQp
(GK,∆).

Theorem 1.1. For V ∈ RepQp
(GK,∆), the following conditions are equivalent.

(a) For each α ∈ ∆, the restriction of V along GK,α → GK,∆ is de Rham in the sense of
Fontaine, i.e., it is admissible with respect to the period ring BdR,α.

(b) The representation V is admissible with respect to the uncompleted tensor product of
the rings BdR,α over Qp.

(c) The representation V is de Rham in the sense of [1, Definition above Proposition
4.18], i.e., it is admissible with respect to the period ring BdR,∆ (a certain completed
tensor product of the rings BdR,α over Qp).

(d) The module with integrable connection Ddif(V ) [1, Definition 5.17] is trivial.

The implication from (a) to (b) is essentially formal (see Proposition 2.3), as is the im-
plication from (b) to (c). The equivalence of (c) and (d) is [1, Proposition 5.18]. The main
content is therefore the implication from (d) to (a), which we deduce by observing that the
construction of Ddif(V ) is compatible with restriction along GK,α → GK,∆ (see Lemma 4.3).
From Theorem 1.1, it should be possible to deduce analogues of the equivalence among

(a), (b), (c) for the crystalline and semistable properties. We also expect a corresponding
statement for the Hodge–Tate property, including a modified form of (d): the connection on
Ddif(V ) should be unipotent, not necessarily trivial.

We also expect similar results about multivariate (φ,Γ)-modules which need not be étale.
At present, this is obstructed by the fact that it is not obvious how to define the analogue
of restriction along GK,α → GK,∆; this is closely related to the fact that we do not have an
analogue of Drinfeld’s lemma for general multivariate (φ,Γ)-modules; see Conjecture 5.2.
We conclude this introduction by mentioning one potential improvement to Theorem 1.1.

By [1, Proposition 4.19], if the equivalent conditions of Theorem 1.1 hold (in particular
(c)), then the K∆-module DdR(V ) is free of rank dimQp V . We do not know if the converse
implication holds.
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2. Restriction of representations

We start with a purely group-theoretical lemma.

Definition 2.1. For ∆′ ⊆ ∆, let Res∆,∆′ : RepQp
(GK,∆) → RepQp

(GK,∆′) be the functor
given by restriction along the inclusion ι∆′,∆ : GK,∆′ → GK,∆. When ∆′ is the singleton set
α, we substitute α for ∆′ in this notation.

Lemma 2.2. Write ∆ as a disjoint union ∆1⊔∆2. Define the functor ⊠ : RepQp
(GK,∆1)×

RepQp
(GK,∆2) → RepQp

(GK,∆) taking the pair V1, V2 to the tensor product of the objects
obtained from each Vi by restriction along the projection π∆,∆i

: GK,∆ → GK,∆i
. Then every

object of RepQp
(GK,∆) is a quotient of some object in the essential image of ⊠.

Proof. Set V1 := Res∆,∆1(V ) and let W be the GK,∆1-invariant subspace of (V1 ⊠ 1)∨ ⊗ V .
Since W is evidently also stable under GK,∆2 , it can be interpreted as 1 ⊠ V2 for V2 :=
Res∆,∆2(W ).

Now consider the following composition of morphisms in RepQp
(GK,∆):

(1) (V1 ⊠ 1)⊗W → (V1 ⊠ 1)⊗ (V1 ⊠ 1)∨ ⊗ V → V,

where the last map is the natural contraction of the first and second factors in the triple
tensor product. After applying Res∆,∆1 , we obtain maps in RepQp

(GK,∆1) of the form

V1 ⊗ Res∆,∆1(W ) → V1 ⊗ V ∨
1 ⊗ V1 → V1.

Now let e1, . . . , en be a basis of V1 and let e∨1 , . . . , e
∨
n denote the dual basis of V ∨

1 . Then
Res∆,∆1(W ) contains the element

∑
i e

∨
i ⊗ ei of V

∨
1 ⊗ V1 corresponding to the identity map;

hence for j = 1, . . . , n, V1⊗Res∆,∆1(W ) contains the element ej⊗
∑

i(e
∨
i ⊗ei) which contracts

to ej. We conclude that (1) is surjective, and hence V is a quotient of V1 ⊠W . □

From this lemma, we deduce the implication from (a) to (b) in Theorem 1.1, as well as
comparable results for other period rings besides BdR.

Proposition 2.3. Suppose that V ∈ RepQp
(GK,∆) has the property that for each α ∈ ∆,

Res∆,α(V ) is admissible with respect to the period ring B∗,α for some ∗ ∈ {dR,HT, crys, ss}.
Then the representation V is admissible with respect to the uncompleted tensor product B of
the rings B∗,α over Qp.

Proof. We proceed by induction on #∆, the case where this quantity is 1 being a vacuous
base case. Suppose #∆ > 1 and write ∆ as a disjoint union ∆1 ⊔ ∆2 of two nonempty
subsets. Define V1,W, V2 as in the proof of Lemma 2.2. Then Res∆1,α(V1) ∼= Res∆,α(V ) is
admissible with respect to B∗,α for each α ∈ ∆1. Meanwhile, Res∆2,α(V1 ⊠ 1) is trivially
admissible with respect to B∗,α for each α ∈ ∆2, as then is Res∆2,α((V1 ⊠ 1) ⊗ V ). Since
admissibility passes to subobjects, we deduce that Res∆2,α(W ) is admissible with respect to
B∗,α for each α ∈ ∆2.
Applying the induction hypothesis, we deduce that V1 ⊠ V2 is admissible with respect to

the uncompleted tensor product B of the rings B∗,α over Qp. Since this property passes to
quotients, the same holds for V . □
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3. Multivariate (φ,Γ)-modules

We recall briefly how the standard framework of (φ,Γ)-modules adapts to the multivariate
context.

Definition 3.1. Let F be a field of the form W (k0)[p
−1] for some perfect field k0 of char-

acteristic p. Let AF be the completion of W (k0)((ϖ)) for the p-adic topology. Elements of
AF are naturally represented as formal Laurent series

∑
i∈Z ciϖ

i with ci ∈ W (k0). This ring
admits a continuous action of the monoid Zp \ {0} given by

γ

(∑
i∈Z

ciϖ
i

)
=
∑
i∈Z

ci((ϖ + 1)γ(i) − 1);

let φ denote the endomorphism given by the action of p ∈ Zp \ {0}.
Each finite étale algebra over F lifts uniquely to a finite étale extension of AF equipped

with an extension of the action of Zp \ {0} (need reference). Let AK denote the extension
of AF corresponding to K; the group Z×

p acts transitively on the connected components of
AK with stabilizer ΓK .

For each α ∈ ∆, let AK,α be a copy of AK with the variable ϖ replaced by ϖα, and let
AK,∆ be the p-adic completion of the tensor product of the rings AK,α over Zp. This ring
carries an action of the product of Zp \ {0} indexed by ∆, which for uniformity we denote
by (Zp \ {0})∆.

Put BK := AK [p
−1], BK,∆ := AK,∆[p

−1].

Theorem 3.2. Let A∆ denote the p-adic completion of
⋃

K′/K AK′,∆ (where K ′ runs over

finite extensions of K). Then for T ∈ RepZp
(GK,∆),

D(T ) :=
(
T ⊗Zp A∆

)GK

is a finite projective AK,∆-module of rank rankZp(T ), which inherits an action of (Zp \{0})∆
from the action on A∆, and the natural map

D(T )⊗AK ,∆ A∆ → T ⊗Zp A∆

is an isomorphism. (In particular, every T is admissible for the period ring A∆.)

Proof. In the case ∆ = {α} this dates back to Fontaine. For the general case, apply [2,
Theorem 1.1]. □

Corollary 3.3. Set B∆ := A∆[p
−1]. Then for V ∈ RepQp

(GK,∆),

D(V ) :=
(
V ⊗Qp B∆

)GK

is a finite projective BK,∆-module of rank dimQp(V ), which inherits an action of (Zp \ {0})∆
from the action on B∆, and the natural map

D(V )⊗BK ,∆ B∆ → V ⊗Qp B∆

is an isomorphism. (In particular, every V is admissible for the period ring B∆.)

Proof. Since GK,∆ is a compact group, its action on V must stabilize some lattice T . We
may ths deduce the claim from Theorem 3.2. □
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Definition 3.4. Let Ar
F,∆ be the subring of AF,∆ consisting of formal Laurent series which

converge for p−r ≤ |ϖα| < 1. This ring is stable under the action of (Zp \ {0})∆ on AF,∆.

The pair (A†
F,∆, (p)) is henselian, so we have a canonical identification of AK,∆ with

A†
K,∆⊗A†

F,∆
AK,∆ for some finite étale A†

F,∆-algebra A†
K,∆ equipped with an extension of the

action of (Zp \ {0})∆.
Put B†

K = A†
K [p

−1], B†
K,∆ := A†

K,∆[p
−1].

Theorem 3.5. For T ∈ RepZp
(GK,∆), there is a unique finite projective A†

K,∆-submodule

D†(T ) of D(T ) which is stable under the action of (Zp \{0})∆ and for which the natural map

D†(T )⊗A†
K,∆

AK,∆ → D(T )

is an isomorphism.

Proof. For ∆ = {α}, this is a formulation of the theorem of Cherbonnier–Colmez [3]. For
the general case, apply [2, Theorem 1.1]. □

Corollary 3.6. For V ∈ RepQp
(GK,∆), there is a unique finite projective B†

K,∆-submodule

D†(V ) of D(V ) which is stable under the action of (Zp \ {0})∆ and for which the natural
map

D†(V )⊗B†
K,∆

BK,∆ → D(V )

is an isomorphism.

Proof. This again follows from Theorem 3.5 and the existence of stable lattices. □

Remark 3.7. We sketch an alternate proof of Corollary 3.6 using only Corollary 3.3 and
the Cherbonnier–Colmez theorem. This short-circuits some arguments from [2, §5] which
adapt the approach of [4, §2] to the Cherbonnier–Colmez theorem. A similar approach can
be used to recover Theorem 3.5.

We proceed by induction on #∆, using Cherbonnier–Colmez for the base case. In the
induction step, choose a partition ∆ = ∆1⊔∆2 into nonempty subsets, then apply Lemma 2.2
to write V as a quotient of V1⊠V2 for some Vi ∈ RepQp

(GK,∆i
). By the induction hypothesis,

D†(Vi) is a finite projective B†
K,∆i

-module and the natural map D†(Vi)⊗B†
K,∆i

BK,∆ → D(Vi)

is an isomorphism. This implies at once that D†(V )⊗B†
K,∆

BK,∆ → D(V ) is surjective. By

repeating the argument with V replaced by the kernel of V1 ⊠ V2 → V , we may then apply
the five lemma to deduce that in fact D†(V )⊗B†

K,∆
BK,∆ → D(V ) is also injective, and hence

an isomorphism. Since A†
K,∆ → AK,∆ is faithfully flat (being a completion with respect to

an ideal in the Jacobson radical), so is B†
K,∆ → BK,∆; we may thus conclude that D†(V ) is

a finite projective B†
K,∆-module.

4. Multivariate (φ,Γ)-modules and Berger’s construction

We follow [1, §5].

Definition 4.1. Let Br
rig,F,∆ denote the ring of rigid analytic functions on the product of

the annuli p−r ≤ |ϖα| < 1 over α ∈ ∆. Put B†
rig,F,∆ :=

⋃
r>0B

r
rig,F,∆; when ∆ = {ϖ} this is
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commonly called the Robba ring over F in the variable ϖα. Set B†
rig,K,∆ := B†

rig,F,∆ ⊗A†
F,∆

A†
K,∆.
For α ∈ ∆, define

tα = log(1 +ϖα) ∈ B†
rig,F,∆;

it has the property that γ(tα) = γ · tα for γ ∈ (Zp \ {0})α.

Definition 4.2. For V ∈ RepQp
(GK,∆), define D

†
rig(V ) := D†(V )⊗B†

K,∆
B†

rig,K,∆. Note that

for any given V , we can fix r > 0 so that D†
rig(V ) is the base extension of a finite projective

Br
F,∆-module M on which ΓK,∆ acts (but not φα).
The action of ΓK,∆ onM then induces an action of its Lie algebra Lie ΓK,∆ with logarithmic

singularities at the zeroes of
∏

α∈∆ tα. For zeroes in the region p−r ≤ |ϖα| < 1 for r
sufficiently small, the residue of the action of Lie ΓK,α will be the same on all components
of the singular locus. Crucially, since Lie ΓK,∆ is commutative, this residue will be defined
over K.

Lemma 4.3. In Theorem 1.1, condition (d) implies condition (a).

Proof. Condition (d) implies that the residue of the action of Lie ΓK,α is zero for every α ∈ ∆.
From the last point of Definition 4.2, we see that this condition persists on passage from V
to Res∆,α(V ). This proves the claim. □

5. Restriction for multivariate (φ,Γ)-modules

Definition 5.1. A (φ∆,Γ∆)-module over B†
rig,K,∆ is a finite projective module over this ring

equipped with a semilinear action of (Z \ {0})∆ which is continuous for the LF (limit of
Fréchet) topology on the base ring.

While we do not know how to define a restriction functor on Galois representations for
not necessarily étale (φ∆,Γ∆)-modules, we can formulate an analogue of the conclusion of
Lemma 2.2 as a conjecture.

Conjecture 5.2. For any partition ∆ = ∆1 ⊔ ∆2, every (φ∆,Γ∆)-module over B†
rig,K,∆ is

the quotient of some object in the essential image of ⊠.

Remark 5.3. It follows from [2, Theorem 1.1] that Conjecture 5.2 holds in the case of
an étale (φ∆,Γ∆)-module. It is also possible to prove it for rank 1 modules and for de
Rham objects; the latter uses the results of [5, §3] to obtain a form of Drinfeld’s lemma for
multivariate connections with partial Frobenius structures.

One subtlety inherent in Conjecture 5.2 is that the natural analogue for vector bundles
on a product of Fargues–Fontaine curves is known to be false, even for bundles of rank 2.
In particular, one cannot directly reduce to the étale case using slope filtrations. See [6] for
further discussion.
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