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Preface

Last modified: May 12, 2024.
This text is a lightly edited version of the lecture notes of a course on class

field theory (Math 254B) that I gave at UC Berkeley in the spring of 2002. To
describe the scope of the course, I can do no better than to quote from the
original syllabus:

Class field theory, the study of abelian extensions of number fields,
was a crowning achievement of number theory in the first half of the
20th century. It brings together, in a unified fashion, the quadratic
and higher reciprocity laws of Gauss, Legendre et al, and vastly
generalizes them. Some of its consequences (e.g., the Chebotaryov
density theorem) apply even to nonabelian extensions.
Our approach in this course will be to begin with the formulations
of the statements of class field theory, omitting the proofs (except
for the Kronecker-Weber theorem, which we prove first). We then
proceed to study the cohomology of groups, an important technical
tool both for class field theory and for many other applications in
number theory. From there, we set up a local form of class field
theory, then proceed to the main results.

The assumed background for the course was a one-semester graduate course
in algebraic number theory, including the following topics: number fields and
rings of integers; structure of the class and unit groups; splitting, ramification,
and inertia of prime ideals under finite extensions; different and discriminant;
basic properties of local fields. In fact, most of the students in Math 254B had
attended such a course that I gave the previous semester (Math 254A) based
on chapters I, II, and III of Neukirch’s book [37]; for that reason, it was natural
to use that book as a primary reference. However, no special features of that
presentation are assumed, so just about any graduate-level text on algebraic
number theory (e.g., Fröhlich-Taylor [11], Janusz [25], Jarvis [26], Lang [33])
should provide suitable background.

After the course ended, I kept the lecture notes posted on my web site in
their originally written, totally uncorrected state. Despite their roughness, I
heard back from many people over the years who had found them useful; in
response to this, I decided to prepare a corrected version of the notes. This
project gained some steam when I had the opportunity to teach another class1

on class field theory in winter 2021. This occasioned some more significant
revisions than I had previously dared, including a small degree of rearrangement
of the material; however, I have tried to retain most of the original structure,
on the grounds that the informality of the original notes contributed to their

1kskedlaya.org/math204b-win21/
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readibility. In other words, this document is not intended as a standalone
replacement for a good book on class field theory!

I maintain very few claims of originality concerning the presentation of the
material. Besides [37], the main source of inspiration was Milne’s lecture notes
on class field theory [36] (and by extension the original development by Artin
and Tate [1]). The basic approach may be summarized as follows: I follow
Milne’s treatment of local class field theory using group cohomology, then follow
Neukirch to recast local class field theory in the style of Artin-Tate’s class
formations, then reuse the same framework to obtain global class field theory.
Since the original draft of these notes was written, several treatments have
appeared in a similar vein: [38], [17]. (See also [13] for a modern exposition of
a more classical approach.)

My winter 2021 class, having taken place during the COVID-19 pandemic,
was given online with recorded lectures. The recordings continue to be available
from the course web site2.Thanks to Zonglin Jiang, Justin Lacini, and Zongze
Liu for their feedback on previous drafts, and to the participants in Math
204B (winter 2021) for “test-driving” the HTML version and generating much
additional feedback. Thanks also to Rob Beezer and David Farmer for their
assistance with the conversion from LATEX to PreTeXt3, which made it feasible
to produce an HTML version4 in sync with the PDF version5.

2kskedlaya.org/math204b-win21/
3pretextbook.org/
4kskedlaya.org/cft
5kskedlaya.org/papers/cft-ptx.pdf
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Chapter 1

Trailer: Abelian extensions
of the rationals

Though class field theory has its origins in the law of quadratic reciprocity
discovered by Gauss, its proper beginning is indicated by the Kronecker-Weber
theorem, first stated by Kronecker in 1853 and proved by Weber in 1886.
Although one could skip this theorem and deduce it as a consequence of more
general results later on, I prefer to work through it explicitly. It will serve
as a trailer for the rest of the course, giving us a preview of a number of key
elements:

• reciprocity laws;

• passage between local and global fields, using Galois theory;

• group cohomology, and applications to classifying field extensions;

• computations in local fields.

1.1 The Kronecker-Weber theorem
Reference. Our approach follows [56], Chapter 14. A variety of other methods
can be found in other texts.

Abelian extensions of Q
Definition 1.1.1 An abelian extension of a field is a Galois extension with
abelian Galois group. An example of an abelian extension of Q is the cyclotomic
field Q(ζn) (where n is a positive integer and ζn is a primitive n-th root of
unity), whose Galois group is (Z/nZ)∗, or any subfield thereof. Amazingly,
Theorem 1.1.2 implies that there are no other examples! ♢

Theorem 1.1.2 Kronecker-Weber. If K/Q is a finite abelian extension,
then K ⊆ Q(ζn) for some positive integer n.

Proof. See Lemma 1.1.10. ■

Example 1.1.3 A fundamental example of Theorem 1.1.2 is that every
quadratic extension of Q is contained in a cyclotomic field. This was known to
Gauss via what we now call Gauss sums, and forms the basis of one of his
proofs of quadratic reciprocity. It is this proof in particular that generalizes to

1



CHAPTER 1. TRAILER: ABELIAN EXTENSIONS OF THE RATIONALS2

Artin reciprocity (Theorem 2.2.6). See also Exercise 2 and Exercise 3. □

Definition 1.1.4 The smallest n such that K ⊆ Q(ζn) is called the conductor
of K/Q. It plays an important role in the splitting behavior of primes of Q in
K, as we will see a bit later. ♢

We will prove Theorem 1.1.2 in the next few lectures. Our approach will be
to deduce it from a local analogue (see Theorem 1.3.4).

Theorem 1.1.5 Local Kronecker-Weber. If K/Qp is a finite abelian
extension, then K ⊆ Qp(ζn) for some n, where ζn is a primitive n-th root of
unity.

Proof. See Theorem 1.3.4. ■
Before proceeding, it is worth noting explicitly a nice property of abelian

extensions that we will exploit below.

Remark 1.1.6 Let L/K be a Galois extension with Galois group G, let p be a
prime of K, let q be a prime of L over p, and let Gq and Iq be the decomposition
and inertia groups of q, respectively. Then any other prime q′ over p can be
written as qg for some g ∈ G, and the decomposition and inertia groups of q′

are the conjugates g−1Gqg and g−1Iqg, respectively. (Note: my Galois actions
will always be right actions, denoted by superscripts.)

If L/K is abelian, though, these conjugations have no effect. So it makes
sense to talk about the decomposition and inertia groups of p itself!

A reciprocity law
Assuming the Kronecker-Weber theorem, we can deduce strong results about
the way primes of Q split in an abelian extension.

Definition 1.1.7 Suppose K/Q is abelian, with conductor m. Then we get a
surjective homomorphism

(Z/mZ)∗ ∼= Gal(Q(ζm)/Q)→ Gal(K/Q).

On the other hand, suppose p is a prime not dividing m, so that K/Q is
unramified above p. As noted above, there is a well-defined decomposition group
Gp ⊆ Gal(K/Q). Since there is no ramification above p, the corresponding
inertia group is trivial, so Gp is generated by a Frobenius element Fp, which
modulo any prime above p, acts as x 7→ xp. We can formally extend the map
p 7→ Fp to a homomorphism from Sm, the subgroup of Q generated by all
primes not dividing m, to Gal(K/Q). This is called the Artin map of K/Q.

The punchline is that the Artin map factors through the map (Z/mZ)∗ →
Gal(K/Q) we wrote down above! Namely, note that the image of r under the
latter map takes ζm to ζrm. For this image to be equal to Fp, we must have
ζrm ≡ ζpm (mod p) for some prime p of K above p. But ζrm(1 − ζr−p

m ) is only
divisible by primes above m (see Exercise 4) unless r − p ≡ 0 (mod m). Thus
Fp must be equal to the image of p under the map (Z/mZ)∗ → Gal(K/Q). ♢

Remark 1.1.8 The Artin reciprocity law states that a similar phenomenon
arises for any abelian extension of any number field; that is, the Frobenius
elements corresponding to various primes are governed by the way the primes
“reduce” modulo some other quantity. There are several complicating factors in
the general case, though.

• Prime ideals in a general number field are not always principal, so we
can’t always take a generator and reduce it modulo something.
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• There can be lots of units in a general number field, so even when a prime
ideal is principal, it is unclear which generator to choose.

• It is not known in general how to explicitly construct generators for all of
the abelian extensions of a general number field.

Thus our approach will have to be a bit more indirect. See Chapter 2 for the
beginning of the story.

Reduction to the local case
Our reduction of Kronecker-Weber to local Kronecker-Weber relies on a key
result typically seen in a first course on algebraic number theory.

Theorem 1.1.9 Minkowski. There are no nontrivial extensions of Q which
are unramified everywhere.

Proof. See for instance [37] III.2. ■

Using Minkowski’s theorem, let us deduce the Kronecker-Weber theorem
from the local Kronecker-Weber theorem.
Lemma 1.1.10 The local Kronecker-Weber theorem (Theorem 1.1.5) implies
the Kronecker-Weber theorem (Theorem 1.1.2).

Proof. For each prime p over which K ramifies, pick a prime p of K over p;
by local Kronecker-Weber (Theorem 1.1.5), Kp ⊆ Qp(ζnp) for some positive
integer np. Let pep be the largest power of p dividing np, and put n =

∏
p p

ep .
(This is a finite product since only finitely many primes ramify in K.)
Write L = K(ζn); we will prove that K ⊆ Q(ζn) by proving that L = Q(ζn).
Form the completion Lq for some prime q over p; it is contained in Qp(ζlcm(n,np)).
Let Ip be the inertia group of p in L; the fixed fixed U of Ip on Lq is the maximal
unramified subextension of Lq. Since Qp(ζe) is unramified over Qp for any
positive integer e coprime to p, we have Lq = U(ζpep ) and so Ip ∼= Gal(Lq/U) ⊆
(Z/pepZ)∗. Let I be the group generated by all of the Ip; then

|I| ≤
∏
|Ip| ≤

∏
ϕ(pep) = ϕ(n) = [Q(ζn) : Q].

On the other hand, the fixed field of I is an everywhere unramified extension of
Q, which can only be Q itself by Minkowski’s theorem. That is, I = Gal(L/Q).
But then

[L : Q] = |I| ≤ [Q(ζn) : Q],

and Q(ζn) ⊆ L, so we must have Q(ζn) = L and K ⊆ Q(ζn), as desired. ■

Exercises
1. Prove that the ring of integers in Q(ζn) equals Z[ζn].

Hint. For n a power of a prime p, the minimal polynomial of ζn is
the cyclotomic polynomial Φn(x) = x(p−1)n/p + · · · + xn/p + 1; use the
polynomial Φn(x − 1) to show that 1 − ζn generates a prime ideal. For
the general case, show that if K and L are linearly disjoint extensions of
Q with coprime discriminants, then oKL = oKoL.

2. For m ∈ Z not a perfect square, determine the conductor of Q(
√
m).

Hint. First show that for p prime, Q(
√

(−1)(p−1)/2p) has conductor p.
3. Using the previous exercise, recover the law of quadratic reciprocity from

the Artin reciprocity law.
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4. Prove that if m,n are coprime integers in Z, then 1−ζm and n are coprime
in Z[ζm].
Hint. Look at the polynomial (1− x)m − 1 modulo a prime divisor of n.

5. Prove that if m is not a prime power, then 1− ζm is a unit in Z[ζm].
6. Let p be an odd prime. Prove that Z[ζp]∗ is generated by ζp and Z[ζp +

ζ−1
p ]∗.

Hint. By Dirichlet’s units theorem, the index [Z[ζp]∗ : Z[ζp + ζ−1
p ]∗] is

finite. For α ∈ Z[ζp]∗, the ratio α/α is an algebraic integer having absolute
value 1 under each complex embedding, and hence is a root of unity by
Kronecker’s theorem.

1.2 Kummer theory
Reference. [46] Chapter X; [37] section IV.3; or just about any advanced
algebra text (e.g., [32]). The last lemma is from [56], Chapter 14.

Before attempting to classify all abelian extensions of Qp, we recall an older
classification result. This result will continue to be useful as we proceed to class
field theory in general, and the technique in its proof prefigures the role to be
played by group cohomology down the line. So watch carefully!

Remark 1.2.1 A historical note (due to Franz Lemmermeyer): while the
idea of studying field extensions generated by radicals was used extensively by
Kummer in his work on Fermat’s Last Theorem, the name Kummer theory
for the body of results described here was first applied somewhat later by
Hilbert in his Zahlbericht [21], a summary of algebraic number theory as of the
end of the 19th century.

Theorem 90
We start with a fundamental result from field theory, which will crop up time
and again in our work. To state it, let me introduce some terminology which
marks the tip of the iceberg of group cohomology, which we will treat in a more
comprehensive way Chapter 3.

Definition 1.2.2 If G is a group and M is an abelian group on which G
acts (written multiplicatively), one defines the group H1(G,M) as the set of
functions f : G → M such that f(gh) = f(g)hf(h), modulo the set of such
functions of the form f(g) = x(xg)−1 for some x ∈M . ♢

Lemma 1.2.3 “Theorem 90”. Let L/K be a finite Galois extension of fields
with Galois group G. Then H1(G,L∗) = 0.

Proof. Let f be a function of the form described above. By the linear in-
dependence of automorphisms (see Exercise 1), there exists x ∈ L such that
t =

∑
g∈G x

gf(g) is nonzero. But now

th =
∑
g∈G

xghf(g)h =
∑
g∈G

xghf(gh)f(h)−1 = f(h)−1t.

Thus f is zero in H1(G,L∗). ■

Remark 1.2.4 Lemma 1.2.3 derives its unusual name from the fact that in
the special case where G is cyclic, this statement occurs as Theorem (Satz) 90
in [21]. The general case first appears in Emmy Noether’s 1933 paper [40] on
the principal ideal theorem (Theorem 2.3.1), where Noether attributes it to
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Andreas Speiser.

Kummer extensions
Definition 1.2.5 Jargon watch. If G is a group, a G-extension of a field
K is a Galois extension of K with Galois group G. ♢

Theorem 1.2.6 If ζn ∈ K, then every Z/nZ-extension of K is of the form
K(α1/n) for some α ∈ K∗ with the property that α1/d /∈ K for any proper
divisor d of n, and vice versa.

Proof. On one hand, suppose that α ∈ K∗ is such that α1/d /∈ K for any
proper divisor d of n. Then every automorphism of K(α1/n) over K must
have the form α 7→ αζrn for some r ∈ Z/nZ; this defines a homomorphism
Gal(K(α1/n)/K) ∼= Z/nZ which is injective because any automorphism of
K(α1/n) over K is uniquely determined by its effect on α1/n. We claim that
this map is also surjective. If n is prime, we can see this from the fact that
by hypothesis K(α1/p) ̸= K, so the map Gal(K(α1/n)/K) ∼= Z/nZ is an
injective map from a nonzero group into a prime cyclic group and hence
must be surjective. In the general case, note that the definition of the map
Gal(K(α1/n)/K) ∼= Z/nZ is compatible with replacing n with one of its prime
factors p, and this logic tells us that the image of Gal(K(α1/n)/K) in Z/nZ
cannot be contained in pZ/nZ for any prime divisor p of n. So again we conclude
that Gal(K(α1/n)/K) ∼= Z/nZ. (As a corollary, we deduce that the polynomial
xn − α is irreducible over K; see Exercise 4 and Exercise 5 for discussion of
what happens when ζn /∈ K.)
On the other hand, let L be an arbitrary Z/nZ-extension of K. Choose a
generator g ∈ Gal(L/K), and let f : Gal(L/K)→ L∗ be the map that sends rg
to ζrn for r ∈ Z. Then f ∈ H1(Gal(L/K), L∗), so there exists t ∈ L such that
trg/t = f(rg) = ζrn for r ∈ Z. In particular, tn is invariant under Gal(L/K), so
tn = α for some α ∈ K and L = K(t) = K(α1/n), as desired. ■

Remark 1.2.7 Another way to state Theorem 1.2.6 is as a bijection

(Z/nZ)r-extensions of K ←→ (Z/nZ)r-subgroups of K∗/(K∗)n,

where (K∗)n is the group of n-th powers in K∗. (What we proved above was
the case r = 1, but the general case follows at once.) Another way is in terms
of the absolute Galois group of K, as in Theorem 1.2.9 below.

The Kummer pairing
Definition 1.2.8 Define the Kummer pairing

⟨·, ·⟩ : Gal(K/K)×K∗ → {1, ζn, . . . , ζn−1
n }

as follows: given σ ∈ Gal(K/K) and z ∈ K∗, choose y ∈ K∗ such that yn = z,
and put ⟨σ, z⟩ = yσ/y. Note that this does not depend on the choice of y: the
other possibilities are yζkn for k = 0, . . . , n− 1, and ζσn = ζn by the assumption
on K, so it drops out. ♢

Theorem 1.2.9 Kummer reformulated. The Kummer pairing induces an
isomorphism

K∗/(K∗)n → Homcts(Gal(K/K),Z/nZ)

where the subscript cts indicates continuous homomorphisms for the profinite
topology on Gal(K/K) and the discrete topology on Z/nZ. Concretely, this
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means we consider homomorphisms that factor through a quotient of the form
Gal(L/K) for some finite extension L of K.

Proof. The map comes from the pairing; we have to check that it is injective
and surjective. If y ∈ K∗ \ (K∗)n, then K(y1/n) is a nontrivial Galois extension
of K, so there exists some element of Gal(K(y1/n)/K) that doesn’t preserve
y1/n. Any lift of that element to Gal(K/K) pairs with y to give something
other than 1; that is, y induces a nonzero homomorphism of Gal(K/K) to
Z/nZ. Thus injectivity follows.
On the other hand, suppose f : Gal(K/K)→ Z/nZ is a homomorphism whose
image is the cyclic subgroup of Z/nZ of order d. Let H be the kernel of f ; then
the fixed field L of H is a Z/dZ-extension of K with Galois group Gal(K/K)/H.
By Kummer theory, L = K(y1/d) for some y. But now the homomorphisms
induced by ymn/d, as m runs over all integers coprime to d, give all possible
surjective homomorphisms of Gal(K/K)/H to Z/dZ, so one of them must equal
f . Thus surjectivity follows. ■

Cyclic extensions without roots of unity
Remark 1.2.10 If K is of characteristic coprime to n but ζn /∈ K, then an
extension of the form K(a1/n) is in general not Galois. For some analysis of
such extensions, see Exercise 4 and Exercise 5.

By the same token, Z/nZ-extensions of a field that does not contains ζn
are harder to describe than Kummer extensions, and indeed describing such
extensions of Q is the heart of this course. One statement that ties this together
with the previous point is that if L/K is a Z/nZ-extension, then L(ζn)/K(ζn) is
a Z/dZ-extension for some divisor d of n, and the latter is a Kummer extension.

We will use the following elaboration of Remark 1.2.10 in the proof of the
Kronecker-Weber theorem (Theorem 1.3.4).

Lemma 1.2.11 Let n be a prime (or an odd prime power), let K be a field
of characteristic coprime to n, let L = K(ζn), and let M = L(a1/n) for some
a ∈ L∗. Define the homomorphism ω : Gal(L/K) → (Z/nZ)∗ by the relation
ζ
ω(g)
n = ζgn. Then M/K is Galois and abelian if and only if

ag/aω(g) ∈ (L∗)n ∀g ∈ Gal(L/K). (1.2.1)

(Note that ω(g) is only defined up to adding a multiple of n, but this is enough
to interpret aω(g) modulo (L∗)n.)

Proof. If ag/aω(g) ∈ (L∗)n for all g ∈ Gal(L/K), then a, aω(g) and ag all
generate the same subgroup of (L∗)/(L∗)n. Thus L(a1/n) = L((ag)1/n) for all
g ∈ Gal(L/K), so M/K is Galois. Thus it suffices to assume M/K is Galois,
then prove that M/K is abelian if and only if (1.2.1) holds. In this case, we
must have ag/aρ(g) ∈ (M∗)n for some map ρ : Gal(L/K) → (Z/nZ)∗, whose
codomain is cyclic by our assumption on n.
Note that Gal(M/K) admits a homomorphism ω to a cyclic group whose kernel
Gal(M/L) ⊆ Z/nZ is also abelian. Thus Gal(M/K) is abelian if and only if g
and h commute for any g ∈ Gal(M/K) and h ∈ Gal(M/L), i.e., if h = g−1hg.
(Since g commutes with powers of itself, g then commutes with everything.)
Let A ⊆ L∗/(L∗)n be the subgroup generated by a. Then the Kummer pairing
gives rise to a pairing

Gal(M/L)×A→ {1, ζn, . . . , ζn−1
n }

which is bilinear and nondegenerate, so h = g−1hg if and only if ⟨h, sg⟩ =
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⟨ghg−1, sg⟩ for all s ∈ A. But the Kummer pairing is equivariant with respect
to Gal(L/K) as follows:

⟨h, s⟩g = ⟨g−1hg, sg⟩,

because (
(s1/n)h

s1/n

)g
= ((sg)1/n)g−1hg

(sg)1/n .

(Here by s1/n I mean an arbitrary n-th root of s in M , and by (sg)1/n I mean
(s1/n)g. Remember that the value of the Kummer pairing doesn’t depend on
which n-th root you choose.) Thus h = ghg−1 if and only if ⟨h, sg⟩ = ⟨h, s⟩g
for all s ∈ A, or equivalently, just for s = a. But

⟨h, a⟩g = ⟨h, a⟩ω(g) = ⟨h, aω(g)⟩.

Thus g and h commute if and only if ⟨h, ag⟩ = ⟨h, aω(g)⟩, if and only if (by
nondegeneracy) ag/aω(g) ∈ (L∗)n, as desired. ■

Remark 1.2.12 In what follows, we will only need one implication of
Lemma 1.2.11: if M/K is Galois and abelian, then (1.2.1) holds. However, we
chose to include both implications for completeness.

Exercises
1. Prove Dedekind’s lemma on the linear independence of automorphisms:

if g1, . . . , gn are distinct automorphisms of L over K, then there do not
exist x1, . . . , xn ∈ L such that x1y

g1 + · · ·+ xny
gn = 0 for all y ∈ L. (This

is a key step in the proof of Artin’s lemma in Galois theory.)
Hint. Suppose the contrary, choose a counterexample with n as small as
possible, then make an even smaller counterexample.

2. Prove the additive analogue of Lemma 1.2.3: if L/K is a finite Galois
extension with Galois group G, then H1(G,L) = 0, where the abelian
group is now the additive group of L.
Hint. By the normal basis theorem (see for example [32]), there exists
α ∈ L whose conjugates form a basis of L as a K-vector space.

3. Prove the following extension of Lemma 1.2.3 (also due to Speiser). Let
L/K be a finite Galois extension with Galois group G. Despite the fact
that H1(G,GL(n,L)) does not make sense as a group (because GL(n,L)
is not abelian), show nonetheless that “H1(G,GL(n,L)) is trivial” in the
sense that every function f : G→ GL(n,L) for which f(gh) = f(g)hf(h)
for all g, h ∈ G can be written as x(xg)−1 for some x ∈ GL(n,L).
Hint. To imitate the proof in the case n = 1, one must find an n × n
matrix x over L such that t =

∑
g∈G x

gf(g) is not only nonzero but
invertible. To establish this, note that the set of possible values of t on one
hand is an L-vector space, and on the other hand satisfies no nontrivial
L-linear relation. (See Lemma 7.1.15 for a similar idea.)

4. Let n be a positive integer, let K be a field of characteristic coprime to n,
choose a ∈ K∗, and put L = K(a1/n). Prove that [L : K] divides n.
Hint. Reduce to the case where n is prime. Since [K(ζn) : K] is coprime
to n, by taking norms we see that a ∈ (K∗)n if and only if a ∈ (K(ζn)∗)n;
we may thus reduce to the case ζn ∈ K, to which Kummer theory applies.
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5. With notation as Exercise 4, prove that [L : K] = n if and only if a /∈ (K∗)p
for any prime divisor p of n.
Hint. We may proceed by induction on n once we check that for any
prime divisor q of n, if a /∈ (K∗)p for any prime divisor p of n, then
a1/q /∈ ((K(a1/q)∗)p for any prime divisor p of n. To prove this, assume
the contrary; since [K(a1/q) : K] = q, taking norms yields a ∈ (K∗)p, a
contradiction.

1.3 The local Kronecker-Weber theorem
Reference. [56], Chapter 14.

We now prove the local Kronecker-Weber theorem (Theorem 1.1.5), modulo
some steps which will be left as exercises. As shown previously, this will imply
the original Kronecker-Weber theorem.

Extensions of local fields
We first recall the following facts from the theory of local fields (e.g., see [37]
II.7).

Definition 1.3.1 Let L/K be an extension of finite extensions of Qp. Let
oK , oL be the integral closures of Zp in K,L. We say that L/K is unramified if
the maximal ideal of oK generates the maximal ideal of oL. In other words, any
element π of K which generates the maximal ideal of oK (i.e., any uniformizer
of K) is also a uniformizer of L. In still other words, the condition is that the
ramification index e(L/K) is equal to 1.

In general, there is a maximal subextension of L/K which is unramified. If
this is K itself, we say that L/K is totally ramified.

Let U be the maximal unramified subextension of L/K. We say that L/K
is tamely ramified if the degree [L : U ] is not divisible by p. In other words,
the condition is that e(L/K) is not divisible by p. ♢

Lemma 1.3.2 Let L/K be an unramified extension of finite extensions of Qp.
Then L = K(ζq−1), where q is the cardinality of the residue field of L.

Proof. Choose u ∈ oL generating the residue field of L over the residue field of
K, and let P (x) be the minimal polynomial of u over K. Then over the residue
field of K, P (x) divides the (q − 1)-st cyclotomic polynomial, so by Hensel’s
lemma it splits over K(ζq−1). Hence L ⊆ K(ζq−1), and equality follows by
comparing degrees. ■

Lemma 1.3.3 Let L/K be a totally and tamely ramified extension of finite
extensions of Qp of degree e. Then there exists a uniformizer π of K such that
L = K(π1/e).

Proof. Let πL be a uniformizer of L. Then πeL can be written as a product of a
uniformizer π of K times an element u of oL congruent to 1 modulo πL. By
Hensel’s lemma, u has an e-th root in L, as then does π. ■

Proof of local Kronecker-Weber
We now proceed to the proof of Theorem 1.3.4, modulo some lemmas which we
fill in later.
Theorem 1.3.4 Local Kronecker-Weber. If K/Qp is a finite abelian
extension, then K ⊆ Qp(ζn) for some positive integer n.
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Proof. Since Gal(K/Qp) decomposes into a product of cyclic groups of prime-
power order, by the structure theorem for finite abelian groups we may write
K as the compositum of extensions of Qp whose Galois groups are cyclic of
prime-power order. In other words, it suffices to prove local Kronecker-Weber
under the assumption that Gal(K/Qp) ∼= Z/qrZ for some prime q and some
positive integer r. We split this discussion into three cases; see Lemma 1.3.5,
Lemma 1.3.6, and Lemma 1.3.7. ■

Lemma 1.3.5 The statement of Theorem 1.3.4 holds when Gal(K/Qp) ∼= Z/qrZ
for some prime q ̸= p.

Proof. To begin, note that Qp(ζp)/Qp is totally tamely ramified of degree p− 1,
so by Lemma 1.3.3 it has the form Qp(c1/(p−1)) for some c ∈ pZ∗

p. (The value
of c won’t be critical here, but see Lemma 1.3.8 for later reference.)
Let L be the maximal unramified subextension of K. By Lemma 1.3.2, L =
Qp(ζn) for some n. Let e = [K : L]. Since e is a power of q, e is not divisible
by p, so K is totally and tamely ramified over L. Thus by Lemma 1.3.3, there
exists π ∈ L generating the maximal ideal of oL such that K = L(π1/e). Since
L/Qp is unramified, p also generates the maximal ideal of oL, so we can write
π = cu for some unit u ∈ o∗

L. Now L(u1/e)/L is unramified since e is prime
to p and u is a unit. In particular, L(u1/e)/Qp is unramified, hence abelian.
Then K(u1/e)/Qp is the compositum of the two abelian extensions K/Qp and
L(u1/e)/Qp, so it’s also abelian. Hence any subextension is abelian, in particular
Qp(c1/e)/Qp.
For Qp(c1/e)/Qp to be Galois, it must contain the e-th roots of unity (since
it must contain all of the e-th roots of −p, and we can divide one by another
to get an e-th root of unity). But Qp(c1/e)/Qp is totally ramified, whereas
Qp(ζe)/Qp is unramified. This is a contradiction unless Qp(ζe) is actually equal
to Qp, which only happens if e|(p− 1) (since the residue field Fp of Qp contains
only (p− 1)-st roots of unity).
Now K ⊆ L(c1/e, u1/e) as noted above. But on one hand, L(u1/e) is unramified
over L, so L(u1/e) = L(ζm) for some m; on the other hand, because e|(p− 1),
we have Qp(c1/e) ⊆ Qp(c1/(p−1)) = Qp(ζp). Putting it all together,

K ⊆ L(c1/e, u1/e) ⊆ Qp(ζn, ζp, ζm) ⊆ Qp(ζmnp).

■

Lemma 1.3.6 The statement of Theorem 1.3.4 holds when Gal(K/Qp) ∼= Z/qrZ
for q = p ̸= 2.

Proof. Suppose Gal(K/Qp) ∼= Z/prZ. We can use roots of unity to construct
two other extensions of Qp with this Galois group. Namely, Qp(ζppr −1)/Qp is
unramified of degree pr, and automatically has cyclic Galois group; meanwhile,
the index p−1 subfield of Qp(ζpr+1) is totally ramified with Galois group Z/prZ.
By assumption, K is not contained in the compositum of these two fields, so
for some s > 0,

Gal(K(ζppr −1, ζpr+1)/Qp) ∼= (Z/prZ)2 × Z/psZ× Z/(p− 1)Z.

This group admits (Z/pZ)3 as a quotient, so we have an extension of Qp with
Galois group (Z/pZ)3. We rule this out using Lemma 1.3.9. ■

Lemma 1.3.7 The statement of Theorem 1.3.4 holds when Gal(K/Qp) ∼= Z/qrZ
for q = p = 2.
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Proof. This is similar to Lemma 1.3.6, but a bit messier because Q2 does admit
an extension with Galois group (Z/2Z)3. We defer this case to the exercises;
see Exercise 4, Exercise 5, and Exercise 6. ■

Filling in the details
We now return to the lemmas that we skipped over in the proof of Theorem 1.3.4.
At this point, we make heavy use of Kummer theory.

Lemma 1.3.8 The fields Qp((−p)1/(p−1)) and Qp(ζp) are equal.

Proof. See Exercise 1. ■

Lemma 1.3.9 For p ̸= 2, there is no extension of Qp with Galois group
(Z/pZ)3.

Proof. For convenience, put π = ζp − 1. Then π is a uniformizer of Qp(ζp).
If Gal(K/Qp) ∼= (Z/pZ)3, then Gal(K(ζp)/Qp(ζp)) ∼= (Z/pZ)3 as well,
and K(ζp) is abelian over Qp with Galois group (Z/pZ)∗ × (Z/pZ)3.
Applying Kummer theory to K(ζp)/Qp(ζp) produces a subgroup B ⊆
Qp(ζp)∗/(Qp(ζp)∗)p isomorphic to (Z/pZ)3 such that K(ζp) = Qp(ζp, B1/p).
Let ω : Gal(Qp(ζp)/Qp)→ (Z/pZ)∗ be the canonical map; since Qp(ζp, b1/p) ⊆
K(ζp) is also abelian over Qp, by Lemma 1.2.11,

bg/bω(g) ∈ (Qp(ζp)∗)p (∀b ∈ B, g ∈ Gal(Qp(ζp)/Qp)).

Recall the structure of Qp(ζp)∗: the maximal ideal of Zp[ζp] is generated by π,
while each unit of Zp[ζp] is congruent to a (p− 1)-st root of unity modulo π,
and so

Qp(ζp)∗ = πZ × (ζp−1)Z × U1,

where U1 denotes the set of units of Zp[ζp] congruent to 1 modulo π. Corre-
spondingly,

(Qp(ζp)∗)p = πpZ × (ζp−1)pZ × Up1 .

Now choose a representative a ∈ L∗ of some nonzero element of B; without loss
of generality, we may assume a = πmu for some m ∈ Z and u ∈ U1. Then

ag

aω(g) = (ζω(g)
p − 1)m

πmω(g)
ug

uω(g) ;

but vπ(π) = vπ(ζω(g)
p − 1) = 1. Thus the valuation of the right hand side is

m(1 − ω(g)), which can only be a multiple of p for all g if m ≡ 0 (mod p).
(Notice we just used that p is odd!) That is, we could have taken m = 0 and
a = u ∈ U1.
As for ug/uω(g), note that Up1 is precisely the set of units congruent to 1
modulo πp+1 (see Exercise 2). Since ζp = 1 + π + O(π2), we can write u =
ζbp(1 + cπd +O(πd+1)), with c ∈ Z and d ≥ 2. Since πg/π ≡ ω(g) (mod π), we
get

ug = ζbω(g)
p (1 + cω(g)dπd +O(πd+1)),

uω(g) = ζbω(g)
p (1 + cω(g)πd +O(πd+1)).

But these two have to be congruent modulo πp+1. Thus either d ≥ p + 1 or
d ≡ 1 (mod p− 1), the latter only occurring for d = p.
What this means is that the set of possible u is generated by ζp and by 1 + πp.
But these only generate a subgroup of U1/U

p
1 isomorphic to (Z/pZ)2, whereas

B ∼= (Z/pZ)3. Contradiction. ■
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Exercises
1. Prove Lemma 1.3.8.

Hint. Prove that (ζp−1)p−1/p−1 belongs to the maximal ideal of Zp[ζp].
2. Prove that (in the notation of Lemma 1.3.9) Up1 is the set of units congruent

to 1 modulo πp+1.
Hint. In one direction, write u ∈ U1 as a power of ζp times a unit
congruent to 1 modulo π2. In the other direction, use the binomial series
for (1 + x)1/p. (See Exercise 1 for a generalization of this result.)

3. Prove that for any r > 0, there is an extension of Q2 with Galois group
Z/2Z× (Z/2rZ)2 contained in Q2(ζn) for some n > 0.
Hint. Consider L = Q2(ζ2r+1 , ζ2r−1).

4. Suppose that K/Q2 is a Z/2rZ-extension not contained in Q2(ζn) for any
n > 0. Prove that there exists an extension of Q2 with Galois group
(Z/2Z)4 or (Z/4Z)3.
Hint. Compare K with its compositum with some field L as in Exercise 3.
Use the structure of finite abelian groups to show that if LK ̸= L, then
Gal(LK/Q2) is forced to have a quotient of the specified form.

5. Prove that there is no extension of Q2 with Galois group (Z/2Z)4.
Hint. Use Kummer theory to show that every quadratic extension of Q2
is contained in Q2(ζ24).

6. Prove that there is no extension of Q2 with Galois group (Z/4Z)3.
Hint. Reduce to showing that there exists no extension of Q2 containing
Q2(
√
−1) with Galois group Z/4Z. Prove this by following the argument

of Lemma 1.3.9.



Chapter 2

The statements of class field
theory

We next give the statements of the principal results of class field theory, with
almost no proofs. Our goal at this point is to clarify what the statements say
and how they can be applied. We will have to discuss plenty of other material
before returning to the proofs, but the reader who wishes to peek ahead for a
glimpse of the strategy is directed to Section 5.4.

Definition 2.0.1 Jargon watch. By a place of a number field K, we mean
either an archimedean completion K ↪→ R or K ↪→ C (an infinite place), or
a p-adic completion K ↪→ Kp for some nonzero prime ideal p of oK (a finite
place). (Note: there is only one place for each pair of complex embeddings of
K.)

Each place corresponds to an equivalence class of absolute values on K; if v
is a place, we write Kv for the corresponding completion, which is either R, C,
or Kp for some prime p.

This form of parity between finite and infinite places will be a recurring
theme throughtout this book. ♢

2.1 The Hilbert class field
Reference. [36], Introduction; [37], VI.6.

An example of an unramified extension
Recall that the field Q has no extensions which are everywhere unramified
(Theorem 1.1.9). This is quite definitely not true of other number fields; we
begin with an example illustrating this.

Example 2.1.1 An unramified extension of a number field. In the
number field K = Q(

√
−5), the ring of integers is Z[

√
−5] and the ideal (2)

factors as p2, where the ideal p = (2, 1 +
√
−5) is not principal.

Now let’s see what happens when we adjoin a square root of −1, obtaining
L = Q(

√
−5,
√
−1). The extension Q(

√
−1)/Q only ramifies over 2, so L/K

can only be ramified over p. On the other hand, if we write L = K(α) where
α = (1 +

√
5)/2, then modulo p the minimal polynomial x2−x− 1 of α remains

irreducible, so p is unramified (and not split) in L. □

12
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Hilbert class fields
We’ve now seen that Q(

√
−5) admits both a nonprincipal ideal and an unrami-

fied abelian extension. It turns out these are not unrelated events.
Definition 2.1.2 Jargon watch. In class field theory, the phrase “L/K is
unramified” is conventionally interpreted to mean that L/K is unramified over
all finite places in the usual sense, and that every real embedding of K extends
to a real embedding of L. ♢

Theorem 2.1.3 Let L be the maximal unramified abelian extension of a number
field K. Then L/K is finite, and its Galois group is isomorphic to the ideal
class group Cl(K) of K. The field L is called the Hilbert class field of K.

Proof. A canonical isomorphism will be given by the Artin reciprocity law
(Theorem 2.2.6). ■

Remark 2.1.4 While Theorem 2.1.3 implies that an abelian unramified exten-
sion must be finite, there can be infinite unramified nonabelian extensions. See
Remark 2.3.12.
Remark 2.1.5 At this point, it should now be apparent that class field
theory is “class field” theory, i.e., the theory of class fields such as the Hilbert
class fields (and other examples described in Definition 2.2.7) rather than a
special type of “field theory”. Whether this affects your pronunciation of the
entire phrase is up to you!

Exercises
1. Let K be an imaginary quadratic extension of Q in which t finite primes

ramify. Assuming Theorem 2.1.3, prove that #(Cl(K)/2 Cl(K)) = 2t−1;
this recovers a theorem of Gauss originally proved using binary quadratic
forms.
Hint. If an odd prime p ramifies inK, show thatK(

√
p∗)/K is unramified

for p∗ = (−1)(p−1)/2p; if 2 ramifies in K, show that K(p∗)/K is unramified
for one of p∗ = −1, 2,−2.

2. Give an example, using a real quadratic field, to illustrate that:

(a) Theorem 2.1.3 fails if we don’t require the extensions to be unramified
above the real place;

(b) the previous exercise fails for real quadratic fields.
3. Prove that Exercise 1 extends to real quadratic fields if one replaces the

class group by the narrow class group, in which you only mod out by
principal ideals having a totally positive generator. This gives an example
of a ray class group; more on those in Section 2.2.

4. The field Q(
√
−23) admits an ideal of order 3 in the class group and an

unramified abelian extension of degree 3. Find both.
Hint. The extension contains a cubic field of discriminant -23.

5. Let L/K be an extension of number fields admitting no nontrivial
abelian subextension M/K which is everywhere unramified (including
at archimedean places). Assuming Theorem 2.1.3, prove that the class
number of K divides the class number of L.

6. A number field K is called a CM field if it is a totally complex quadratic
extension of a totally real number field K+. Using Exercise 5, show that
the class number of K+ divides the class number of K. The ratio is called
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the relative class number.
7. Let K be a number field of degree n with Galois group Sn whose discrim-

inant D is squarefree. Prove that the Galois closure of K is unramified
over all finite places of Q(

√
D). This gives an ample supply of everywhere

unramified extensions (of various fields) which are nonabelian for n > 3.
Hint. Let M be the Galois closure of K. For any odd prime p dividing
the discriminant, use the restriction on D to show that there is exactly
one prime of K above p which is ramified and that its ramification index is
2. Then deduce that the inertia group of a prime of M above p has order
2, and finally argue that said prime is unramified over its restriction to
Q(
√
D).

2.2 Generalized ideal class groups and the Artin
reciprocity law

Reference. [36] V.1; [37] VI.6.

An example (continued)
Before proceeding to generalized ideal class groups, we continue a bit with
Example 2.1.1 to illustrate what is about to happen.

Proposition 2.2.1 For K = Q(
√
−5), L = Q(

√
−5,
√
−1), let p be a prime of

oK . Then p splits in L if and only if p is principal.

Proof. First suppose p = (p), where p ̸= 2, 5 is a rational prime that remains
inert (i.e., does not split and is not ramified) in K. This happens if and only if
−5 is not a square mod p. In this case, one of −1 and 5 is a square in Fp, so
oK/p contains a square root of one of them, hence of both (since −5 already
has a square root there). Thus the residue field does not grow when we pass to
L, that is, p is split.
Next suppose p ̸= 2, 5 is a rational prime that splits as pp. If p = (β) is principal,
then the equation x2 + 5y2 = p has a solution in Z (namely, for x+ y

√
−5 = β),

but this is only possible if p ≡ 1 (mod 4). Then p splits in Q(
√
−1) as well, so

p is totally split in L, so p splits in L.
Conversely, suppose p is not principal. Since there are only two ideal classes
in Q(

√
−5), we have p = α(2, 1 +

√
−5) for some α ∈ K. Thus Norm(p) =

|Norm(α)|Norm(2, 1 +
√
−5). If α = x + y

√
−5 for x, y ∈ Q, we then have

p = 2(x2 + 5y2). Considering things mod 4, we see that 2x and 2y must be
ratios of two odd integers, and p ≡ 3 (mod 4). Thus p does not split in L, so p
cannot split in L.
The only cases left are p = (2, 1 +

√
−5), which does not split (see above), and

p = (
√
−5), which does split (since −1 has a square root mod 5). ■

Remark 2.2.2 As a bonus, note that in Proposition 2.2.1, for any ideal a of oK ,
aoL is principal. (To check this, it suffices to verify that (2, 1 +

√
−5)oL = (1 +√

−1)oL.) This is a special case of the principal ideal theorem (Theorem 2.3.1).

Generalized ideal class groups
In this section, we formulate (without proof) the Artin reciprocity law for an
arbitrary abelian extension L/K of number fields. This map will generalize the
canonical isomorphism, in the case K = Q, of Gal(L/Q) with a subgroup of
(Z/mZ)∗ for some m, as well as the splitting behavior we saw in the previous
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example. Before proceeding, we need to define the appropriate generalization
of (Z/mZ)∗ to number fields.

Definition 2.2.3 Recall that the ideal class group Cl(K) of K is defined as the
group JK of fractional ideals modulo the subgroup PK of principal fractional
ideals. Let m be a formal product of places of K; you may regard such a beast
as an ordinary integral ideal together with a nonnegative coefficient for each
infinite place.

Let Jm
K be the group of fractional ideals of K which are coprime to each

finite place of K occurring in m. Let Pm
K ⊆ Jm

K be the group of principal
fractional ideals generated by elements α ∈ K such that:

• for pe|m finite, α ≡ 1 (mod pe);

• for every real place τ in m, τ(α) > 0.

(There is no condition for complex places.) Then the ray class group Clm(K)
is defined as the quotient Jm

K/P
m
K . A quotient of a ray class group is called a

generalized ideal class group. ♢

The Artin reciprocity law
We imitate the “reciprocity law” construction we made for Q(ζm)/Q (Defini-
tion 1.1.7) with a general abelian extension of number fields, but this time with
no a priori reason to expect it to give anything useful.

Definition 2.2.4 Let L/K be a (finite) abelian extension of number fields. For
each prime p of K that does not ramify in L, let q be a prime of L above K,
and put κ = oK/p and λ = oL/q. Then the residue field extension λ/κ is an
extension of finite fields, so it has a canonical generator σ, the Frobenius, which
acts by raising to the q-th power. (Here q = Norm(p) = #κ is the absolute
norm of p.) Since p does not ramify, the decomposition group Gq is isomorphic
to Gal(λ/κ), so we get a canonical element of Gq, called the Frobenius of q.
In general, replacing q by qτ for some τ ∈ Gal(L/K) conjugates both the
decomposition group and the Frobenius by τ ; since L/K is abelian in our case,
that conjugation has no effect. Thus we may speak of “the Frobenius of p”
without ambiguity.

Now for m divisible by all primes of K which ramify in L, define a homo-
morphism (the Artin map)

Jm
K → Gal(L/K) p 7→ Frobp .

♢

Remark 2.2.5 The fact that we have to avoid the ramified primes will be a bit
of a nuisance later. Eventually we’ll get around this using the adelic formulation
(Section 6.4).

At this point, the following miracle occurs.

Theorem 2.2.6 Artin reciprocity. There exists a formal product m of
places of K, including all (finite and infinite) places over which L ramifies,
such that Pm

K belongs to the kernel of the Artin map.

Proof. We will deduce this much later from a corresponding statement made in
the language of adèles and idèles. See Theorem 6.4.1 and Proposition 6.4.7. ■

In particular, we get a map Jm
K/P

m
K → Gal(L/K) which turns out to be

surjective (see Exercise 5), but now we don’t have the Kronecker-Weber theorem
to explain this.
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Definition 2.2.7 Define the conductor of L/K to be the smallest formal
product m for which the conclusion of Theorem 2.2.6 holds. We say L/K is the
ray class field corresponding to the product m if L/K has conductor dividing
m and the map JK/J

m
K → Gal(L/K) is an isomorphism. ♢

Theorem 2.2.8 Existence of ray class fields. Every formal product m has
a ray class field.

Proof. Again, we will deduce this later from a statement in the adelic language.
See Theorem 6.4.2. ■

Example 2.2.9 The ray class field of Q of conductor m∞ is Q(ζm). The ray
class field of Q of conductor m is the maximal real subfield of Q(ζm). □

Remark 2.2.10 Unfortunately, for number fields other than Q, we do not have
an explicit description of the ray class fields as being generated by particular
algebraic numbers. A salient exception is the imaginary quadratic fields, for
which the theory of elliptic curves with complex multiplication provides such
numbers. Also, if we were to work with function fields instead of number fields,
the theory of Drinfeld modules would do something similar.

This gap in our knowledge, also referred to as Hilbert’s 12th Problem,
will make establishing class field theory somewhat more complicated than it
would be otherwise. In particular, the proof of Theorem 2.2.8 is rather inexplicit;
see Section 7.4.

Exercises
1. For p a prime ideal of K and L/K an abelian extension in which p does

not ramify, let FrobL/K(p) ∈ Gal(L/K) be the Frobenius of p. Prove that
Frobenius obeys the following compatibilities:

(a) If M/L is another extension with M/K abelian, q is a prime of L
over p, and M/L is unramified over q, then FrobM/K(p) restricted
to L equals FrobL/K(p).

(b) In this notation, FrobM/L(q) = FrobM/K(p)f(q/p), where f denotes
the residue field degree.

2. Find a formula for the order of Clm(K) in terms of the order of Cl(K) and
other relevant stuff.
Hint. It’s in [36] V.1. Make sure you understand its proof!

3. Use Exercise 2 to give a formula for the order of Clm(Q(
√
D)) for D odd

and squarefree, in terms of the prime factors of m and D and the class
number of Q(

√
D).

4. Find the ray class field of Q(i) of conductor (3), and verify Artin reciprocity
explicitly in this case.

2.3 The principal ideal theorem
Reference. [36], section V.3 (but you won’t find the proofs I’ve omitted there
either); [37], section VI.7 (see also IV.5); [33], section XI.5.

Statement of the theorem
For a change, we’re going to prove something, although the proof will depend
on the Artin reciprocity law which we haven’t proved. Or rather, we’re going to
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sketch a proof that you will get to fill in by doing the exercises. (Why should I
have all the fun?)

The following theorem is due to Furtwängler, a student of Hilbert. (It’s also
called the “capitulation” theorem, because the word “capitulate” was formerly
used to mean “to become principal”. Etymology left to the reader.)

Theorem 2.3.1 Principal ideal theorem. Let L be the Hilbert class field
of the number field K. Then every ideal of K becomes principal in L.

Proof. This will follow by combining Theorem 2.3.7 (construction of the transfer
homomorphism), Lemma 2.3.9 (implication that vanishing of the transfer
homomorphism implies the desired result), and Theorem 2.3.10 (vanishing of
the transfer homomorphism). ■

Example 2.3.2 If K = Q(
√
−5), then L = Q(

√
−5,
√
−1), and the nonprincipal

ideal class of K is represented by (2, 1 +
√
−5), which is generated by 1 +

√
−1

in L. □

First steps of the proof
The idea of the proof is to apply Artin reciprocity to reduce to a problem purely
in finite group theory, which we then solve. To this end, let M be the Hilbert
class field of L; then an ideal of L is principal if and only if its image under
the Artin map JL → Gal(M/L) is trivial. So our first step will be to give
a purely group-theoretic description of the map V : Gal(L/K) → Gal(M/L)
corresponding to the extension homomorphism Cl(K)→ Cl(L) (i.e., making
the diagram in Figure 2.3.3 commute, in which the horizontal arrows are Artin
maps).

Cl(K) //

��

Gal(L/K)

V

��
Cl(L) // Gal(M/L)

Figure 2.3.3
In order to proceed further, we must extract more information about the

Galois groups in question.

1. The extension M/K is unramified because M/L and L/K are. It is also
Galois: its image under any element of Gal(K/K) is still an unramified
abelian extension of L and so is contained in M .

2. The maximal subextension of M/K which is abelian over K is equal to
L.

Translation into group theory
Definition 2.3.4 Given a finite group G, let Gab denote the maximal abelian
quotient of G; that is, Gab is the quotient of G by its commutator subgroup
G′. Then the previous discussion implies that Gal(M/L) is the commutator
subgroup of Gal(M/K) and Gal(M/K)ab = Gal(L/K). We may thus relabel
Figure 2.3.3 as in Figure 2.3.5.
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Cl(K) //

��

Gal(L/K) = Gal(M/K)ab

V

��
Cl(L) // Gal(M/L) = Gal(M/L)ab

Figure 2.3.5
♢

We now give the purely group-theoretic interpretation of the map V in
Figure 2.3.5.

Definition 2.3.6 Let G be a finite group and H a (not necessarily normal)
subgroup. Let g1, . . . , gn be left coset representatives of H in G: that is,
G = g1H ∪ · · · ∪ gnH. For g ∈ G, put ϕ(g) = gi if g ∈ giH (i.e., g−1

i g ∈ H).
Put

V (g) =
n∏
i=1

ϕ(ggi)−1(ggi);

then V (g) always lands in H.
Now consider what happens when we compose the map g 7→ V (g) : G→ H

(which is not necessarily a homomorphism) with the projection H → Hab. It will
follow from Theorem 2.3.7 that the resulting map G→ Hab is a homomorphism
which factors through Gab. The induced map V : Gab → Hab is called the
transfer map (in German “Verlagerung”, hence the use of the letter V in the
notation). ♢

Theorem 2.3.7 With notation as in Definition 2.3.6, the map V : G→ Hab

is a homomorphism; it does not depend on the choice of the gi; and induces a
homomorphism Gab → Hab (i.e., kills commutators in G).

Proof. See Exercise 1. ■

Remark 2.3.8 In lieu of establishing Theorem 2.3.7 directly, one can derive it
from properties of homology of finite groups. See Exercise 2.

Setting aside the proof of Theorem 2.3.7 for the moment, let’s see that this
does indeed give the correct map in Figure 2.3.5 when we take G = Gal(M/K)
and H = Gal(M/L), so that G/H = Gal(L/K). This amounts to computing
what happens when we apply all of the maps starting with a prime p of K at
the top left of the diagram.

Choose a prime q of L over p and a prime r of M over q, let Gr ⊆ G be the
decomposition group of r over K (i.e., the stabilizer of r under the action of G
on the primes above p), and let g ∈ Gr be the Frobenius of r. Keep in mind
that since G is not abelian, g depends on the choice of r, not just on q; that is,
there’s no Artin map into G.

Let q1, . . . , qr be the primes of L above p; then the image of p in L is
∏
i qi,

and the image of that product under the Artin map is
∏
i FrobM/L(qi). To show

that this equals V (g), we make a careful choice of the coset representatives gi
in the definition of V . Namely, decompose G as a union of double cosets GrτiH.
Then the primes of L above p correspond to these double cosets, where the
double coset GrτiH corresponds to L ∩ rτi . Let m be the order of FrobL/K(p)
and write GrτiH = τiH ∪ gτiH ∪ · · · ∪ gm−1τiH for each i; we then use the
elements gij = gjτi as the left coset representatives to define ϕ and V . Thus
the equality V (g) =

∏
i FrobM/L(qi) follows from the following lemma.

Lemma 2.3.9 If L ∩ rτi = qi, then FrobM/L(qi) =
∏m−1
j=0 ϕ(ggij)−1ggij.

Proof. See Exercise 2. ■
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The final group-theoretic ingredient
With this, Theorem 2.3.1 follows from the following fact.

Theorem 2.3.10 Let G be a finite group and H its commutator subgroup.
Then the transfer map V : Gab → Hab is zero.

Proof. See Exercise 5. ■

Remark 2.3.11 The fact that Theorem 2.3.10 is so general means that we can
easily obtain some extensions of Theorem 2.3.1. For example, it was observed by
Iyanaga that if L is the ray class field of K of some modulus m, and moL is the
extension of this modulus to L (that is, extend the finite part and take all places
of L above the infinite places in m), then the induced map Clm(K)→ Clm(L)
again vanishes.

Additional remarks
Remark 2.3.12 One important qualification of Theorem 2.3.1 is that L need
not itself have class number 1. In fact, it is an open problem to show that every
number field K admits an extension which has class number 1.

One approach to constructing such an extension would be to consider the
class field tower over K, in which K0 = K and for each positive integer i, Ki

is the Hilbert class field of Ki−1. However, Golod and Shafarevich showed that
in certain cases this sequence grows without bound; for example, this holds if
K is an imaginary quadratic field in which at least six distinct primes of Q
ramify. In particular, in such cases K admits an infinite unramified extension.
(See [4] for more discussion.)

Remark 2.3.13 Let K be a number field. Let M be the oK -submodule of K[x]
consisting of integer-valued polynomials, meaning those that map oK into
itself. The field K is said to be a Pólya field if M admits a basis consisting
of polynomials of pairwise distinct degrees; such a basis is called a regular
basis. Any field with trivial class group is a Pólya field, but not conversely.
The terminology is due to Zantema [58], who showed among other things that
every cyclotomic field is a Pólya field.

Using Theorem 2.3.1, Leriche showed that the Hilbert class field of any
number field is a Pólya field (see [35], Corollary 3.2). In particular, every number
field can be embedded into a Pólya field via an abelian extension, whereas it
is unknown whether every number field can be embedded into a field of class
number one (and Remark 2.3.12 shows that solvable extensions are definitely
not enough).

Exercises
1. Prove Theorem 2.3.7.

Hint. One approach to proving independence from choices is to change
one gi at a time. Also, notice that ϕ(gg1), . . . , ϕ(ggn) are a permutation
of g1, . . . , gn.

2. Prove Lemma 2.3.9.
Hint. See [37], Proposition IV.5.9.

3. Let H ⊆ G be an inclusion of finite groups. Let G′ and H ′ be the
commutator subgroups of G and H. Let Z[G] be the group algebra of G,
i.e., the (noncommutative) ring of formal linear combinations

∑
g∈G ng[g]

with ng ∈ Z, multiplied by putting [g][h] = [gh]. Let IG ⊂ Z[G] be the
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ideal of sums
∑
ng[g] with

∑
ng = 0 (called the augmentation ideal;

see Section 3.3). Let

δ : H/H ′ → (IH + IGIH)/IGIH

be the homomorphism taking the class of h to the class of [h]− 1. Prove
that δ is an isomorphism.
Hint. Show that the elements

[g]([h]− 1) for g ∈ {g1, . . . , gn}, h ∈ H

form a basis of IH + IGIH as a Z-module. For more clues, see [37], Lemma
VI.7.7.

4. With notation as in Exercise 3, prove that the diagram in Figure 2.3.14
commutes, where S is given by S(x) = x([g1] + · · ·+ [gn]).

G/G′ V //

δ

��

H/H ′

δ

��
IG/I

2
G

S // (IH + IGIH)/IGIH ,

Figure 2.3.14
5. Prove Theorem 2.3.10.

Hint. Quotient by the commutator subgroup of H to reduce to the case
where H is abelian. Apply the classification of finite abelian groups to
write G/H as a product of cyclic groups Z/e1Z × · · · × Z/emZ. Let fi
be an element of G lifting a generator of Z/eiZ and put hi = f−ei

i ∈ H;
then 0 = δ(fei

i hi), which can be rewritten as δ(fi)µi for some µi ∈ Z[G]
congruent to ei modulo IG. Now check that

nµ1 · · ·µm ≡ [g1] + · · ·+ [gn] (mod IHZ[G]).

For more details, see [37], Theorem VI.7.6.

2.4 Zeta functions and the Chebotaryov density
theorem

Reference. [33], Chapter VIII for starters; see also [36], Chapter VI and [37],
Chapter VII. For advanced reading, see Tate’s thesis ([4], Chapter XV), but
wait until we introduce the adèles (Section 6.1).

The Dedekind zeta function of a number field
Although this is supposed to be a course on algebraic number theory, the
following analytic discussion is so fundamental that we must at least allude to
it here.
Definition 2.4.1 Let K be a number field. The Dedekind zeta function
ζK(s) is a function on the complex plane given, for Re(s) > 1, by the absolutely
convergent product and sum

ζK(s) =
∏
p

(1−Norm(p)−s)−1 = ζK(s) =
∑
a

Norm(a)−s



CHAPTER 2. THE STATEMENTS OF CLASS FIELD THEORY 21

where p runs over the nonzero prime ideals of oK and a runs over the nonzero
ideals of oK .

For exmaple, if K = Q, then ζK equals the Riemann zeta function. ♢
A fundamental fact about the zeta function is the following.

Theorem 2.4.2 The function ζK(s) extends to a meromorphic function on C
whose only pole is a simple pole at s = 1.

Proof. See [37], Corollary VII.5.11. ■

Remark 2.4.3 In Theorem 2.4.2, the residue of the pole at s = 1 is computed
by the analytic class number formula; it is the product of the class number,
the unit regulator, and another quantity that depends on the discriminant and
signature of K.

There is also a functional equation relating the values of ζK at s and 1− s,
and an extended Riemann hypothesis: aside from “trivial” zeros along the
negative real axis, the zeroes of ζK all have real part 1/2.

L-functions of abelian characters
Definition 2.4.4 More generally, let m be a formal product of places of K,
and let χm : Clm(K)→ C∗ be a character of the ray class group of conductor
m. Extend χm to a function on all ideals of K by declaring its value to be 0 on
ideals not coprime to m. Then we define the L-function

L(s, χm) =
∏
p̸|m

(1− χ(p) Norm(p)−s)−1 =
∑

(a,m)=1

χ(a) Norm(a)−s;

again the product converges absolutely for Re(s) > 1. ♢

Theorem 2.4.5 If χm is not trivial, then L(s, χm) extends to an analytic
function on C.

Proof. See [37], Theorem VII.2.8 (or Theorem VII.8.5). ■

Remark 2.4.6 By contrast with Theorem 2.4.5, if χm is trivial, then L(s, χm)
is just the Dedekind zeta function with the Euler factors for primes dividing m
removed, so it still has a pole at s = 1 by Theorem 2.4.2.

Nonvanishing of L-functions and consequences
One more basic fact is the following.

Theorem 2.4.7 If χm is not the trivial character, then L(1, χm) ̸= 0.

Proof. See [37], Theorem VII.2.9. ■

For K = Q, Theorem 2.4.7 is already a nontrivial but important result: it
implies Dirichlet’s famous theorem that there are infinitely many primes in
arithmetic progression, as follows.

Definition 2.4.8 A set of primes S in a number field K has Dirichlet density
d if

lim
s→1+

∑
p∈S Norm(p)−s

log 1
s−1

= d.

This in particular presumes the existence of the limit; otherwise, we may still
define the lower Dirichlet density and upper Dirichlet density using the
limits inferior and superior. ♢
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Remark 2.4.9 Theorem 2.4.7 implies that the Dirichlet density of the set
of primes congruent to a modulo m is 1/ϕ(m) if a is coprime to m (and 0
otherwise). The key point is that for any nontrivial χm,

∑
p χ(p) Norm(p)−s

remains bounded as s→∞.
The fact also implies that for any number field K and any formal product

of places m, there are infinitely many primes in each class of the ray class group
of conductor m, the set of such primes having Dirichlet density 1/# Clm(K).
(See Exercise 3.)

The Chebotaryov density theorem
Finally, we point out a result of class field theory that also applies to nonabelian
extensions.
Definition 2.4.10 Recall that if L/K is any Galois extension of number fields
with Galois group G, p is a prime of K which does not ramify in L, and q is
a prime above p, then there is a well-defined Frobenius element to q: it’s
the element g of the decomposition group Gq such that xg ≡ x#(oK/p) (mod q).
Keep in mind that as a function of p, this Frobenius is only well-defined up
to conjugation in G. (If p ramifies in L, then a further ambiguity occurs: the
Frobenius element associated to q is only well-defined in the quotient of Gq by
the inertia group Iq.) ♢

Theorem 2.4.11 Chebotaryov density theorem. Let L/K be a Galois
extension of number fields with Galois group G. Then for any g ∈ G, there exist
infinitely many primes p of K such that there is a prime q of L above p with
Frobenius g. In fact, the Dirichlet density of such primes p is the order of the
conjugacy class of G divided by #G.

Proof. This follows from everything we have said so far, plus Artin reciprocity,
in case L/K is abelian. In the general case, let f be the order of g, and let K ′

be the fixed field of g; then we know that the set of primes of K ′ with Frobenius
g ∈ Gal(L/K ′) ⊂ G has Dirichlet density 1/f . The same is true if we restrict
to primes of absolute degree 1 (see Exercise 2).
Let Z be the centralizer of g in G; that is, Z = {z ∈ G : zg = gz}. Then
for each prime of K of absolute degree 1) with Frobenius in the conjugacy
class of g, there are #Z/f primes of K ′ above it (also of absolute degree 1)
with Frobenius g. (Say p is such a prime and q is a prime of L above p with
Frobenius g. Then for h ∈ G, the Frobenius of qh is hgh−1, so the number of
primes q with Frobenius g is #Z. But each prime of L′ below one of these is
actually below f of them.) Thus the density of primes of K with Frobenius in
the conjugacy class of g is (1/f)(1/(#Z/f)) = 1/#Z. To conclude, note that
the order of the conjugacy class of G is #G/#Z. ■

We state the following here as a corollary of Theorem 2.4.11; however, we
will eventually prove it before proving Artin reciprocity (see Corollary 7.1.16).

Corollary 2.4.12 Let L/K be a nontrivial extension of number fields. Then
there exist infinitely many primes of K which do not split completely in L.

Proof. Let M/K be the Galois closure of L/K, and set G = Gal(M/K), H =
Gal(M/L). By hypothesis, G is not the trivial group and the conjugates of H
in G have trivial intersection.
Let p be any prime of K which does not ramify in M and let q be a prime of M
above K. Then p splits completely in M if and only if the Frobenius element of
q is trivial. Moreover, if p splits completely in L, then g lies in every conjugate
of H and hence must be trivial, so p also splits completely in M . (The converse



CHAPTER 2. THE STATEMENTS OF CLASS FIELD THEORY 23

is also true.)
Since G ̸= H, we can choose an element g ∈ G \H. By Theorem 2.4.11, there
exist infinitely many primes p of K for which there is a prime q of L above
p with Frobenius g. By the previous discussion, any such p does not split
completely in K. ■

Remark 2.4.13 Theorem 2.4.11 is a special case of a much more general
equidistribution conjecture including, among other things, the Sato-Tate
conjecture on the distribution of Frobenius traces of elliptic curves. See [49]
for an introduction to this circle of ideas.
Remark 2.4.14 With somewhat more work, all of the previous density as-
sertions remain true (and are indeed strictly stronger than before) if Dirichlet
density is replaced by natural density. The natural density of a set S of prime
ideals of a number field K is the limit (if it exists)

lim
X→∞

#{p : p ∈ S,Norm(p) ≤ X}
#{p : Norm(p) ≤ X}

where in both sets p runs over all prime ideals of K. (Again, if the limit does
not exist, we may still define the lower natural density and upper natural
density using the limits inferior and superior.)

As with the prime number theorem, one can obtain effective power-saving
error estimates conditional on the Generalized Riemann Hypothesis for appro-
priate Artin L-functions. See [31].

Remark 2.4.15 For fun, we mention a lesser-known result of Chebotaryov
here: the character table of a finite cyclic group, viewed as a square matrix,
has the property that every minor is nonzero.

By contrast, for a group which is abelian but not cyclic there exists a 2× 2
submatrix with all entries equal to 1, whereas for a nonabelian group any
nonabelian character takes the value 0 somewhere (a result of Burnside; see
[23], Theorem 3.15).

Exercises
1. Show that the Dirichlet density of the set of all primes of a number field is

1.
2. Show that in any number field, the Dirichlet density of the set of primes p

of absolute degree greater than 1 is zero.
3. Let m be a formal product of places of the number field K. Using Theo-

rem 2.4.2, Theorem 2.4.5, and Theorem 2.4.7, prove that the set of primes
of K lying in any specified class of the generalized ideal class group of
conductor m has Dirichlet density 1/# Clm(K).
Hint. Combine the quantities

∑
p χ(p) Norm(p)−s to cancel out all but

one class.
4. Let L/K be an extension of number fields. Suppose that for every prime

p of K which does not ramify in L, all of the primes of L above p have
isomorphic residue fields. Using Theorem 2.4.11, prove that L/K is Galois.
Hint. Let M be the Galois closure of L/K. Put G = Gal(M/K) and
H = Gal(M/L). For q a prime of M with decomposition group Gq lying
above the prime p of K, relate the orders of the residue fields of the
primes of L to the intersections of Gq with the conjugates of H in G (see
Remark 1.1.6). Use the fact that these conjugates have trivial intersection
to deduce that Gq must be trivial, and invoke Theorem 2.4.11 to conclude.
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5. Let L/K be an abelian extension of number fields. Using Corollary 2.4.12,
show that the homomorphism ImK → Gal(L/K) is surjective.

6. Let K be a number field and let m be a formal product of places of K.
Use Corollary 2.4.12 to show that the ray class field of m is unique.
Hint. Show that if L1, L2 are both ray class fields of m, then all but
finitely many primes of L1 split completely in the compositum L1L2
(namely, those which do not ramify in the compositum).

7. Here is an example to illustrate the difference between Dirichlet density
and natural density, albeit not for primes. Let S be the set of positive
integers whose decimal expansion begins with 1.

(a) Prove that S does not have a natural density, in the sense that

lim
X→∞

1
X

#(S ∩ {1, . . . , X})

does not exist.

(b) On the other hand, prove that S has a Dirichlet density in the sense
that

lim
s→1+

∑
n∈S n

−s∑∞
n=1 n

−s

exists, and compute this value.

Hint. Estimate
∑b
n=a n

−s using upper and lower Riemann sums for the
integral of x−s dx.



Chapter 3

Cohomology of groups

In this chapter, we introduce the cohomology of finite groups, which plays a
key role in the proofs of class field theory. We also discuss homology and Tate
groups, and touch briefly on profinite groups.

We begin with the construction of group cohomology in the language of
derived functors. Readers not familiar with this material may find it easiest to
treat Section 3.1 as a “black box” on first reading.

3.1 Cohomology of finite groups I: abstract non-
sense

Reference. [36], II.1. See [48] for a much more general presentation. (We will
generalize ourselves from finite to profinite groups a bit later on; see Section 3.5).

For the broader context of homological algebra, the original reference is [14].
See [36], Appendix II.A for a summary.

Caveat. This material may seem a bit dry. If so, don’t worry; only a small
part of the theory will be relevant for class field theory. However, it doesn’t
make sense to learn that small part without knowing what it is a part of!

The euphemism “abstract nonsense” in specific reference to category theory
and/or homological algebra has been attributed to Norman Steenrod. It was
used in a tongue-in-cheek manner without intending a negative connotation,
although such a connotation has been imputed by later authors (a notable
example being [32]).

Caveat. The Galois cohomology groups used in [37] are not the ones we
define here. Rather, they are the Tate groups to be introduced in Section 3.3.

Caveat. Some authors (like Milne, and Neukirch for the most part) put group
actions on the left and some (like Neukirch in chapter IV, and myself here) put
them on the right. Of course, the theory is the same either way!

G-modules and their invariants
Definition 3.1.1 Let G be a finite group. A (right) G-module is an abelian
group A equipped with a right G-action. I’ll write this action using superscripts,
i.e., the image of the action of g on m is mg. Alternatively, A can be viewed as
a right module for the group algebra Z[G].

25
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A homomorphism of G-modules ϕ : M → N is a homomorphism of
abelian groups that is compatible with the G-actions, i.e., ϕ(mg) = ϕ(m)g. ♢

Remark 3.1.2 For those keeping score, the category of G-modules is an example
of an abelian category; that is, it is an additive category (meaning that
the Hom sets have abelian group structures for which composition distributes
over addition) with some extra properties related to kernels and cokernels of
morphisms. The following discussion is specialized from the general theory of
derived functors on abelian categories.

Definition 3.1.3 Given a G-module M , let MG be the abelian group of
G-invariant elements of M :

MG = {m ∈M : mg = m∀g ∈ G}.

The functor M →MG from G-modules to abelian groups is left exact but not
right exact. That is, say we start with an exact sequence

0→M ′ →M →M ′′ → 0

of G-modules; that is, the kernel of each map is equal to the image of the
previous map. Then

0→ (M ′)G →MG → (M ′′)G

is again an exact sequence, but this need not remain true if we add 0 at the
end; that is, the map MG → (M ′′)G may not be surjective.

More generally, if 0 → M ′ → M → M ′′ → 0 is an exact sequence, then
0→ (M ′)G →MG → (M ′′)G is exact, ♢

Example 3.1.4 Take the sequence 0 → Z/pZ → Z/p2Z → Z/pZ → 0 of
G-modules for G = Z/pZ, which acts on the middle factor by ag = a(1 + pg).
Then MG → (M ′′)G is the zero map but (M ′′)G is nonzero.) □

Injective objects and resolutions
The topic of homological algebra provides a systematic way to quantify the
difference between an exact functor and a left exact (or a right exact) functor.
This rests on the following key concept.

Definition 3.1.5 A G-module M is injective if for every inclusion A ⊂ B
of G-modules and every G-module homomorphism ϕ : A → M , there is a
homomorphism ψ : B →M that extends ϕ. ♢

Lemma 3.1.6 Every G-module can be embedded into some injective G-module.
In other words, the abelian category of G-modules has enough injectives.

Proof. See Exercise 3. ■

Definition 3.1.7 An injective resolution of a G-module M is a sequence

I0 d0

→ I1 d1

→ . . .

in which the objects I0, I1, . . . are injective G-modules and the augmented
sequence

0→M → I0 d0

→ I1 d1

→ . . .

is exact.
From Lemma 3.1.6, it follows that injective resolutions always exist. To

wit, first embed M into an injective G-module I0, then embed I0/M into an
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injective G-module I1, and so on. ♢

Definition 3.1.8 Starting with an injective resolution of M , apply the functor
of G-invariants; the result

0→ (I0)G d0

→ (I1)G d1

→ . . .

is still a complex in the sense that any two consecutive maps compose to
zero, but it is not necessarily exact. (That is, we still have inclusions im(di) ⊆
ker(di+1), but these need not be equalities.) We turn this failure into success
by defining the i-th cohomology group as the quotient

Hi(G,M) = ker(di)/ im(di−1),

with the temporary proviso that this appears to depend not just on M but also
on the injective resolution. By convention, we let d−1 be the map 0→ IG0 , so
H0(G,M) = MG.

Given a homomorphism f : M → N and another injective resolution
0 → N → J0 → J1 → · · ·, Lemma 3.1.6 again implies the existence of a
commutative diagram as in Figure 3.1.9 with exact rows. When we apply the
functor of G-invariants, we again get a commutative diagram, but the rows are
only complexes rather than exact sequences. However, the vertical arrows in
the resulting diagram induce maps Hi(f) : Hi(G,M)→ Hi(G,N).

0 // M //

f

��

I0
d0 //

f0

��

I1

f1

��

d1 // I2

f2

��

d2 // · · ·

0 // N // J0
d0 // J1

d1 // J2
d2 // · · ·

Figure 3.1.9
♢

Right derived functors
Continuing the thread, we observe the following.

Lemma 3.1.10 For a fixed choice of the injective resolutions of M and N in
Definition 3.1.8, the map Hi(f) does not depend on the choice of the fi.

Proof. This proof is a standard example of “abstract nonsense”. It suffices
to check that if f = 0, then the Hi(f) are all zero regardless of what the fi
are. In that case, it turns out one can construct maps gi : Ii+1 → Ji (and
by convention g−1 = 0) such that fi = gi ◦ di + di−1 ◦ gi−1, as illustrated in
Figure 3.1.11. (Beware that this figure is not a commutative diagram!) Details
left as an exercise (see Exercise 4). ■
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0 // M //

f

��

I0
d0 //

f0

��

I1
g0

~~
f1

��

d1 // I2
g1

~~
f2

��

d2 // · · ·

0 // N // J0
d0 // J1

d1 // J2
d2 // · · ·

Figure 3.1.11
Remark 3.1.12 The diagonal arrows depicted in Figure 3.1.11 with the property
described in the proof of Lemma 3.1.10 (namely, that fi = gi ◦ di + di−1 ◦ gi−1),
are collectively called a chain homotopy for the map f .
Definition 3.1.13 We can now close the books on Definition 3.1.8 as follows.
If M = N and f is the identity, we get a canonical map between Hi(G,M)
and Hi(G,N) for each i. That is, the groups Hi(G,M) are well-defined
independent of the choice of the injective resolution. Likewise, the map Hi(f) is
also independent of the choice of resolutions, so each Hi defines a functor from
G-modules to abelian groups. These are called the right derived functors of
the functor of G-invariants. ♢

Lemma 3.1.14 Given a short exact sequence 0 → M ′ → M → M ′′ → 0 of
G-modules, there is a canonical long exact sequence of abelian groups

0→ H0(G,M ′)→ · · · → Hi(G,M ′′) δi→ Hi+1(G,M ′)→ Hi+1(G,M)→ Hi+1(G,M ′′)→ · · ·

in which the δi are certain connecting homomorphisms.
I will not subject you to the proof of this, but rather mention the key step

in its proof.

0 // M0 //

f0

��

M1 //

f1

��

M2 //

f2

��

0

0 // N0 // N1 // N2 // 0
Figure 3.1.15
Lemma 3.1.16 Snake Lemma. Given a commuting diagram as in Fig-
ure 3.1.15 with exact rows, there is a canonical map δ : ker(f2) → coker(f0)
such that the sequence

0→ ker(f0)→ ker(f1)→ ker(f2) δ→ coker(f0)→ coker(f1)→ coker(f2)→ 0

is exact.
Proof. The key point is to define the map δ, as the rest amounts to “diagram
chasing”. To wit, given x ∈ ker(f2) ⊆ M2, lift x to M1, push it into N1 by
f1, then check that the image has a preimage in N0. Verification that this is
well-defined (and a homomorphism), and that everything is exact, is left to the
reader. ■
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Remark 3.1.17 The snake lemma is depicted in the movie It’s My Turn1, but
not in any more detail than we have given here.

Remark 3.1.18 In modern algebra, it is common to define objects (e.g., tensor
products of modules) in terms of “universal properties” that they satisfy. This
can be done for derived functors via the theory of δ-functors, as introduced in
[14].

Additional comments
One important consequence of the long exact sequence is that if 0 → M ′ →
M → M ′′ → 0 is a short exact sequence of G-modules and H1(G,M ′) = 0,
then 0→ (M ′)G →MG → (M ′′)G → 0 is also exact.

More abstract nonsense:

• If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of G-modules
and Hi(G,M) = 0 for all i > 0, then the connecting homomorphisms in
the long exact sequence induce isomorphisms Hi(G,M ′′)→ Hi+1(G,M ′)
for all i > 0 (and a surjection for i = 0). This sometimes allows one to
prove general facts by proving them first for H0, where they have a direct
interpretation, then “dimension shifting”; however, getting from H0 to
H1 typically requires some extra attention.

• If M is an injective G-module, then Hi(G,M) = 0 for all i > 0. (Use
0→M →M → 0→ · · · as an injective resolution.) This fact has a sort
of converse: see next bullet.

• We say M is acyclic if Hi(G,M) = 0 for all i > 0; so in particular,
injective G-modules are acyclic. It turns out that we can replace the
injective resolution in the definition by an acyclic resolution for the
purposes of doing a computation; see Exercise 5.

Of course, the abstract nature of the proofs so far gives us almost no insight
into what the objects are that we’ve just constructed. We’ll remedy that
next time by giving more concrete descriptions that one can actually compute
with.

Exercises
1. Let G be the one-element group. Show that a G-module (i.e., abelian

group) is injective if and only if it is divisible, i.e., the map x 7→ nx is
surjective for any nonzero integer n.
Hint. You’ll need Zorn’s lemma or equivalent in one direction.

2. Let A be an abelian group, regarded as a G-module for G the trivial group.
Prove that A can be embedded in an injective G-module.

3. Prove Lemma 3.1.6.
Hint. For M a G-module, the previous exercises show that the underlying
abelian group of M embeds into a divisible group N . Now map M into
HomZ(Z[G], N) and check that the latter is an injective G-module.

4. Prove Lemma 3.1.10 following the sketch given.
Hint. Construct gi given fi−1 and gi−1, using that the J ’s are injective
G-modules.

1www.youtube.com/watch?v=etbcKWEKnvg

https://www.youtube.com/watch?v=etbcKWEKnvg
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5. Prove that if 0 → M → M0 → M1 → · · · is an exact sequence of
G-modules and each Mi is acyclic, then the cohomology groups of the
complex 0→M0G →M1G → · · · coincide with Hi(G,M).
Hint. Construct the canonical long exact sequence from the exact se-
quence

0→M →M0 →M0/M → 0,

then do dimension shifting using the fact that

0→M0/M →M1 →M2 → · · ·

is again exact. Don’t forget to be careful about H1!)

3.2 Cohomology of finite groups II: concrete non-
sense

Reference. [36], II.1.
In the previous chapter, we associated to a finite group G and a (right)

G-module M a sequence of abelian groups Hi(G,M), called the cohomology
groups of M . (They’re also called the Galois cohomology groups because
in number theory, G will invariably be the Galois group of some extension of
number fields, and A will be some object manufactured from this extension.)
What we didn’t do is make the construction at all usable in practice! This time
we will remedy this.

Induced G-modules
In light of Exercise 5, to compute cohomology we are going to need an ample
supply of acyclic G-modules. We will get these using a process known as
induction.
Remark 3.2.1 By way of motivation, we note first that if G is the trivial group,
every G-module is acyclic: if 0→ M → I0 → I1 · · · is an injective resolution,
taking G-invariants has no effect, so 0→ I0 → I1 → · · · is still exact except at
I0 (where we omitted M).

Definition 3.2.2 If H is a subgroup of G and M is an H-module, we define
the induction of M from H to G to be IndGHM = M ⊗Z[H] Z[G]. We may also
identify IndGHM with the set of functions ϕ : G→M such that ϕ(gh) = ϕ(g)h
for h ∈ H, with the G-action on the latter being given by ϕg(g′) = ϕ(gg′):
namely, the element m⊗ [g] ∈M ⊗Z[H] Z[G] corresponds to the function ϕm,g
taking g′ to mgg′ if gg′ ∈ H and to 0 otherwise. ♢

Lemma 3.2.3 Shapiro’s lemma. If H is a subgroup of G and N is an
H-module, then there is a canonical isomorphism Hi(G, IndGH N)→ Hi(H,N).
In particular, N is an acyclic H-module if and only if IndGH(N) is an acyclic
G-module.
Proof. The key points are:

1. (IndGH N)G = NH , so there is an isomorphism for i = 0 (this is most
visible from the description using functions);

2. the functor IndGH from H-modules to G-modules is exact (that is, Z[G] is
flat over Z[H]; in fact it is free over Z[H]);

3. if I is an injective H-module, then IndGH(I) is an injective G-module. This
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follows from the existence of a canonical isomorphism HomG(M, IndGH I) =
HomH(M, I), for which see Proposition 3.2.6 below.

Now take an injective resolution of N , apply IndGH to it, and the result is an
injective resolution of IndGH N . ■

Definition 3.2.4 We say M is an induced G-module if it has the form IndG1 N
for some abelian group N , i.e., it can be written as N ⊗ZZ[G]. (The subscript 1
stands for the trivial group, since G-modules for G = 1 are just abelian groups.)

♢

Corollary 3.2.5 If M is an induced G-module, then M is acyclic.

Proof. Apply Lemma 3.2.3 with H = {1}. ■

To complete the previous argument, we need an important property of
induced modules. This is closely related to the Frobenius reciprocity law in
the theory of representations of finite groups.

Proposition 3.2.6 Let H be a subgroup of G, let M be a G-module, and let N
be an H-module. Then there are natural isomorphisms

HomG(M, IndGH N) ∼= HomH(M,N)
HomG(IndGH N,M) ∼= HomH(N,M).

Proof. To begin with, note that if we take N = M (or more precisely, N is a
copy of M with only the action of H retained), then the identity map between
M and N is supposed to correspond both to a homomorphism IndGHM →M
and to a homomorphism M → IndGHM . Let us write these maps down first:
the map IndGHM →M is ∑

g∈G
mg ⊗ [g] 7→

∑
g∈G

(mg)g,

while the map M → IndGHM is

m 7→
∑
i

mgi ⊗ [g−1
i ]

where gi runs over a set of left coset representatives of H in G. This second map
doesn’t depend on the choice of the representatives; consequently, for g ∈ G,
we can use the coset representatives ggi instead to see that

mg 7→
∑
i

mggi ⊗ [g−1
i ] =

(∑
i

mggi ⊗ [(ggi)−1]
)

[g].

This means that we do in fact get a map compatible with the G-actions. (Note
that the composition of these two maps is not the identity! For more on this
point, see the discussion of extended functoriality in Section 3.3.)
Now let N be general. Given a homomorphism M → N of H-modules, we get
a corresponding homomorphism IndGHM → IndGH N of G-modules, which we
can then compose with the above map M → IndGHM to get a homomorphism
M → IndGH N of G-modules. We thus get a map

HomH(M,N)→ HomG(M, IndGH N);

to get the map in the other direction, start with a homomorphism M → IndGH N ,
identify the target with functions ϕ : G → N , then compose with the map
IndGH N → N taking ϕ to ϕ(e).
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In the other direction, given a homomorphism N →M of H-modules, we get
a corresponding homomorphism IndGH N → IndGHM of G-modules, which we
can then compose with the above map IndGHM →M to get a homomorphism
IndGH N →M of G-modules. We thus get a map

HomH(N,M)→ HomG(IndGH N,M);

to get the map in the other direction, start with a homomorphism IndGH N →M
of G-modules and evaluate it on n ⊗ [e] to get a homomorphism N → M of
H-modules. ■

Remark 3.2.7 Proposition 3.2.6 asserts that the restriction functor from G-
modules to H-modules and the induction functor from H-modules to G-modules
form a pair of adjoint functors in both directions. This is rather unusual; it
is far more common to have such a relationship in only one direction. Indeed,
without assuming that G is finite (or at least that [G : H] <∞), then the proof
of Proposition 3.2.6 only shows that HomG(IndGH N,M) ∼= HomH(N,M).

Remark 3.2.8 The point of all of this is that it is much easier to embed
M into an acyclic G-module than into an injective G-module: use the map
M → IndG1 M constructed in Proposition 3.2.6! An immediate consequence is
that if M is finite, it can be embedded into a finite acyclic G-module, and thus
Hi(G,M) is finite for all i.

However, contrary to what you might expect, for fixed M , even if M is
finite, the groups Hi(G,M) do not necessarily become zero for i large. We’ll
see explicit examples in the next section.

Another consequence is the following result. (The case i = 1 was stated
previously in Exercise 2.)

Theorem 3.2.9 Let L/K be a finite Galois extension of fields. Then

Hi(Gal(L/K), L) = 0 for all i > 0.

Proof. Put G = Gal(L/K). The normal basis theorem (see Lang, Algebra or
Milne, Lemma II.1.24) states that there exists α ∈ L whose conjugates form
a basis of L as a K-vector space. This implies that L ∼= IndG1 K, so L is an
induced G-module and so is acyclic. ■

Group cohomology via homogeneous cochains
Now let’s see an explicit way to compute group cohomology.

Definition 3.2.10 Given a group G and a G-module M , define the G-module
N i for i ≥ 0 as the set of functions ϕ : Gi+1 →M , with the G-action

(ϕg)(g0, . . . , gi) = ϕ(g0g
−1, . . . , gig

−1)g.

Notice that this module is induced: we have N i = IndG1 N i
0 where N i

0 is the
subset of N i consisting of functions for which ϕ(g0, . . . , gi) = 0 when g0 ̸= e. ♢

Definition 3.2.11 Define the map di : N i → N i+1 by

(diϕ)(g0, . . . , gi+1) =
i+1∑
j=0

(−1)jϕ(g0, . . . , ĝj , . . . , gi+1),

where the hat over gj means you omit it from the list. ♢
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Lemma 3.2.12 With notation as in Definition 3.2.10 and Definition 3.2.11,
the sequence

0→M → N0 → N1 → . . .

is exact.
Proof. Left to the reader. ■

Definition 3.2.13 By Corollary 3.2.5 and Lemma 3.2.12, the sequence

0→M → N0 → N1 → . . .

is an acyclic resolution of the G-module M . Hence the cohomology of the
complex

0→ N0G → N1G → · · ·

coincides with the cohomology groups Hi(G,M). And now we have something
we can actually compute!

Some terminology: the elements of N1G are called (homogeneous) i-
cochains. The cocycles in the kernel of di are called (homogeneous) i-
cocycles. The ones in the image of di−1 are called i-coboundaries. (This
terminology makes little sense here; it is transferred from the classical theory of
homology of topological spaces, where it has some geometric significance.) ♢

Fun with H1

Remark 3.2.14 Using the resolution by homogeneous cochains, we can give
a very simple description of H1(G,M). Namely, a 1-cocycle ϕ : G2 → M is
determined by ρ(g) = ϕ(e, g), which by G-invariance satisfies the relation

0 = (d1ϕ)(e, h, gh)
= ϕ(h, gh)− ϕ(e, gh) + ϕ(e, h)
= (ϕh)(h, gh)− ρ(gh) + ρ(h)
= ϕ(e, g)h − ρ(gh) + ρ(h)
= ρ(g)h + ρ(h)− ρ(gh).

It is the image of a 0-cochain ψ : G→M if and only if

ρ(g) = ϕ(e, g) = ψ(g)− ψ(e) = ψ(e)g − ψ(e).

That is, H1(G,M) consists of crossed homomorphisms modulo principal
crossed homomorphisms, consistent with the definition we gave in Section 1.2.

Definition 3.2.15 We may also interpret H1(G,M) as the set of isomorphism
classes of principal homogeneous spaces of M . Such objects are sets A
with both a G-action and an M -action, subject to the following restrictions:

1. for any a ∈ A, the map M → A given by m 7→ m(a) is a bijection;

2. for a ∈ A, g ∈ G and m ∈ M , m(a)g = mg(ag) (i.e., the G-action and
M -action commute).

To define the associated class in H1(G,M), pick any a ∈ A, take the map
ρ : G → M characterized by ρ(g)(a) = ag, and let ϕ be the 1-cocycle with
ϕ(e, g) = ρ(g). The verification that this defines a bijection is left to the reader.

♢
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Example 3.2.16 The identity in H1(G,M) corresponds to the trivial principal
homogeneous space A = M , on which G acts as it does on M while M acts by
translation: m(a) = m+ a. □

Remark 3.2.17 This interpretation of H1 appears prominently in the theory
of elliptic curves.

1. For example, if L is a finite extension of K and E is an elliptic curve
over K, then H1(Gal(L/K), E(K̄)) is the set of K-isomorphism classes
of curves whose Jacobians are K-isomorphic to E and which have an
L-rational point but not necessarily a K-rational point. For any such
curve C, we can define the translation map E×K C → C by first defining
it over L, by picking some L-rational point to use as the origin, then
observing that the result is independent of the chosen point.

2. For another example, H1(Gal(L/K),Aut(EK̄)) parametrizes twists of
E, elliptic curves defined over K which are L-isomorphic to E. (E.g.,
y2 = x3 +x+1 versus 2y2 = x3 +x+1, with L = Q(

√
2).) In this example

the translation action is not so obvious, and its existence depends on the
fact that Aut(EK̄) is abelian. (One can interpret twists similarly for more
general curves, for which the automorphism group need not be abelian,
but then H1 won’t make sense the way we have defined it; it will only
have the structure of a pointed set.)

See [51], especially Chapter X, for all this and more fun with H1, including the
infamous Selmer group and Tate–Shafarevich group.

Fun with H2

Remark 3.2.18 We can also give an explicit interpretation of H2(G,M) (see
[36], example II.1.18(b)). It classifies short exact sequences

1→M → E → G→ 1

of (not necessarily abelian) groups on which G has a fixed action on M . The
action is given as follows: given g ∈ G and m ∈ M , choose h ∈ E lifting G;
then h−1mh maps to the identity in G, so comes from M , and we call it mg

since it depends only on g.
The correspondence is constructed as follows. Given an exact sequence as

above, choose a map s : G→ E (which need not be a homomorphism) such that
s(g) maps to g under the map E → G. Then the map ϕ : G3 →M given by

ϕ(a, b, c) = s(a)−1s(ba−1)−1s(cb−1)−1s(ca−1)s(a)

is a homogeneous 2-cocycle, and any two choices of s give maps that differ by a
2-coboundary.

What “classifies” means here is that two sequences give the same element
of H2(G,M) if and only if one can find an arrow E → E′ making the diagram
in Figure 3.2.19 commute.
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1 // M

id
��

// E

��

// G

id
��

// 1

1 // M // E′ // G // 1
Figure 3.2.19

Note that two sequences may not be isomorphic under this definition even if
E and E′ are abstractly isomorphic as groups. For example, if G = M = Z/pZ
and the action is trivial, then H2(G,M) = Z/pZ even though there are only
two possible groups E, namely Z/p2Z and Z/pZ× Z/pZ.

Remark 3.2.20 One can similarly interpret Hi(G,M) for i > 2 in terms of
longer exact sequences; this is similar to the construction of higher Yoneda
extension groups. See [22].

Extended functoriality
We already saw that if we have a homomorphism of G-modules, we get induced
homomorphisms on cohomology groups. But what if we want to relate G-
modules for different groups G, as will happen in our study of class field theory?
It turns out that in a suitable sense, the cohomology groups are also functorial
with respect to changing G.

Definition 3.2.21 Let M be a G-module and M ′ a G′-module. Suppose we are
given a homomorphism α : G′ → G of groups and a homomorphism β : M →M ′

of abelian groups (note that they go in opposite directions!). We say these are
compatible if β(mα(g)) = β(m)g for all g ∈ G and m ∈M . In this case, one
gets canonical homomorphisms Hi(G,M)→ Hi(G′,M ′): one firsts constructs
these on pairs of injective resolutions, then shows that any two choices are
homotopic and hence give the same maps on cohomology. We will refer to the
construction of such homomorphisms as the extended functoriality of group
cohomology. ♢

Example 3.2.22 The principal examples of extended functoriality we will be
using are the following.

1. Note that cohomology groups don’t seem to carry a nontrivial G-action,
because you compute them by taking invariants. This can be reinterpreted
in terms of extended functoriality: let α : G→ G be the conjugation by
some fixed h: g 7→ h−1gh, and let β : M → M be the map m 7→ mh.
Then the induced homomorphisms Hi(G,M)→ Hi(G,M) are all identity
maps.

2. If H is a subgroup of G, M is a G-module, and M ′ is just M with all but
the H-action forgotten, we get the restriction homomorphisms

Res: Hi(G,M)→ Hi(H,M).

Another way to get the same map: use the adjunction homomorphism
M → IndGHM from Proposition 3.2.6 sending m to

∑
im

gi ⊗ [g−1
i ], where

gi runs over a set of right coset representatives of H in G, then apply
Shapiro’s lemma (Lemma 3.2.3) to get

Hi(G,M)→ Hi(G, IndGHM) ∼→ Hi(H,M).
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3. Let M be a G-module and consider the map IndGHM →M taking m⊗ [g]
to mg. We then get maps Hi(G, IndGHM)→ Hi(G,M) which, together
with the isomorphisms of Shapiro’s lemma (Lemma 3.2.3), give what are
called the corestriction homomorphisms:

Cor: Hi(H,M) ∼→ Hi(G, IndGHM)→ Hi(G,M).

4. The composition Cor ◦Res is induced by the homomorphism of G-modules
M → IndGHM →M given by

m 7→
∑
i

mgi ⊗ [g−1
i ]→

∑
i

m = [G : H]m.

Thus Cor ◦Res acts as multiplication by [G : H] on each (co)homology
group.
Bonus consequence (hereafter excluding the case of H0): if we take H
to be the trivial group, then the group in the middle is isomorphic to
Hi(H,M) = 0. So every cohomology group for G is killed by #G, and in
particular is a torsion group.
In fact, if M is finitely generated as an abelian group, this means Hi(G,M)
is always finite, because each of these will be finitely generated and torsion.
Of course, this won’t happen in many of our favorite examples, e.g.,
Hi(Gal(L/K), L∗) for L/K a finite Galois extension of fields.

5. Let H be a normal subgroup of G, let α be the surjection G → G/H,
and let β be the injection MH ↪→ M . Note that G/H acts on MH ; in
this case, we get the inflation homomorphisms

Inf : Hi(G/H,MH)→ Hi(G,M).

The inflation and restriction maps will interact in an interesting way; see
Proposition 4.2.14.

□

Exercises
1. Complete the proof of the correspondence between H1(G,M) and principal

homogeneous spaces (Definition 3.2.15).
2. The set H2(G,M) has the structure of an abelian group. Describe the

corresponding structure on short exact sequences 0→M → E → G→ 0.
(A related concept in homological algebra is the Baer sum.)

3.3 Homology and Tate groups
Reference. [36], II.2.

You may not be surprised to learn that there is a “dual” theory to the theory
of group cohomology, namely group homology. What you may be surprised
to learn is that one can actually fit the two together, so that in a sense the
homology groups become cohomology groups with negative indices. (Since the
arguments are similar to those for cohomology, I’m going to skip some details.)
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Homology
Definition 3.3.1 Let MG denote the maximal quotient of M on which G acts
trivially. In other words, MG is the quotient of M by the submodule spanned
by mg − m for all m ∈ M and g ∈ G. In yet other words, MG = M/MIG,
where IG is the augmentation ideal of the group algebra Z[G]:

IG =

∑
g∈G

zg[g] :
∑
g

zg = 0

 .

Or if you like, MG = M ⊗Z[G] Z. Since MG is the group of G-invariants, we
call MG the group of G-coinvariants. ♢

The functor M →MG is right exact but not left exact: if 0→M ′ →M →
M ′′ → 0, then M ′

G →MG →M ′′
G → 0 is exact but the map on the left is not

injective. Again, we can fill in the exact sequence by defining homology groups.

Definition 3.3.2 A G-module M is projective if for any surjection N → N ′

of G-modules and any map ϕ : M → N ′, there exists a map ψ : M → N
lifting ϕ. This definition is dual to the definition of an injective G-module, but
this symmetry is a bit misleading: it is much easier to find projectives than
injectives. For example, any G-module which is a free module over the ring
Z[G] is projective such as Z[G] itself! ♢

Definition 3.3.3 A projective resolution of M is an exact sequence · · · →
P1 → P0 →M → 0 of G-modules in which the Pi are projective. Given such a
resolution, take coinvariants to get a complex

· · · d2→ P2
d1→ P1

d0→ P0 → 0,

then put Hi(G,M) = ker(di−1)/ im(di). Again, this is canonically independent
of the resolution and functorial, and there is a long exact sequence which starts
out

· · · → H1(G,M ′′) δ→ H0(G,M ′)→ H0(G,M)→ H0(G,M ′′)→ 0.

♢

Definition 3.3.4 We say that M is acyclic (for homology) if Hi(G,M) = 0
for i > 0. As with group cohomology, we can replace a projective resolution
with an acyclic resolution and get the same homology groups. For example,
induced modules are again acyclic and the analogue of Shapiro’s lemma holds
(key point: any free Z[H]-module induces to a free Z[G]-module). ♢

Remark 3.3.5 One can give a concrete description of homology as well, but
we won’t need it for our purposes. Even without one, though, we can calculate
H1(G,Z), using the exact sequence

0→ IG → Z[G]→ Z→ 0.

By the long exact sequence in homology,

0 = H1(G,Z[G])→ H1(G,Z)→ H0(G, IG)→ H0(G,Z[G])

is exact, i.e. 0 → H1(G,Z) → IG/I
2
G → Z[G]/IG is exact. The last map

is induced by IG ↪→ Z[G] and so is the zero map. Thus H1(G,Z) ∼= IG/I
2
G;

recall that in Exercise 3, it was shown that the map g 7→ [g] − 1 defines an
isomorphism Gab → IG/I

2
G. This can be thought of as an algebraic analogue
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of the fact that the first homology group of a (reasonable) topological space
equals the abelianization of the fundamental group.

The Tate groups
We now “fit together” the long exact sequences of cohomology and homology
to get a doubly infinite exact sequence.

Definition 3.3.6 Let M be a G-module. Define the map NormG : M →M by

NormG(m) =
∑
g∈G

mg.

Then NormG induces a homomorphism

NormG : H0(G,M) = MG →MG = H0(G,M).

♢

Remark 3.3.7 You might be wondering why NormG is called a “norm” rather
than a “trace”. The reason is that in practice, our modules M will most often
be groups which are most naturally written multiplicatively, e.g., the nonzero
elements of a field.
Definition 3.3.8 We now define the Tate cohomology groups (or Tate
homology groups if you prefer) as follows:

Hi
T =


Hi(G,M) i > 0
MG/NormGM i = 0
ker(NormG)/MIG i = −1
H−i−1(G,M) i < −1.

♢

Lemma 3.3.9 For any short exact sequence 0 → M ′ → M → M ′′ → 0 of
G-modules, we have a canonical exact sequence

· · · → Hi−1
T (G,M ′′)→ Hi

T (G,M ′)→ Hi
T (G,M)→ Hi

T (G,M ′′)→ Hi+1
T (G,M ′)→ · · ·

which extends infinitely in both directions.

Proof. Since we already have long exact sequences for homology and cohomology,
the only remaining issue is exactness between H−2

T (G,M ′′) and H1
T (G,M ′)

inclusive. This follows by diagram-chasing, as in the proof of the snake lemma
(Lemma 3.1.16) on the commutative diagram Figure 3.3.10 with exact rows,
noting that the diagram remains commutative with the dashed arrows added.

■

H1(G,M ′′) //

��

H0(G,M ′) //

NormG

��

H0(G,M) //

NormG

��

H0(G,M ′′) //

NormG

��

0

��
0 // H0(G,M ′) // H0(G,M) // H0(G,M ′) // H1(G,M ′)

Figure 3.3.10

Remark 3.3.11 If M is an induced G-module, then Hi
T (G,M) = 0 for all i

(see Exercise 1. That is, induced modules are acyclic for all of cohomology,
homology, and Tate (co)homology.



CHAPTER 3. COHOMOLOGY OF GROUPS 39

Extended functoriality revisited
The extended functoriality for cohomology groups (Definition 3.2.21) has ana-
logues for homology groups and Tate cohomology groups, but under more
restrictive conditions.
Definition 3.3.12 Again, let M be a G-module and M ′ a G′-module, and
consider a homomorphism α : G′ → G of groups and a homomorphism β :
M →M ′ of abelian which are compatible in the sense of Definition 3.2.21. We
would like to obtain canonical homomorphisms Hi(G,M)→ Hi(G′,M ′), but
for this we need to add an additional condition to ensure that M →M ′ induces
a well-defined map MG →M ′

G′ . For instance, this holds if α is surjective.
For Tate cohomology groups, there is a further complication that the map

MG → (M ′)G′ does not necessarily induce a map Norm(M) → Norm(M ′).
However, this does occur if α is injective, so for instance we have well-defined
restriction maps Res : H0

T (G,M)→ H0
T (H,M) whenever H is a subgroup of

G. ♢

Remark 3.3.13 In Example 3.2.22, we used the restriction and corestriction
maps to show that for G a finite group and M a G-module, the groups Hi(G,M)
are torsion groups killed by #G for all i > 0. While we cannot extend the
corestriction map to Tate cohomology, we may still argue directly that H0

T (G,M)
is killed by #G.

Exercises

1. Prove that if M is an induced G-module, then Hi
T (G,M) = 0 for all i ∈ Z.

Hint. Use the fact that induced G-modules are acyclic for both coho-
mology and homology to reduce to checking the cases i = −1, 0. Another
option is to extend Shapiro’s lemma to Tate cohomology groups.

2. Let G ⊆ H be an inclusion of finite groups. Show that via the identification
from Remark 3.3.5, the map Res : H−2

T (G,Z)→ H−2
T (H,Z) corresponds

to the transfer (Verlagerung) map V : Gab → Hab. This provides another
way to derive the existence of the latter.

3.4 Cohomology of cyclic groups
Reference. [37], IV.7; [33], IX.1.

We next specialize attention to the case of a finite cyclic group, which
will play a key role in many of our calculations. In this case, the cohomology,
homology, and Tate groups satisfy a key periodicity property (Theorem 3.4.1)
which allows us to define and manipulate a sort of “Euler characteristic”, the
Herbrand quotient (Definition 3.4.4).

The periodicity theorem
In general, for any given G and M , it is at worst a tedious exercise to compute
Hi
T (G,M) for any single value of i, but try to compute all of these at once and

you discover that they exhibit very little evident structure. Thankfully, there is
an exception to that dreary rule when G is cyclic.

Theorem 3.4.1 Let G be a finite cyclic group and M a G-module. Then there
is a functorial isomorphism Hi

T (G,M)→ Hi+2
T (G,M) for all i ∈ Z; moreover,

these isomorphisms are all determined by the choice of a generator of G.
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Proof. Choose a generator g of G. We start with the four-term exact sequence
of G-modules

0→ Z→ Z[G]→ Z[G]→ Z→ 0

in which the first map is 1 7→
∑
g∈G[g], the second map is [h] 7→ [hg]− [h], and

the third map is [h] 7→ 1. Since everything in sight is a free abelian group, we
can tensor over Z with M and get another exact sequence:

0→M →M ⊗Z Z[G]→M ⊗Z Z[G]→M → 0.

The terms in the middle are just IndG1 M , where we first restrict M to a module
for the trivial group and then induce back up. Thus their Tate groups are all
zero. The desired result now follows from the following general fact: if

0→ A
f→ B

g→ C
h→ D → 0

is exact and B and C have all Tate groups zero, then there is a canonical
isomorphism Hi+2

T (G,A) → Hi
T (G,D). To see this, apply the long exact

sequence to the short exact sequences

0→ A→ B → B/ im(f)→ 0
0→ B/ ker(g)→ C → D → 0

to get

Hi+2(G,A) ∼= Hi+1(G,B/ im(f)) = Hi+1(G,B/ ker(g)) ∼= Hi(G,D).

■

Remark 3.4.2 In particular, when G is cyclic, the long exact sequence of a
short exact sequence 0→M ′ →M →M ′′ → 0 of G-modules curls up into an
exact hexagon as in Figure 3.4.3.

H−1
T (G,M) // H−1

T (G,M ′′)

''
H−1
T (G,M ′)

77

H0
T (G,M ′)

ww
H0
T (G,M ′′)

gg

H0
T (G,M)oo

Figure 3.4.3

Herbrand quotients
Definition 3.4.4 Let G be a finite cyclic group and let M be a G-module. If
the groups Hi

T (G,M) are finite, we define the Herbrand quotient as the ratio

h(M) = #H0
T (G,M)/#H−1

T (G,M).

From the exactness of the hexagon in Figure 3.4.3, we see that if M ′,M,M ′′

all have Herbrand quotients, then

h(M) = h(M ′)h(M ′′).

♢
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Remark 3.4.5 Expanding on the previous point, if two of M ′,M,M ′′ have
Herbrand quotients, then so does the third. For example, if M ′ and M ′′ have
Herbrand quotients, i.e., their Tate groups are finite, then we have an exact
sequence

H−1
T (G,M ′)→ H−1

T (G,M)→ H−1
T (G,M ′′)

and the outer groups are all finite. In particular, the first map is out of a finite
group and so has finite image, and modulo that image, H−1

T (G,M) injects into
another finite group. So it’s also finite, and so on.
Remark 3.4.6 In practice, it will often be much easier to compute the Herbrand
quotient of a G-module than to compute either of its Tate groups directly. The
Herbrand quotient will then do half of the work for free: once one group is
computed directly, at least the order of the other will be automatically known.

Remark 3.4.7 If M is finite, then h(M) = 1. To wit, the sequences

0→MG →M →M →MG → 0

0→ H−1
T (G,M)→MG

NormG→ MG → H0
T (G,M)→ 0

are exact, where M →M is the map m 7→ mg −m; thus MG and MG have the
same order, as do H−1

T and H0
T .

Exercises
1. The periodicity of the Tate groups for G cyclic means that there is a

canonical (up to the choice of a generator of G) isomorphism between
H−1
T (G,M) and H1

T (G,M), i.e., between ker(NormG)/MIG and the set
of equivalence classes of 1-cocycles. What is this isomorphism explic-
itly? In other words, given an element of ker(NormG)/MIG, what is the
corresponding 1-cocycle?

2. Put K = Qp(
√
p). Compute the Herbrand quotient of K∗ as a G-module

for G = Gal(Qp(
√
p)/Qp).

Hint. Use the exact sequence 1→ o∗
K → K∗ → Z→ 1.

3. Let G = S3 (the symmetric group on three letters), let M = Z3 with
the natural G-action permuting the factors, and let N = MG. Compute
Hi(G,M/N) for i = 1, 2 however you want: you can explicitly compute
cochains, use the alternate interpretations given above, or use the exact
sequence 0 → N → M → M/N → 0. Better yet, use more than one
method and make sure that you get the same answer.
Hint. Part of the point of this exercise is that even in this relatively
simple-looking situation, it is not all that easy to do the computation.
One approach that minimizes the computational complexity is to use the
Hochschild-Serre spectral sequence (see [36], Remark II.1.35>) to
reduce to working with the cyclic groups H = A3 ∼= Z/3Z and G/H =
S3/A3 ∼= Z/2Z, for which periodicity is applicable.

3.5 Profinite groups and infinite Galois theory
Reference. [37], IV.1 and IV.2 (for profinite groups only, not their cohomol-
ogy); [36], II.4.

We’ve mostly spoken so far about finite extensions of fields and the corre-
sponding finite Galois groups. However, Galois theory can be made to work
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perfectly well for infinite extensions, and it’s convenient to do so; it will be more
convenient at times to work with the absolute Galois group of field instead of
with the Galois groups of individual extensions.

Profinite groups
Recall the Galois correspondence for a finite extension.

Proposition 3.5.1 Let L/K be a finite Galois extension of fields and put
G = Gal(L/K). Then the (normal) subgroups H of G correspond to the
(Galois) subextensions M of L, the correspondence in each direction being given
by

H 7→ FixH, M 7→ Gal(L/M).

Proof. We will state a stronger result in Theorem 3.5.7. ■
To see what we have to be careful about for infinite extensions, consider

the following example.

Example 3.5.2 Let Fq be a finite field; recall that Fq has exactly one finite
extension of any degree. Moreover, for each n, Gal(Fqn/Fq) is cyclic of degree
n, generated by the Frobenius map σ which sends x to xq. In particular, σ
generates a cyclic subgroup of Gal(Fq/Fq). But this Galois group is much bigger
than that! Namely, let {sn}∞

n=1 be a sequence with sn ∈ Z/nZ, such that if
m|n, then sm ≡ sn (mod m). The set of such sequences forms a group Ẑ by
componentwise addition. This group is much bigger than Z, and any element
gives an automorphism of Fq: namely, the automorphism acts on Fqn as σsn . In
fact, Gal(Fq/Fq) ∼= Ẑ, and it is not true that every subgroup of Ẑ corresponds
to a subfield of Fq: the subgroup generated by σ has fixed field Fq, and you
don’t recover the subgroup generated by σ by taking automorphisms over the
fixed field. □

In order to recover the Galois correspondence, we need to impose a little
extra structure on Galois groups; namely, we give them a topology.

Definition 3.5.3 A profinite group is a topological group which is Hausdorff
and compact, and which admits a basis of neighborhoods of the identity consist-
ing of normal subgroups. More explicitly, a profinite group is a group G plus a
collection of subgroups of G of finite index designated as open subgroups,
such that the intersection of two open subgroups is open, but the intersection of
all of the open subgroups is trivial. Profinite groups act a lot like finite groups;
some of the ways in which this is true are reflected in the exercises. ♢

Example 3.5.4 Examples of profinite groups include the group Ẑ in which the
subgroups nẐ are open, and the p-adic integers Zp in which the subgroups pnZp
are open. More generally, for any local field K, the additive group oK and the
multiplicative group o∗

K are profinite. (The additive and multiplicative groups
of K are not profinite, because they’re only locally compact, not compact.) For
a nonabelian example, see Exercise 2. □

Remark 3.5.5 Warning. A profinite group may have subgroups of finite
index that are not open. For example, let G = 1+tFp[[t]] (under multiplication).
Then G is profinite with the subgroups 1 + tnFp[[t]] forming a basis of open
subgroups; in particular, it has countably many open subgroups. But G is
isomorphic to a countable direct product of copies of Zp, with generators 1 + ti

for i not divisible by p. Thus it has uncountably many subgroups of finite index,
most of which are not open!

By contrast, a theorem of Nikolov and Segal asserts that any finitely gener-
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ated profinite group (i.e., one which admits a dense finitely generated subgroup)
has the property that every subgroup of finite index is open. See [39].

Infinite Galois groups
Definition 3.5.6 If L/K is a Galois extension, but not necessarily finite,
we make G = Gal(L/K) into a profinite group by declaring that the open
subgroups of G are precisely Gal(L/M) for all finite subextensions M of L. ♢

Theorem 3.5.7 The Galois correspondence. Let L/K be a Galois
extension (not necessarily finite). Then there is a correspondence between
(Galois) subextensions M of L and (normal) closed subgroups H of Gal(L/K),
given by

H 7→ FixH, M 7→ Gal(L/M).

Proof. See [24], Theorem 8.16. ■

Example 3.5.8 The Galois correspondence of Theorem 3.5.7 holds for Fq/Fq
because the open subgroups of Ẑ are precisely nẐ for all positive integers n. □

Another way to construct profinite groups uses inverse limits (or projec-
tive limits or sometimes just limits).

Definition 3.5.9 Suppose we are given a partially ordered set I, a family
{Gi}i∈I of finite groups and a map fij : Gi → Gj for each pair (i, j) ∈ I × I
such that i > j. For simplicity, let’s assume the fij are all surjective (this is
slightly more restrictive than absolutely necessary, but is always true for Galois
groups). Then there is a profinite group G with open subgroups Hi for i ∈ I
such that G/Hi

∼= Gi in a manner compatible with the fij : let G be the set of
families {gi}i∈I , where each gi is in Gi and fij(gi) = gj . ♢

Example 3.5.10 The group Zp can be viewed either as the completion of Z for
the p-adic absolute value or as the inverse limit of the groups Z/pnZ. Similarly,
the group Ẑ can be viewed as the inverse limit of the groups Z/nZ, with the
usual surjections from Z/mZ to Z/nZ if m is a multiple of n (that is, the ones
sending 1 to 1). In fact, any profinite group can be reconstructed as the inverse
limit of its quotients by open subgroups. (And it’s enough to use just a set of
open subgroups which form a basis for the topology, i.e., for Zp, you can use
p2nZp as the subgroups.) □

Remark 3.5.11 Rule of thumb. If profinite groups make your head hurt,
you can always think instead of inverse systems of finite groups. But that might
make your head hurt more!

Cohomology of profinite groups
One can do group cohomology for groups which are profinite, not just finite,
but one has to be a bit careful: these groups only make sense when you carry
along the profinite topology.

Definition 3.5.12 If G is profinite, by a G-module we mean a topological
abelian group M with a continuous G-action M ×G→M . In particular, we
say M is discrete if it has the discrete topology; that implies that the stabilizer
of any element of M is open, and that M is the union of MH over all open
subgroups H of G. Canonical example: G = Gal(L/K) acting on L∗, even if L
is not finite.

The category of discrete G-modules has enough injectives, so you can define
cohomology groups for any discrete G-module, and all the usual abstract
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nonsense will still work. The main point is that you can compute them from
their finite quotients. ♢

Proposition 3.5.13 The group Hi(G,M) is the direct limit of Hi(G/H,MH)
using the inflation homomorphisms.

Proof. See [36], Proposition II.4.4. ■

Let us unpack this statement.

Definition 3.5.14 For H1 ⊆ H2 ⊆ G inclusions of finite index, we have the
inflation homomorphism

Inf : Hi(G/H2,M
H2)→ Hi(G/H1,M

H1).

Via these homomorphisms, the groups Hi(G/H,MH) form a direct system and
Proposition 3.5.13 asserts that Hi(G,M) is the direct limit (or inductive
limit or colimit) of the Hi(G/H,MH). In concrete terms, you take the disjoint
union of Hi(G/H,MH) over all H, then identify together pairs of elements
that become the same somewhere down the line. ♢

Remark 3.5.15 One can also compute the groups Hi(G,M) using continuous
cochains: this amounts to considering continuous maps Gi+1 →M that satisfy
the same algebraic conditions as do the usual cochains. One consequence of this
interpretation is that H1(G,M) classifies continuous crossed homomorphisms
modulo principal ones.
Remark 3.5.16 Warning. The passage from finite to profinite groups is
only well-behaved for cohomology. In particular, we will not attempt to define
either homology or the Tate groups in the profinite setting. (Remember that
the formation of the Tate groups involves the norm map, i.e., summing over
elements of the group.)

Exercises
1. Prove that every open subgroup of a profinite group contains an open

normal subgroup.
2. For any ring R, we denote by GLn(R) the group of n× n matrices over

R which are invertible (equivalently, whose determinant is a unit). Prove
that GLn(Ẑ) is a profinite group, and say as much as you can about its
open subgroups.

3. Let A be an abelian torsion group. Show that Hom(A,Q/Z) is a profinite
group, if we take the open subgroups to be all subgroups of finite index.
This group is called the Pontryagin dual of A.

4. A closed subgroup H of a profinite group G is called a Sylow p-subgroup
of G if, for every open normal subgroup N of G, the image of H in G/N
(a/k/a HN/N) is a Sylow p-subgroup of G/N . (It is enough to check this
for N running over a neighborhood basis of the identity.) Using the Sylow
theorems for finite groups, prove that:

(a) For every prime p, there exists a Sylow p-subgroup of G. (Beware
that this subgroup need not be open in G.)

(b) Every subgroup of G, the quotient of which by any open normal
subgroup is a p-group, is contained in a Sylow p-subgroup.

(c) Every two Sylow p-subgroups of G are conjugate.

Hint. See [37] exercise IV.2.4.
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5. Compute the Sylow p-subgroups of Ẑ, of Z∗
p, and of GL2(Zp).

Hint. See [37], exercise IV.2.4.
6. Artin-Schreier extensions.Let L/K be a Z/pZ-extension of fields of

characteristic p > 0. Prove that L = K(α) for some α such that αp−α ∈ K.
Hint. Let Ksep be a separable closure of K containing L, and consider
the short exact sequence 0→ Fp → Ksep → Ksep → 0 in which the map
Ksep → Ksep is given by x 7→ xp − x.



Chapter 4

Local class field theory

We will spend the entirety of Chapter 4 establishing local class field theory,
a classification of the abelian extensions of a local field. This will serve two
purposes. On one hand, the results of local class field theory can be used to
assist in the proofs of the global theorems, as we saw with Kronecker-Weber.
On the other hand, they also give us a model set of proofs which we will attempt
to emulate in the global case.

Recall that the term local field refers to a finite extension either of the
field of p-adic numbers Qp or of the field of power series Fq((t)). I’m going to
abuse language and ignore the second case, although all but a few things I’ll
say go through in the second case, and I’ll try to flag those when they come up.
(One big one: a lot of extensions have to be assumed to be separable for things
to work right.)

4.1 Overview of local class field theory
Reference. [36], I.1; [37], V.1.

The local reciprocity law
The main theorem of local class field theory is the following.

Definition 4.1.1 For K a local field, let Kab be the maximal abelian extension
of K. ♢

Theorem 4.1.2 Local Reciprocity Law. Let K be a local field. Then there
is a unique map ϕK : K∗ → Gal(Kab/K) satisfying the following conditions:

1. for any uniformizer π of K and any finite unramified extension L of K,
ϕK(π) acts on L as the Frobenius automorphism;

2. for any finite abelian extension L of K, the group of norms NormL/K L
∗ is

in the kernel of ϕK , and the induced map K∗/NormL/K L
∗ → Gal(L/K)

is an isomorphism.

Proof. See the discussion in Section 4.3. ■

Definition 4.1.3 The map ϕK in Theorem 4.1.2 is variously called the local
reciprocity map or the norm residue symbol. ♢

Example 4.1.4 Using the local Kronecker-Weber theorem (Theorem 1.1.5),
the statement of Theorem 4.1.2 can be explicitly verified for K = Qp. To wit,

46
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we have Kab = K1K2 where K1 =
⋃
nQp(ζpn) and K2 =

⋃
nQp(ζpn−1), and

Gal(Kab/K) ∼= Gal(K1/K)×Gal(K2/K). Since p is totally ramified in K1, we
have

Gal(K1/K) ∼= Gal(Q(ζp∞)/Q) ∼= Z∗
p.

Since p is unramified in K2, we have

Gal(K2/K) ∼= Gal(Fp/Fp) ∼= Ẑ.

However, it will be more convenient to think of the image as sitting inside

Gal(
⋃
n

Q(ζpn−1)/Q) ∼= Ẑ∗/Z∗
p
∼=
∏
q ̸=p

Z∗
q

(here using global Kronecker-Weber and Artin reciprocity). That is, we are
looking for a map

ϕK : Z∗
p × pZ ∼= Q∗

p → Gal(K1/K)×Gal(K2/K) ⊂ Z∗
p ×

∏
q ̸=p

Z∗
q ;

the map we want is the identity on the first factor and the map p 7→ p on the
second factor. See Exercise 1. □

The local reciprocity law is an analogue of the Artin reprocity law for
number fields. We also get an analogue of the existence of ray class fields.

Theorem 4.1.5 Local existence theorem. For every finite (not necessarily
abelian) extension L of K, NormL/K L

∗ is an open subgroup of K∗ of finite
index. Conversely, for every (open) subgroup U of K∗ of finite index, there
exists a finite abelian extension L of K such that U = NormL/K L

∗.

Proof. For the first assertion, see Exercise 3 (or Exercise 4 for the case of
characteristic p). For the second assertion, see Theorem 4.3.11. ■

Remark 4.1.6 In Theorem 4.1.5, the topology on K∗ is the one given by taking
the disjoint union of the sets πno∗

K for n ∈ Z, where π ∈ K× is a uniformizer.
In fact, it is only necessary to keep track of this topology in the function field
case; for K a finite extension of Qp, one can show that every subgroup of K∗

of finite index is open.
Another way to identify the correct topology on K∗ is to equip K with

its usual topology (the norm topology defined by an extension of the p-adic
absolute value) and then take the subspace topology for the inclusion of K∗

into K ×K given by x 7→ (x, x−1). While this does coincide with the subspace
topology for the inclusion of K∗ into K, there are good reasons not to view it
this way; see Exercise 6.

The local existence theorem says that if we start with a nonabelian extension
L, then NormL/K L

∗ is also the group of norms of an abelian extension. But
which one? The following theorem gives the answer.

Theorem 4.1.7 Norm limitation theorem. Let M be the maximal abelian
subextension of L/K. Then NormL/K L

∗ = NormM/KM
∗.

Proof. See the discussion in Section 4.3. ■

Remark 4.1.8 In Theorem 4.1.7, it is evident that NormL/K L
∗ ⊆

NormM/KM
∗ because NormL/K = NormM/K ◦NormL/M . Since the group

NormL/K L
∗ can be shown directly to be an open subgroup of finite index (see

Exercise 3), Theorem 4.1.5 implies that it has the form NormN/K N
∗ for some

finite abelian extension N of K. Theorem 4.1.2 then implies that M ⊆ N . The
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subtle point that remains to be proven is that the inclusion M ⊆ N is actually
an equality.
Remark 4.1.9 For each uniformizer π of K, let Kπ be the composite of all finite
abelian extensions L such that π ∈ NormL/K L

∗. Then the local reciprocity
map implies that Kab = Kπ ·Kunr.

It turns out that Kπ can be explicitly constructed as the extension of K
by certain elements, thus giving a generalization of local Kronecker-Weber to
arbitrary local fields! These elements come from Lubin-Tate formal groups,
which we will not discuss further.

Note that for L/K a finite extension of local fields, the map

K∗/NormL/K L
∗ → Gal(L/K) = G

obtained by combining the local reciprocity law with the norm limitation theo-
rem is in fact an isomorphism ofG = Gab = H−2

T (G,Z) withK∗/NormL/K L
∗ =

H0
T (G,L∗). We will in fact show something stronger, from which we will deduce

both the local reciprocity law and the norm limitation theorem.

Theorem 4.1.10 For any finite Galois extension L/K of local fields with Galois
group G, there is a canonical isomorphism Hi

T (G,Z)→ Hi+2
T (G,L∗).

Proof. See the discussion in Section 4.3. ■

Remark 4.1.11 The map in Theorem 4.1.10 can be written in terms of the
cup product in group cohomology (see [36], Proposition II.1.38). We will not
develop this point of view here.

The local invariant map
We will first prove the following.

Theorem 4.1.12 For any local field K, there exist canonical isomorphisms

H2(Gal(Kunr/K), (Kunr)∗)→ H2(Gal(K/K),K∗)
invK : H2(Gal(K/K),K∗)→ Q/Z.

Proof. This will follow from Proposition 4.2.1. ■

Definition 4.1.13 In Theorem 4.1.12, the first map is an inflation homomor-
phism; the second map is called the local invariant map. More precisely, for
L/K finite of degree n, we have an isomorphism

invL/K : H2(Gal(L/K), L∗)→ 1
n
Z/Z,

and these isomorphisms are compatible with inflation. (In particular, we don’t
need to prove the first isomorphism separately. But that can be done, by
considerations involving the Brauer group; see below.) ♢

To use Theorem 4.1.12 to prove Theorem 4.1.10 and hence the local reci-
procity law (Theorem 4.1.2) and the norm limitation theorem (Theorem 4.1.7),
we employ the following theorem of Tate.

Theorem 4.1.14 Let G be a finite group and M a G-module. Suppose that
for each subgroup H of G (including H = G), H1(H,M) = 0 and H2(H,M) is
cyclic of order #H. Then there exist isomorphisms Hi

T (G,Z)→ Hi+2
T (G,M)

for all i; these are canonical once you fix a choice of a generator of H2(G,M).

Proof. See Theorem 4.3.1. ■
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Definition 4.1.15 For any field K, the group H2(Gal(K/K),K∗) is called the
Brauer group of K. See Section 7.6 for further discussion. ♢

Abstract class field theory
Having derived local class field theory once, we will do it again a slightly
different way in Chapter 5. In the course of proving the above results, we will
show (among other things) that if L/K is a cyclic extension of local fields,

#H0
T (Gal(L/K), L∗) = [L : K], #H−1

T (Gal(L/K), L∗) = 1.

It turns out that this alone is enough number-theoretic input to prove local
class field theory! More precisely, we will identify “minimal” properties of a
field K with G = Gal(K/K), a surjective continuous homomorphism d : G→ Ẑ
(defining “unramified” extensions of K), a continuous G-module A (playing
the role of K∗), and a homomorphism v : AG → Ẑ (playing the role of the
valuation map) that will suffice to yield the reciprocity map. See Section 5.4
for the continuation of this discussion.

Exercises
1. Building on Example 4.1.4, verify Theorem 4.1.2 in the case K = Qp.

Hint. The first assertion of Theorem 4.1.2 follows from global Artin
reciprocity (Definition 1.1.7). To check the second assertion for L = Q(ζn),
use the fact that NormQp(ζpm )/Qp

(1− ζpm) = p for any positive integer m.
Alternatively, see Lemma 7.5.3.

2. For K = Qp, take π = p in Remark 4.1.9. Determine Kπ, again using local
Kronecker-Weber.
Hint. You should get Kπ = Q(ζp∞).

3. Prove that for any finite extension L/K of finite extensions of Qp,
NormL/K L

∗ is an open subgroup of K∗.
Hint. Show that already NormL/K K

∗ is open! The corresponding state-
ment in positive characteristic is more subtle; see Exercise 4.

4. Prove that for any finite extension L/K of finite separable extensions of
Fp((t)), NormL/K L

∗ is an open subgroup of K∗.
Hint. Reduce to the case of a cyclic extension of prime degree. If the
degree is prime to p, you may imitate Exercise 3; otherwise, that approach
fails because NormL/K K

∗ lands inside the subfield Kp, but you can use
this to your advantage to make an explicit calculation.

5. A quaternion algebra over a field K is a central simple algebra over K
of dimension 4. If K is not of characteristic 2, any such algebra has the
form

K ⊕Ki⊕Kj ⊕Kk, i2 = a, j2 = b, ij = −ji = k

for some a, b ∈ K∗. (For example, the case K = R, a = b = −1 gives
the standard Hamilton quaternions.) A quaternion algebra is split if it is
isomorphic to the ring of 2× 2 matrices over K. Show that if K is a local
field, then any two quaternion algebras which are not split are isomorphic
to each other.
Hint. While this can be done using elementary methods, it will also
follow from Theorem 4.1.12 via the cohomological description of Brauer
groups; see Lemma 7.6.2.
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6. Let K be a finite extension of Qp. Show that K∗ can be viewed as a closed
subspace of K ×K via the inclusion x 7→ (x, x−1), and deduce from this
that K∗ is a locally compact abelian group for the subspace topology It
can also be viewed as a subspace of K, but not as a closed subspace; this
distinction will show up more seriously when we talk about adèles and
idèles (Remark 6.2.3).

4.2 Cohomology of local fields: some computa-
tions

Reference. [36], III.1 and III.2; [37], V.1.

Notation convention. If you catch me writing Hi(L/K) for L/K a Galois
extension of fields, that’s shorthand for Hi(Gal(L/K), L∗). Likewise for Hi or
Hi
T .

Overview
We now make some computations of Hi

T (L/K) for L/K a Galois extension
of local fields. To begin with, recall that by “Theorem 90” (Lemma 1.2.3),
H1(L/K) = 0. Our next goal will be to supplement this fact with a computation
of H2(L/K).

Proposition 4.2.1 For any finite Galois extension L/K of local fields,
H2(L/K) is cyclic of order [L : K]. Moreover, this group can be canon-
ically identified with 1

[L:K]Z/Z in such a way that if M/L is another fi-
nite extension such that M/K is also Galois, the inflation homomorphism
H2(L/K)→ H2(M/K) corresponds to the inclusion 1

[L:K]Z/Z ⊆
1

[M :K]Z/Z.

Proof. For the first assertion, see Proposition 4.2.17 and Proposition 4.2.18.
For the second assertion, see Lemma 4.2.21. ■

Remark 4.2.2 Before continuing, it is worth keeping in a safe place the exact
sequence

1→ o∗
L → L∗ → L∗/o∗

L = πZ
L → 1.

In this exact sequence of G = Gal(L/K)-modules, the action on πZ
L is always

trivial (since the valuation on L is Galois-invariant).

Remark 4.2.3 Another basic fact to keep in mind is that any finite Galois
extension of local fields is solvable. To wit, the maximal unramified extension
is cyclic,; the maximal tamely ramified extension is cyclic over that; and the
rest is a Galois extension whose degree is a power of p, and every finite p-group
is solvable.

This will allow us to simplify some of the following arguments by writing a
general Galois extension as a tower of successive cyclic extensions. Of course
we will have no such shortcut in the global case, because the Galois group of
a Galois extension of number fields can be any group whatsoever; in fact the
inverse Galois problem asks whether this always occurs for an extension over
Q, and no counterexample is known.

The unramified case
Recall that unramified extensions are cyclic, since their Galois groups are also
the Galois groups of extensions of finite fields.
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Proposition 4.2.4 For any finite extension L/K of finite fields, the map
NormL/K : L∗ → K∗ is surjective.

Proof. One can certainly give an elementary proof of this using the fact that L∗

is cyclic (see Exercise 1). But one can also see it using the machinery we have
at hand. Because L∗ is a finite module, its Herbrand quotient is 1. Also, we
know H1

T (L/K) is trivial by Lemma 1.2.3. Thus H0
T (L/K) is trivial too, that

is, NormL/K : L∗ → K∗ is surjective. ■

Proposition 4.2.5 For any finite unramified extension L/K of local fields, the
map NormL/K : o∗

L → o∗
K is surjective.

Proof. Say u ∈ o∗
K is a unit. By Proposition 4.2.4, we may pick v0 ∈ o∗

L such that
in the residue fields, the norm of v0 coincides with u. Thus u/Norm(v0) ≡ 1
(mod π), where π is a uniformizer of K. Now we construct units vi ≡ 1
(mod πi) such that ui = u/Norm(v0 · · · vi) ≡ 1 (mod πi+1): simply take vi so
that Trace((1− vi)/πi) ≡ (1− ui−1)/πi (mod π). (That’s possible because the
trace map on residue fields is surjective by the normal basis theorem.) Then
the product v0v1 · · · converges to a unit v with norm u. ■

Corollary 4.2.6 For any finite unramified extensions L/K of local fields,
Hi
T (Gal(L/K), o∗

L) = 1 for all i ∈ Z.

Proof. Again, Gal(L/K) is cyclic, so by Theorem 3.4.1 we need only check this
for i = 0, 1. For i = 0, it is Proposition 4.2.5. For i = 1, note that because
L/K is unramified, we can split the surjection L∗ → L∗/o∗

L by choosing a
uniformizer πK of K and writing L∗ = o∗

Lπ
Z
K . Hence H1

T (Gal(L/K), o∗
L) is a

direct summand of H1
T (Gal(L/K), L∗), and the latter vanishes by Lemma 1.2.3.

■

Proposition 4.2.7 For any finite unramified extension L/K of local fields,
H2(L/K) is cyclic of order [L : K].

Proof. Using the Herbrand quotient, we get h(L∗) = h(o∗
L)h(Z). Corollary 4.2.6

says that h(o∗
L) = 1, and

h(L∗/o∗
L) = h(Z)

= #H0
T (Gal(L/K),Z)/#H1

T (Gal(L/K),Z)
= # Gal(L/K)ab/# Hom(Gal(L/K),Z)
= [L : K].

Since H1
T (Gal(L/K), L∗) is trivial, we conclude that H0

T (Gal(L/K), L∗) has
order [L : K]. Moreover, the long exact sequence of Tate groups gives an exact
sequence

1→ H0
T (Gal(L/K), L∗)→ H0

T (Gal(L/K),Z) = Gal(L/K)→ 1,

where the ends vanish by Corollary 4.2.6 again; so by periodicity (Theorem 3.4.1)
we also get that H0

T (Gal(L/K), L∗) ∼= H2(L/K) is cyclic of order [L : K]. ■

Let us now make the description of H2(L/K) more canonical. Consider the
short exact sequence

0→ Z→ Q→ Q/Z→ 0

of modules with trivial Galois action. The module Q is injective as a G-module
for any group G (Exercise 2). Thus we get an isomorphism H0

T (Gal(L/K),Z)→
H−1
T (Gal(L/K),Q/Z). But the latter is

H1(Gal(L/K),Q/Z) = Hom(Gal(L/K),Q/Z);
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since Gal(L/K) has a canonical generator (Frobenius), we can evaluate there
and get a canonical map

Hom(Gal(L/K),Q/Z)→ Z/[L : K]Z ⊂ Q/Z..

Putting it all together, we get a canonical map

H2(Gal(L/K), L∗) ∼= H0
T (Gal(L/K), L∗) ∼= H1(Gal(L/K),Q/Z) ↪→ Q/Z.

In this special case, this is none other than the local invariant map! In fact,
by taking direct limits, we get a canonical isomorphism

H2(Kunr/K) ∼= Q/Z.

Remark 4.2.8 What’s really going on here is that H0
T (Gal(L/K), L∗) is a

cyclic group generated by a uniformizer π (since every unit is a norm). Under
the map H0

T (Gal(L/K), L∗) → Q/Z, that uniformizer is being mapped to
1/[L : K].

The cyclic case
Let L/K be a cyclic but possibly ramified extension of local fields. Again,
H1
T (L/K) is trivial by Lemma 1.2.3, so all there is to compute is H0

T (L/K).
We are going to show again that it has order [L : K]. (It’s actually cyclic again,
but we won’t prove this just yet.)

Lemma 4.2.9 Let L/K be a finite Galois extension of local fields. Then there
is an open, Galois-stable subgroup V of oL such that Hi(Gal(L/K), V ) = 0 for
all i > 0 (i.e., V is acyclic for cohomology).

Proof. By the normal basis theorem, there exists α ∈ L such that {αg : g ∈
Gal(L/K)} is a basis for L over K. Without loss of generality, we may rescale
to get α ∈ oL; then put V =

∑
oKα

g. As in the proof of Theorem 3.2.9, V is
induced: V = IndG1 oK , so is acyclic. ■

The following proof uses that we are in characteristic 0, but it can be
modified to work also in the function field case.
Lemma 4.2.10 Let L/K be a finite Galois extension of local fields. Then there
is an open, Galois-stable subgroup W of o∗

L such that Hi(Gal(L/K),W ) = 0
for all i > 0.

Proof. Take V as in Lemma 4.2.9. If we choose α sufficiently divisible, then V
lies in the radius of convergence of the exponential series

exp(x) =
∞∑
i=0

xi

i!

(you need vp(x) > 1/(p− 1), to be precise), and we may take W = exp(V ). ■

Proposition 4.2.11 For L/K a cyclic extension of local fields,
#H0

T (Gal(L/K), L∗) = [L : K].

Proof. Take W as in Lemma 4.2.10. Since W has finite index in o∗
L, we have

h(o∗
L/W ) = 1 and hence h(o∗

L) = h(W ) = 1 by Lemma 4.2.10. So again we
may conclude that h(L∗) = h(o∗

L)h(Z) = [L : K], and so H0
T (Gal(L/K), L∗) =

[L : K]. ■

Remark 4.2.12 Notwithstanding Proposition 4.2.11, at this stage we cannot yet
check that H0

T (Gal(L/K), L∗) is cyclic, because the groups H1
T (Gal(L/K), o∗

L)
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are not guaranteed to vanish. See Exercise 3.
Remark 4.2.13 Note. This is all that we need for “abstract” local class field
theory. We’ll revisit this point later.

The general case
For those in the know, there is a spectral sequence underlying this next
result; compare Exercise 3.

Proposition 4.2.14 Inflation-restriction exact sequence. Let G be
a finite group, let H be a normal subgroup, and let M be a G-module. If
Hi(H,M) = 0 for i = 1, . . . , r − 1, then the sequence

0→ Hr(G/H,MH) Inf→ Hr(G,M) Res→ Hr(H,M)

is exact.

Proof. For r = 1, the condition on Hi is empty. In this case, H1(G,M) classifies
crossed homomorphisms ϕ : G→M . If one of these factors through G/H, it
becomes a constant map when restricted to H; if that constant value itself
belongs to MH , then it must be zero and so the restriction to H is trivial.
Conversely, if there exists some m ∈M such that ϕ(h) = mh−m for all h ∈ H,
then ϕ′(g) = ϕ(g) −mg + m is another crossed homomorphism representing
the same class in H1(G,M), but taking the value 0 on each h ∈ H. For
g ∈ G, h ∈ H, we have

ϕ′(hg) = ϕ′(h)g + ϕ′(g) = ϕ′(g),

so ϕ′ is constant on cosets ofH and so may be viewed as a crossed homomorphism
from G/H to M . On the other hand,

ϕ′(g) = ϕ′(gh) = ϕ′(g)h + ϕ(h) = ϕ′(g)h

so ϕ′ takes values in MH . Thus the sequence is exact at H1(G,M); exactness
at Hi(G/H,MH) is similar but easier.
If r > 1, we induct on r by dimension shifting. Recall (from Proposition 3.2.6)
that there is an injective homomorphism M → IndG1 M of G-modules. Let N
be the G-module which makes the sequence

0→M → IndG1 M → N → 0

exact. We construct a commutative diagram

0 // Hr−1(G/H,NH) Inf //

��

Hr−1(G,N) Res //

��

Hr−1(H,N)

��
0 // Hr(G/H,MH) Inf // Hr(G,M) Res // Hr(H,M).

Figure 4.2.15
The second vertical arrow arises from the long exact sequence for G-cohomology;
since IndG1 M is an induced G-module, this arrow is an isomorphism. Similarly,
the third vertical arrow arises from the long exact sequence for H-cohomology,
and it is an isomorphism because IndG1 M is also an inducedH-module; moreover,
Hi(H,N) = 0 for i = 1, . . . , r − 2. Finally, taking H-invariants yields another
exact sequence

0→MH → (IndG1 M)H → NH → H1(H,M) = 0,
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so we may take the long exact sequence for G/H-cohomology to obtain the
first vertical arrow; it is an isomorphism because (IndG1 M)H is an induced
G/H-module. The induction hypothesis implies that the top row is exact, so
the bottom row is also exact. ■

Corollary 4.2.16 If M/L/K is a tower of fields with M/K and L/K finite
and Galois, the sequence

0→ H2(L/K) Inf→ H2(M/K) Res→ H2(M/L)

is exact.
Proof. This follows from Proposition 4.2.14 using Lemma 1.2.3. ■

We now prove the following.

Proposition 4.2.17 For any finite Galois extension L/K of local fields, the
group H2(Gal(L/K), L∗) has order at most [L : K].

Proof. We’ve checked the case of L/K cyclic, so we may use it as the basis for
an induction. If L/K is not cyclic, since it is solvable (Remark 4.2.3), we can
find a Galois subextension M/K. Now the exact sequence

0→ H2(M/K)→ H2(L/K)→ H2(L/M)

from Corollary 4.2.16 implies that #H2(L/K) ≤ #H2(M/K)#H2(L/M) =
[M : K][L : M ] = [L : K]. ■

To complete the proof that H2(L/K) is cyclic of order [L : K], it now
suffices to produce a cyclic subgroup of order [L : K].

Proposition 4.2.18 Let L/K be a finite Galois extension of local fields. Let
M/K be an unramified extension of degree [L : K]. Then the image of H2(L/K)
in H2(ML/K) contains the image of H2(M/K) in H2(ML/K). Consequently
(by Proposition 4.2.7 and Corollary 4.2.16), the group H2(Gal(L/K), L∗) con-
tains a cyclic subgroup of order [L : K].

Proof. Consider the diagram

H2(M/K)

Inf
�� ''

0 // H2(L/K) Inf // H2(ML/K) Res // H2(ML/L)
Figure 4.2.19
in which the bottom row is exact and the vertical arrow is injective, both by
Corollary 4.2.16. It suffices to show that the diagonal arrow H2(M/K) →
H2(ML/L) is the zero map, as this will imply an inclusion H2(M/K) ⊆
H2(L/K) within H2(ML/K) and we already know that H2(M/K) is cyclic of
order [M : K] = [L : K] by Proposition 4.2.7.
Let e = e(L/K) and f = f(L/K) be the ramification index and residue field
degree, so that [ML : L] = e. Let U be the maximal unramified subextension
of L/K; then we have a canonical isomorphism Gal(ML/L) ∼= Gal(M/U) of
cyclic groups. By using the same generators in both groups, we can make a
commutative diagram
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H0
T (M/K) Res //

��

H0
T (M/U) //

��

H0
T (ML/L)

��
H2(M/K) Res // H2(M/U) // H2(ML/L)

Figure 4.2.20
in which the vertical arrows are isomorphisms. (Remember from Defini-
tion 3.3.12 that restriction maps on Tate homology make sense in degree
0; that gives the first horizontal arrow in Figure 4.2.20.) The composition in
the bottom row is the map H2(M/K)→ H2(ML/L) which we want to be zero;
it thus suffices to check that the top row composes to zero.
Let us rewrite this composition concretely as

K∗/NormM/KM
∗ → U∗/NormM/U M

∗ → L∗/NormML/L(ML)∗

where the maps are induced by the inclusions K∗ → U∗ → L∗. Now
K∗/NormM/KM

∗ is a cyclic group of order ef generated by πK , a uniformizer
of K, and L∗/NormML/L(ML)∗ is a cyclic group of order e generated by πL,
a uniformizer of L. But πK is a unit of oL times πeL, so the map in question is
indeed zero. ■

The local invariant map
We have now proved the first assertion of Proposition 4.2.1 (by combining
Proposition 4.2.17 and Proposition 4.2.18). We now turn to the second assertion.
In the process, we will also see that H2(K/K) ∼= Q/Z.

Lemma 4.2.21 For any Galois extension L/K of local fields, the group
H2(L/K) can be canonically identified with 1

[L:K]Z/Z in such a way that if
M/K is another Galois extension containing L, the inflation homomorphism
H2(L/K)→ H2(M/K) corresponds to the inclusion 1

[L:K]Z/Z ⊆
1

[M :K]Z/Z.

Proof. By Corollary 4.2.16 we have an injection H2(Kunr/K) → H2(K/K),
and the former is canonically isomorphic to Q/Z; so we have to prove that this
injection is actually also surjective. Remember that H2(K/K) is the direct
limit of H2(M/K) running over all finite extensions M of K. What we just
showed above is that if [M : K] = n and L is the unramified extension of K
of degree n, then the images of H2(M/K) and H2(L/K) in H2(ML/K) are
the same. In particular, that means that H2(M/K) is in the image of the map
H2(Kunr/K)→ H2(K/K). Since that’s true for any M , we get that the map
is indeed surjective, hence an isomorphism. ■

Remark 4.2.22 By combining Proposition 4.2.18 with Lemma 4.2.21, we
see that for any local field K, the map H2(Kunr/K) → H2(K/K) is an
isomorphism. We can use this to see the effect of changing K on this group;
see Proposition 4.2.23 below.

Proposition 4.2.23 For L/K a finite extension of local fields of degree n, the
map Res : H2(Kunr/K)→ H2(Lunr/L) translates, via the local reciprocity map,
into the map from Q/Z to itself given by multiplication by n.
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Proof. We compute the map following [36], Proposition III.1.8. Put e =
eL/K , f = fL/K . We form a commutative diagram

H2(Kunr/K)

Res
��

vK// H2(Gal(Kunr/K),Z)

eRes
��

H1(Gal(Kunr/K),Q/Z)δoo

eRes
��

// Q/Z

×ef
��

H2(Lunr/L) vL // H2(Gal(Lunr/L),Z) H1(Gal(Lunr/L),Q/Z)δoo // Q/Z

Figure 4.2.24
as follows. The left square comes from the valuation maps. The middle square
comes from the connecting homomorphisms for the sequence 0 → Z → Q →
Q/Z→ 0 with the trivial actions; note that these connecting homomorphisms
are isomorphisms by Exercise 2. The right square comes from evaluating crossed
homomorphisms at Frobenius. Since ef = n, this yields the claim. ■

Exercises
1. Give an elementary proof (without cohomology) that the norm map from

one finite field to another is always surjective.
Hint. Write everything in terms of a generator of the multiplicative
group of the larger field.

2. \times Let G be a finite group. Let M be a G-module whose underlying
abelian group is a Q-vector space. Prove that M is an acyclic G-module.
Hint. First show that the groups Hi(G,M) are divisible, say using the
description in terms of cochains. Then combine with the fact that these
group are killed by the order of G (Example 3.2.22).

3. Give an example of a cyclic ramified extension L/K of local fields in which
the groups Hi

T (Gal(L/K), o∗
L) are nontrivial.

4.3 Local class field theory via Tate’s theorem
Reference. [36] II.3, III.5.

For L/K a finite extension of local fields (of characteristic 0), we have now
computed that H1(L/K) = 0 (Lemma 1.2.3) and H2(L/K) is cyclic of order
[L : K] (Proposition 4.2.1). We next use these ingredients to establish all of
the statements of local class field theory.

Tate’s theorem
We first prove the theorem of Tate stated earlier (Theorem 4.1.14). Note that
right now, we only need this for solvable groups because every finite Galois
extension of local fields has solvable Galois group (Remark 4.2.3); this allows
for some simplification in the arguments. However, we will do the extra work
to do the general case for later use in the global setting.

Theorem 4.3.1 Tate. Let G be a finite group and let M be a G-module.
Suppose that for all subgroups H of G (including G itself), H1(H,M) = 0 and
H2(H,M) is cyclic of order #H. Then there are isomorphisms Hi

T (G,Z)→
Hi+2
T (G,M) which are canonical up to a choice of generator of H2(G,M).

Proof. Let γ be a generator of H2(G,M). Since Cor ◦Res = [G : H] (Exam-
ple 3.2.22), Res(γ) generates H2(H,M) for any H. We start out by explicitly
constructing a G-module containing M in which γ becomes a coboundary.
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Choose a 2-cocycle ϕ : G3 →M representing γ; by the definition of a cocycle,

ϕ(g0g, g1g, g2g) = ϕ(g0, g1, g2)g,
ϕ(g1, g2, g3)− ϕ(g0, g2, g3) + ϕ(g0, g1, g3)− ϕ(g0, g1, g2) = 0.

Moreover, ϕ is a coboundary if and only if it’s of the form d(ρ), that is,
ϕ(g0, g1, g2) = ρ(g1, g2)− ρ(g0, g2) + ρ(g0, g1). This ρ must itself be G-invariant:
ρ(g0, g1)g = ρ(g0g, g1g). Thus ϕ is a coboundary if ϕ(e, g, hg) = ρ(e, h)g −
ρ(e, hg) + ρ(e, g).
Let M [ϕ] be the direct sum of M with the free abelian group with one generator
xg for each element g of G− {e}, with the G-action

xgh = xhg − xg + ϕ(e, g, hg).

(The symbol xe should be interpreted as the element ϕ(e, e, e) of M .) Using
the cocycle property of ϕ, one may verify that this is indeed a G-action; by
construction, the cocycle ϕ becomes zero in H2(G,M [ϕ]) by setting ρ(e, g) = xg.
(Milne calls M [ϕ] the splitting module of ϕ.) Moreover, by the same token,
for any H, the restriction of ϕ to H also becomes zero in H2(H,M).
The map α : M [ϕ]→ Z[G] sending M to zero and xg to [g]− 1 is a homomor-
phism of G-modules. Actually it maps into the augmentation ideal IG, and the
sequence

0→M →M [ϕ]→ IG → 0

is exact. (Note that this is backwards from the usual exact sequence featuring
IG as a submodule, which will appear again momentarily.) For any subgroup
H of G, we can restrict to H-modules, then take the long exact sequence:

0 = H1(H,M)→ H1(H,M [ϕ])→ H1(H, IG)→ H2(H,M)→ H2(H,M [ϕ])→ H2(H, IG).

To make headway with this, view 0 → IG → Z[G] → Z → 0 as an exact
sequence of H-modules. Since Z[G] is induced, its Tate groups all vanish. So
we get a dimension shift:

H1(H, IG) ∼= H0
T (H,Z) = Z/(#H)Z.

Similarly, H2(H, IG) ∼= H1(H,Z) = 0. Also, the map H2(H,M) →
H2(H,M [ϕ]) is zero because we constructed this map so as to kill off the
generator ϕ. Thus H2(H,M [ϕ]) = 0 and H1(H, IG)→ H2(H,M) is surjective.
But these groups are both finite of the same order! So the map is also injective,
and H1(H,M [ϕ]) is also zero.
Now apply Lemma 4.3.2 below to conclude that Hi

T (G,M [ϕ]) = 0 for all i. This
allows us to use the four-term exact sequence

0→M →M [ϕ]→ Z[G]→ Z→ 0

(as in the proof of Theorem 3.4.1) to conclude that Hi
T (G,Z) ∼= Hi+2

T (G,M).
■

Lemma 4.3.2 Let G be a finite group and M a G-module. Suppose that
Hi(H,M) = 0 for i = 1, 2 and H any subgroup of G (including G itself). Then
Hi
T (G,M) = 0 for all i ∈ Z.

Proof. Let us first check that Hi
T (G,M) = 0 for all i ≥ 0. For G cyclic, this

follows by periodicity. For G solvable, we prove the general result by induction
on #G. Since G is solvable, it has a proper subgroup H for which G/H is
cyclic. By the induction hypothesis, Hi

T (H,M) = 0 for all i. Thus by the
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inflation-restriction exact sequence (Proposition 4.2.14),

0→ Hi(G/H,MH)→ Hi(G,M)→ Hi(H,M)

is exact for all i > 0. The term on the end being zero, we have Hi(G/H,MH) ∼=
Hi(G,M) = 0 for i = 1, 2. By periodicity (Theorem 3.4.1), Hi

T (G/H,MH) = 0
for all i, so Hi(G/H,MH) = 0 for all i > 0, and Hi(G,M) = 0 for i > 0. As for
i = 0, note that H0

T (G/H,MH) = H2(G/H,MH) = 0, so for any x ∈MG there
exists y ∈MH such that NormG/H(y) = x. Since H0

T (H,M) = 0, there exists
z ∈M such that NormH(z) = x. Now NormG(z) = NormG/H ◦NormH(z) = x.
Thus H0

T (G,M) = 0, as desired.
We next extend the previous argument from G solvable to G general (this can
be skipped if you only want the final result for solvable G). For i > 0, we
already know that the group Hi(G,M) is torsion (Example 3.2.22), so it suffices
to show that its p-primary component vanishes for any prime p. To check
this, let Gp be any Sylow p-subgroup of G. As per Example 3.2.22 again, the
composition of Res : Hi(G,M)→ Hi(H,M) with Cor : Hi(H,M)→ Hi(G,M)
is multiplication by [G : Gp], which is prime to p. Consequently, Res induces an
injective map on p-primary components. Since Gp is solvable, we already know
that Hi(Gp,M) = 0, yielding the desired vanishing. For i = 0, we argue as in
Remark 3.3.13: we know that H0

T (Gp,M) = 0, so the map NormGp
: M →MGp

is surjective. In particular, for any x ∈ MG, we can find y ∈ M such that
x =

∑
g∈Gp

yg. Then NormG(y) = [G : Gp]x, so the group H0
T (G,M) is torsion

and killed by [G : Gp]; again varying over p shows that H0
T (G,M) = 0.

Finally, we treat the case i < 0 by dimension shifting. Make the exact sequence

0→ N → IndG1 M →M → 0

in which m ⊗ [g] maps to mg. The term in the middle is acyclic, so
Hi+1
T (H ′, N) ∼= Hi

T (H ′,M) for any subgroup H ′ of G. In particular,
H1(H ′, N) = H2(H ′, N) = 0, so the above argument gives Hi

T (G,N) = 0
for i ≥ 0. Now from H0

T (G,N) = 0 we get H−1
T (G,M) = 0; since the same

argument applies to N , we also get H−2
T (G,M) = 0 and so on. ■

Local reciprocity and norm limitation
Let L/K be a finite Galois extension of local fields. For any intermediate
extension M/K, we know that H1(L/M) = 0 and H2(L/M) is cyclic of order
[L : M ]. We may thus apply Theorem 4.3.1 with G = Gal(L/K), M = L∗ to
obtain isomorphisms Hi

T (G,Z)→ Hi+2
T (G,M), thus proving Theorem 4.1.10.

This yields a canonical isomorphism

K∗/NormL/K L
∗ = H0

T (L/K)→ H−2
T (Gal(L/K),Z) = Gal(L/K)ab.

This establishes the existence of the local reciprocity map (Theorem 4.1.2),
keeping in mind that part (a) follows from the explicit computations in Sec-
tion 4.2), together with the norm limitation theorem (Theorem 4.1.7), modulo
one subtlety: if M/K is another finite Galois extension containing L, we need
to know that the diagram

K∗/NormM/KM
∗ //

��

Gal(M/K)ab

��
K∗/NormL/K L

∗ // Gal(L/K)ab

Figure 4.3.3
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commutes, so that the maps K∗ → Gal(L/K)ab fit together to give a map
K∗ → Gal(Ksep/K)ab. In other words, we need a commuting diagram

H0
T (Gal(M/K),M∗) //

��

H−1
T (Gal(M/K), IGal(M/K))

��

// H0
T (Gal(M/K),Z)

��
H0
T (Gal(L/K), L∗) // H−1

T (Gal(L/K), IGal(L/K)) // H0
T (Gal(L/K),Z)

Figure 4.3.4
The right square in Figure 4.3.4 comes from taking long exact sequences in

the commutative diagram with exact rows:

0 // IGal(M/K) //

��

Z[Gal(M/K)] //

��

Z //

��

0

0 // IGal(L/K) // Z[Gal(L/K)] // Z // 0

Figure 4.3.5
To construct the left square in Figure 4.3.4, we similarly need to construct

a commutative diagram with exact rows:

0 // M∗ //

NormM/L

��

M∗[ϕM ] //

��

IGal(M/K) //

��

0

0 // L∗ // L∗[ϕL] // IGal(L/K) // 0

Figure 4.3.6
I claim we can arrange for this as follows. First choose a cocycle ϕM :

Gal(M/K)3 → M∗ representing the preferred generator of H2(M/K). Then
there exists a unique map ϕL fitting into the following commuting square:

Gal(M/K)3 ϕM //

��

M∗

NormM/L

��
Gal(L/K)3 ϕL // L∗

Figure 4.3.7
and this will necessarily give a cocycle representing the preferred generator

of H2(L/K). Further details omitted.

The local existence theorem
It remains to prove the local existence theorem (Theorem 4.1.5). This does not
follow directly from cohomological considerations; instead we need to construct
some extensions with small norm groups. Fortunately, since we have already
established the norm limitation theorem, we do not need to construct abelian
extensions; this will give us some flexibility.

We begin with a lemma, in which we take advantage of Kummer theory to
establish a special case of the existence theorem.

Lemma 4.3.8 Let ℓ be a prime number. Let K be a local field containing a
primitive ℓ-th root of unity. Then x ∈ K∗ is an ℓ-th power in K if and only if
belongs to NormL/K L

∗ for every cyclic extension L of K of degree ℓ.

Proof. Let M be the compositum of all cyclic ℓ-extensions of K. The group
K∗/(K∗)ℓ is finite (Exercise 1), and hence is isomorphic to (Z/ℓZ)n for some pos-
itive integer n. By Kummer theory (Theorem 1.2.9), we also have Gal(M/K) ∼=
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(Z/ℓZ)n. By the local reciprocity law (Theorem 4.1.2), K∗/NormM/KM
∗ ∼=

(Z/ℓZ)n; consequently, on one hand (K∗)ℓ ⊆ NormM/KM
∗, and on other hand

these subgroups of K∗ have the same index ℓn. They are thus equal, proving
the claim. ■

Remark 4.3.9 The conclusion of Lemma 4.3.8 remains true even if ℓ is not
prime; see Exercise 3. This statement can be interpreted in terms of the Hilbert
symbol, whose properties generalize quadratic reciprocity to higher powers;
see [36], III.4.

This allows to deduce a corollary of the existence theorem which is needed
in its proof. (The argument we give here depends squarely on characteristic 0;
some patching is needed in the positive characteristic case.)

Corollary 4.3.10 Let K be a local field of characteristic 0. Then the intersection
of the groups NormL/K L

∗ for all finite extensions L of K is the trivial group.

Proof. Let DK be the intersection in question; note that DK ⊆ o∗
K by consider-

ing unramified extensions of K, so DK is in particular a compact topological
group. By Lemma 4.3.8, every element of DK is an ℓ-th power in K for every
prime ℓ. We will show that in fact every element of DK is the ℓ-th power of an
element of DK itself; this will show that DK is a divisible abelian group, and
in particular every element is an n-th power for every positive integer n. This
will then imply using Exercise 2 that DK is the trivial group. (Alternatively,
one can follow the suggestion of Remark 4.3.9 and prove that the conclusion of
Lemma 4.3.8 retains true when ℓ is replaced by an arbitrary positive integer n,
and then apply Exercise 2 directly.)
We first need to verify something which might seem obvious but isn’t quite: for
L/K a finite extension,

NormL/K DL = DK .

This isn’t obvious because for x ∈ DK , for each individual finite extension M of
K we can write x = NormM/K(z) for some z ∈M∗, but it is not apparent that
we can force the elements y = NormM/L(z) to all be equal. It is nonetheless
true because, for any given M the set of such y is a nonempty compact subset
of UL, and any finite intersection of these subsets is nonempty (because we can
pass to a large enough field to contain all of the M in question and bring an
element from there); so the whole intersection is nonempty.
Now let ℓ be a prime and choose x ∈ DK . For each finite extension L of K
containing a primitive ℓ-th root of unity, let E(L) be the set of ℓ-th roots of x
in K which belong to NormL/K L

∗. This set is finite (of cardinality at most
ℓ) and nonempty: we have x = NormL/K(y) for some y ∈ DL by the previous
paragraph, so y has an ℓ-th root z in L and NormL/K(z) ∈ E(L). By the
previous paragraph, E(M) ⊆ E(L) whenever L ⊆M , so we may again conclude
using the finite intersection property. Alternatively, just note that if each of
the (finitely many!) elements of E(K) fails to survive to some larger field, we
can take a compositum to get a single field L such that no element of E(K)
belongs to E(L), which is absurd since E(L) ̸= ∅. ■

We now return to the proof of the local existence theorem (Theorem 4.1.5).

Theorem 4.3.11 Local existence theorem. For every (open) subgroup U
of K∗ of finite index, there exists a finite abelian extension L of K such that
U = NormL/K L

∗.

Proof. We note first that by the local reciprocity law (Theorem 4.1.2), it is
enough to construct L so that U contains NormL/K L

∗: in this case, we will have
Gal(L/K) ∼= K∗/NormL/K L

∗, and then U/NormL/K L
∗ will corresponding to
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Gal(L/M) for some intermediate extension M/K having the desired effect. We
note next that by the norm limitation theorem (Theorem 4.1.7), it suffices to
produce any finite extension L/K, not necessarily abelian, such that U contains
NormL/K L

∗.
Let mZ ⊆ Z be the image of U in K∗/o∗

K
∼= Z; by choosing L to contain

the unramified extension of K of degree m, we may ensure that the image of
NormL/K L

∗ in K∗/o∗
K is also contained in mZ. It thus remains to further

ensure that
(NormL/K L

∗) ∩ o∗
K ⊆ U ∩ o∗

K .

Since o∗
K is compact, each open subgroup (NormL/K L

∗) ∩ o∗
K is also closed

and hence compact. By Corollary 4.3.10, as L/K runs over all finite extensions
of K, the intersection of the groups (NormL/K L

∗)∩ o∗
K is trivial; in particular,

the intersection of the compact subsets

((NormL/K L
∗) ∩ o∗

K) ∩ (o∗
K \ U)

of o∗
K is empty. By the finite intersection property (and taking a compositum),

there exists a single L/K for which (NormL/K L
∗) ∩ o∗

K ⊆ U ∩ o∗
K , as desired.

■

Exercises
1. Prove that for any local field K and any positive integer n not divisible by

the characteristic of K, the group K∗/(K∗)n is finite.
2. Prove that for any local field K of characteristic 0, the intersection of the

groups (K∗)n over all positive integers n is the trivial group.
Hint. First get the intersection into o∗

K , then use prime-to-p exponents
to get it into the 1-units, then use powers of p to finish. The last step is
the only one which fails in characteristic p.

3. Extend Lemma 4.3.8 to the case where ℓ is an arbitrary positive integer,
not necessarily prime.
Hint. It may help to use the structure theorem for finite abelian groups.

4.4 Ramification filtrations and local reciprocity
Reference. [46], IV; [37], II.10.

For K a finite extension of Qp, the local reciprocity map defines an iso-
morphism of Gal(K/K)ab with the profinite completion of K. The natural
filtration on the unit group o×

K thus defines a filtration on Gal(K/K)ab; but
which one? It turns out that the answer is related to a natural filtration on the
entire group Gal(K/K); we give Hadamard’s description of this.

The lower numbering filtration
Remark 4.4.1 Recall that for any extension L/K of finite extensions of Qp,
the ring oL is a monogenic extension of oK : there exists an element α ∈ oL
such that oL = oK [α], meaning that the oK -linear homomorphism oK [x]→ oL
taking x to α is an isomorphism. (See [46], II.6, Proposition 12 or [37], Lemma
II.10.4.)

Lemma 4.4.2 Let L/K be a Galois extension of finite extensions of Qp with
Galois group G. Let vL be the valuation on L and choose a uniformizer πL of
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L (so that vL(πL) = 1). Choose α ∈ oL such that oL = oK [α]. For every g ∈ G
and every integer i ≥ −1, the following conditions are equivalent.

1. The action of g on the ring oL/π
i+1
L is trivial.

2. For all x ∈ oL, vL(xg − x) ≥ i+ 1.

3. We have vL(αg − α) ≥ i+ 1.

Proof. The first two conditions are equivalent more or less by definition. They
both immediately imply the third condition; conversely, the third condition
implies the others because g fixes oK and oL = oK [α]. ■

Definition 4.4.3 Let L/K be a Galois extension of finite extensions of Qp with
Galois group G. For each integer i ≥ −1, let Gi be the set of g ∈ G satisfying
the equivalent conditions of Lemma 4.4.2. The Gi form a decreasing sequence
of subgroups of G; these together form the lower numbering ramification
filtration on G. In particular, G−1 = G and G0 equals the inertia subgroup of
G.

For convenience later, we extend the definition of the filtrationGi to arbitrary
real values i ≥ −1 by setting Gi = G⌈i⌉.

From the definition, we see that the formation of the lower numbering
filtration is compatible with subgroups: if H = Gal(L/M) is a subgroup of G,
then Hi = H ∩Gi for all i ≥ −1. However, it is not at all clear what happens
when we pass from G to a quotient. ♢

Lemma 4.4.4 With notation as in Lemma 4.4.2, for i ≥ 0, an element g ∈ G0
belongs to Gi if and only if πgL/πL ≡ 1 (mod πiL).

Proof. Reduce to the case where L/K is totally ramified; we may then deduce
the claim directly from Lemma 4.4.2. See also [46], IV.2, Proposition 5. ■

Definition 4.4.5 For i ≥ 0, let U iL be the subgroup of o∗
L consisting of elements

α for which vL(α − 1) ≥ i. The group U0
L/U

1
L is naturally isomorphic to the

group of units of the residue field oL/πL. For i > 0, the group U iL/U
i+1
L carries

the structure of a one-dimensional vector space over oL/πL; for any choice of
the uniformizer πL we may use the class of πiL as the basis element, but there
is no distinguished choice without this breaking of symmetry.

By Lemma 4.4.4, for i ≥ 0 we may view Gi as the maximal subgroup of
G carrying U0

L into itself. In particular, the quotient Gi/Gi+1 is naturally
isomorphic to a subgroup of U iL/U

i+1
L .

This gives us the following structural properties of G. First, the group
G−1/G0 is isomorphic to the residue field extension, which is cyclic. Next,
G0/G1 is isomorphic to a subgroup of U0

L/U
1
L, and so is cyclic of order prime to

p. Finally, for i ≥ 1, Gi/Gi+1 is a subgroup of U iL/U
i+1
L , and so is an elementary

abelian p-group. In particular, G is a solvable group, as noted in Remark 4.2.3.
♢

The Herbrand functions
We now introduce Herbrand’s recipe to convert the lower numbering used
in the definition of the ramification filtration into an upper numbering that
behaves well with respct to passage to quotients.
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Definition 4.4.6 Retain notation as in Definition 4.4.3. Define the function
φL/K : [−1,∞)→ [−1,∞) by the formula

φL/K(u) =
∫ u

0

dt

[G0 : Gt]
.

This function is continuous, piecewise linear, increasing, and concave, and
satisfies φL/K(u) = u for u ∈ [−1, 0]. Consequently, it admits an inverse
ψL/K : [−1,∞) → [−1,∞) which is continuous, piecewise linear, increasing,
and convex.

We define the upper numbering on the ramification groups by the formula

Gi = Gψ(i) ⇔ Gφ(i) = Gi.

♢

Lemma 4.4.7 Let L/K be a finite Galois extension of finite extensions of Qp
with Galois group G. Let H be a normal subgroup of G with fixed field K ′. For
i ≥ −1, (G/H)i = GϕL/K′ (i)H/H.

Proof. See [46], IV.3, Lemma 5. ■

Lemma 4.4.8 Let L/K be a finite Galois extension of finite extensions of Qp
with Galois group G. Let H be a normal subgroup of G with fixed field K ′.
Then

φL/K = φK′/K ◦ φL/K′ , ψL/K = ψL/K′ ◦ ψK′/K .

Proof. See [46], IV.3, Proposition 15. ■

Proposition 4.4.9 Let L/K be a finite Galois extension of finite extensions
of Qp with Galois group G. Let H be a normal subgroup of G with fixed field
K ′. For all i ≥ −1, (G/H)i = GiH/H.

Proof. Using Lemma 4.4.7 and Lemma 4.4.8, we see that

(G/H)i = (G/H)ψK′/K (i)

= GψL/K′ ◦ψK′/K (i)

= GψL/K (i)

as desired. ■

Definition 4.4.10 Let L/K be a Galois extension of finite extensions of Qp
with Galois group G. We define the breaks in the ramification filtration for
the lower numbering (respectively, the upper numbering) as the values of i for
which Gi ̸= Gj for all j > i (resp. Gi ̸= Gj for all j > i).

By definition, the breaks for the lower numbering are integers, while the
breaks for the upper numbering are only guaranteed to be rational numbers. In
fact, it is possible to exhibit examples where the breaks for the upper numbering
are not integers (see Exercise 2 and Exercise 3). However, in the next section
we will see that this cannot occur for abelian extensions. ♢

The Hasse-Arf theorem
Theorem 4.4.11 Let L/K be an abelian extension of finite extensions of Qp
with Galois group G. Then the breaks in the ramification filtration for the upper
numbering are integers.

Proof. See [46], V.7, Theorem 1. ■
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Example 4.4.12 Consider the extension Qp(ζpn)/Qp. One can compute directly
(see Exercise 1) that the ramification breaks occur at 1, . . . , n. This will also
follow from the comparison with local reciprocity (Theorem 4.4.14). □

Remark 4.4.13 The Hasse-Arf theorem is more general than we have stated
here; it holds whenever L/K is a finite abelian extension of complete discretely
valued fields in which the residue field extension is separable. That is, not only
is there no restriction to characteristic 0, but the residue fields are not required
to be finite.

At the same level of generality, one can use the Hasse-Arf theorem to deduce
that the Artin conductor of a Galois representation is always integral. See [46],
VI.2, Theorem 1.

Theorem 4.4.14 Let L/K be an abelian extension of finite extensions of Qp
with Galois group G. Let rL/K : K∗/NormL/K L

∗ → G be the local reciprocity
isomorphism. Then for each positive integer i, the inverse image of Gi in o∗

K

equals U iK .

Proof. See [37], Theorem V.6.2. (This proof uses the Lubin-Tate construction.)
■

Exercises
1. Compute the ramification breaks for the lower and upper numbering for

the extension Qp(ζpn)/Qp directly from the definitions (i.e., without using
local reciprocity). In particular, you should find that the breaks for the
upper numbering are 1, . . . , n.

2. Let K be the splitting field of the polynomial x4 + 2x+ 2 over Q2. Show
that in the ramification filtration on Gal(K/Q2), the largest break for the
upper numbering occurs at 4/3.
Hint. This example is taken from the L-Functions and Modular Forms
Database. Note that in this case the Galois group is S4.

3. Let G be the quaternion group of order 8; that is, G = {±1,±i,±j,±k}.
Let C = {±1} be the center of G. Suppose that L/K is a totally ramified
Galois extension of finite extensions of Q2 satisfying Gal(L/K) = G and
G4 = {1}. Show that

G = G0 = G1, C = G2 = G3

and deduce that

Gi =


G i ≤ 1
C 1 < i ≤ 3

2
{1} i > 3

2 .

4.5 Making the reciprocity map explicit
It is natural to ask whether the local reciprocity map can be described more
explicitly. In fact, given an explicit cocycle ϕ generating H2(L/K), we can
trace through the arguments to get the local reciprocity map. However, the
argument is somewhat messy, so I won’t torture you with all of the details; the
point is simply to observe that everything we’ve done can be used for explicit
computations. (This observation is apparently due to Dwork.)
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If you find this indigestible, you may hold out until we hit abstract class
field theory. That point of view will give a different (though of course related)
mechanism for computing the reciprocity map (see Section 5.2).

Initial setup
Put G = Gal(L/K). First recall that Gab = H−2

T (G,Z) is isomorphic to
H−1
T (G, IG) = IG/I

2
G, with g 7→ [g]− 1. Next, use the exact sequence

0→M →M [ϕ]→ IG → 0

and apply the “snaking” construction: pull [g] − 1 back to xg ∈ M [ϕ], take
the norm to get

∏
h x

h
g =

∏
h(xghx−1

h ϕ(e, h, gh)) (switching to multiplicative
notation). The xgh and xh term cancel out when you take the product, so we
get

∏
h ϕ(e, h, gh) ∈ L∗ as the inverse image of g ∈ Gal(L/K).

As noted above, one needs ϕ to make this truly explicit; one can get ϕ using
explicit generators of L/K if you have them. For K = Qp, one can use roots of
unity; for general K, one can use the Lubin-Tate construction. Alternatively,
one can argue as in our proof that H2(L/K) is cyclic of order n; see below.

An explicit cocycle via periodicity
Let M/K be unramified of degree n; then H2(M/K)→ H2(ML/K) is injective,
and its image lies in the image of H2(L/K)→ H2(ML/K).

Now H2(M/K) is isomorphic to H0
T (M/K) = K∗/NormM/KM

∗, which is
generated by a uniformizer π ∈ K. To explicate that isomorphism, we recall
generally how to construct the isomorphism H0

T (G,M) → H2
T (G,M) for G

cyclic with a distinguished generator g. Recall the exact sequence we used to
produce the isomorphism in Theorem 3.4.1:

0→M →M ⊗Z Z[G]→M ⊗Z Z[G]→M → 0.

(Remember, G acts on both factors in M ⊗Z Z[G]. The first map is m 7→∑
h∈Gm⊗ [h], the second is m⊗ [h] 7→ m⊗([gh]− [h]), and the third is [h] 7→ 1.)

Let A = M ⊗Z IG be the kernel of the third arrow, so 0→M →M ⊗Z Z[G]→
A→ 0 and 0→ A→M ⊗Z Z[G]→M → 0 are exact.

Given x ∈ H0
T (M/K) = MG/NormG(M), lift it to x⊗ [1]. Now view this

as a 0-cochain ϕ0 : G→M ⊗Z Z[G] given by ϕ0(h) = x⊗ [h]. Apply d to get a
1-cocycle:

ϕ1(h0, h1) = ϕ0(h1)− ϕ0(h0) = x⊗ ([h1]− [h0])

which actually takes values in A. Now snake again: pull this back to a 1-cochain
ψ1 : G2 →M ⊗Z Z[G] given by

ψ1(gi, gi+j) = x⊗ ([gi] + [gi+1] + · · ·+ [gj−1])

for i, j = 0, . . . ,#G − 1. Apply d again: now we have a 2-cocycle ψ2 : G3 →
M ⊗Z Z[G] given by (again for i, j = 0, . . . ,#G− 1)

ψ2(e, gi, gi+j) = ψ1(gi, gi+j)− ψ1(e, gi+j) + ψ1(e, gi)
= x⊗ ([e] + · · ·+ [gi−1] + [gi] + · · ·+ [gi+j−1]− [e]− · · · − [gi+j−1])

=
{

0 i+ j < #G
−x⊗ ([e] + · · ·+ [g#G−1]) i+ j ≥ #G.
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This pulls back to a 2-cocycle ϕ2 : G3 →M given by

ϕ2(e, gi, gi+j) =
{

0 i+ j < #G
−x i+ j ≥ #G.

If you prefer, you can shift by a coboundary to get x if i+ j < #G and 0 if
i+ j ≥ #G.

From a cocycle to reciprocity
Back to the desired computation. Applying this to Gal(M/K) acting on M∗,
with the canonical generator g equal to the Frobenius, we get that H2(M/K)
is generated by a cocycle ϕ with ϕ(e, gi, gi+j) = π if i + j < #G and 1 oth-
erwise. Now push this into H2(ML/K); the general theory says the image
comes from H2(L/K). That is, for h ∈ Gal(ML/K), let f(h) be the integer
i such that h restricted to Gal(M/K) equals gi. Then there exists a 1-cochain ρ :
Gal(ML/K)2 → (ML)∗ such that ϕ(e, h1, h2h1)/(ρ(h1, h2h1)ρ(e, h2h1)−1ρ(e, h1))
belongs to L∗ and depends only on the images of h1, h2 in Gal(M/K). Putting
σ(h) = ρ(e, h), we thus have

ϕ(e, h1, h2h1)σ(h2h1)
σ(h2)h1σ(h1)

depends only on h1, h2 modulo Gal(ML/L).
The upshot: once you compute such a σ (which I won’t describe how to

do, since it requires an explicit description of L/K), to find the inverse image
of g ∈ Gal(L/K) under the Artin map, choose a lift g1 of g into Gal(ML/K),
then compute ∏

h

ϕ(e, h, gh)σ(gh)
σ(g)hσ(h)

for h running over a set of lifts of the elements of Gal(L/K) into Gal(ML/K).



Chapter 5

Abstract class field theory

We now turn to an alternate method for deriving the results of local class field
theory, particularly the local reciprocity law (Theorem 4.1.2). This method,
based on a presentation of Artin and Tate (the method of “class formations”
introduced in [1]), isolates the main cohomological inputs in the local case and
gives an outline of how to proceed to global class field theory. We conclude
with a preview of how the method will apply in the global case; see Section 5.4.

Caveat. In the context of abstract class field theory, we will assign certain
words (e.g., unramified) new meanings that will coincide with their existing
definitions when the abstract setup is specialized to local class field theory. We
will then transfer these meanings to the global application of abstract class
field theory, where we will usually use scare quotes (i.e., “unramified”).

5.1 The setup of abstract class field theory
Reference. [37], IV.4-IV.6. Remember that Neukirch’s cohomology groups
are all Tate groups, so he doesn’t put the subscript “T” on them.

Abstract multiplicative groups and the class field axiom
We first introduce an abstract analogue of the groups K∗, for K a finite
extension of k, and the norm maps between them. This enables us to state a
key cohomological assumption.

Definition 5.1.1 Let k be a field, let k be an algebraic extension of k, and put
G = Gal(k/k). Let A be a G-module; for any subextension K of k/k, define
AK = AGal(k/K). (In the example where k is a local field, we will take k to be
the separable closure and A = k

∗.) ♢

Remark 5.1.2 In this discussion, we are not going to make any explicit use of
the field k; we are really just working with the profinite group G. One could
extend this discussion to a general profinite group G, as is done in [37], by
“pretending” that the profinite group corresponds to a field and its extensions
via the Galois correspondence. That is, a “field extension” of k corresponds
to a closed subgroup of G; a “finite extension” of k corresponds to an open
subgroup of G; and so on.

67
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Definition 5.1.3 For L/K a finite extension of subextensions of k/k, define
the norm map NormL/K : AL → AK by NormL/K(a) =

∏
g a

g, where g runs
over a set of right coset representatives of GL in GK . In the Galois case this
coincides with the norm map used in the definition of the Tate cohomology
groups, except that we are using multiplicative notation rather than additive
notation.

For L/K an infinite extension of subextensions of k/k, we don’t have a
well-defined norm map from AL to AK . By convention, however, we still
write NormL/K AL to mean the intersection of NormM/K AM over all finite
subextensions M of L/K. ♢

Definition 5.1.4 Set notation as in Definition 5.1.1. We say that A satisfies
the class field axiom if for every cyclic extension L/K of finite subextensions
of k/k,

#Hi
T (Gal(L/K), AL) =

{
[L : K] i = 0
1 i = −1.

Note that in general, it is not enough to impose this condition when K = k
Since L/K is cyclic here, Theorem 3.4.1 implies that the groups

Hi
T (Gal(L/K), AL) repeat with period 2. It will sometimes be convenient

to work with i = 1 instead of i = −1, or with i = 2 instead of i = 0. ♢
Under the class field axiom and the other conditions of abstract class field

theory, for each finite Galois extension L/K of finite subextensions of k/k, we
will define a canonical isomorphism

rL/K : Gal(L/K)ab → AK/NormL/K AL

(Theorem 5.3.9), which will moreover satisfy some compatibilities as we vary
the field extension (Proposition 5.2.10, Proposition 5.2.10). Since we’ve already
checked the class field axiom in the example where k is a local field and A = k

∗,
this will recover the local reciprocity law (Theorem 4.1.2).

Abstract ramification theory
We next encode the key aspects of ramification theory into an abstract frame-
work. At the moment this has nothing to do with the abstract units; the
relationship will be made when we introduce abstract valuations a bit later.

Definition 5.1.5 With notation as in Definition 5.1.1, let d : G → Ẑ be a
continuous surjective homomorphism. The example we have in mind is when k
is a local field and d is the surjection of G onto Gal(kunr/k) ∼= Ẑ.

Define the Weil group of k as the subgroup d−1(Z) of G. This group
will play an important role in the construction of the reciprocity map (see
Definition 5.2.1). ♢

We now set some more notation to mimic the example case.

Definition 5.1.6 Define the inertia group Ik to be the kernel of d. Define the
maximal unramified extension kunr of k to be the fixed field of Ik. Likewise,
for any subextension K of k/k, put IK = GK ∩ Ik and let Kunr = kunrK be
the fixed field of IK .

We say an extension L/K of subextensions of k/k is unramified if L ⊆ Kunr.
This implies that GL contains IK , necessarily as a normal subgroup, and
that GL/IK ⊆ GK/IK injects via d into Ẑ. Hence GL/IK is abelian and
any finite quotient of it is cyclic; in particular, GK is normal in GL and
Gal(L/K) = GL/GK is cyclic. (Note also that Kunr is the compositum of K
and kunr; see Example 5.1.9.) ♢
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If K ̸= k, then d need not map GK onto Ẑ, so it will be convenient to
renormalize things.

Definition 5.1.7 Put
dK = 1

[Ẑ : d(GK)]
d;

then dK : GK → Ẑ is surjective and induces an isomorphism Gal(Kunr/K) ∼= Ẑ.
Given a finite extension L/K of subextensions of k/k, define the inertia

degree (or residue field degree)

fL/K = [d(GK) : d(GL)]

and the ramification degree

eL/K = [IK : IL].

By design we have multiplicativity:

eM/K = eM/LeL/K , fM/K = fM/LfL/K .

Moreover, if L/K is Galois, we have an exact sequence

1→ IK/IL → Gal(L/K)→ d(GK)/d(GL)→ 1,

so the “fundamental identity” holds:

eL/KfL/K = [L : K].

The fundamental identity also holds if L/K is not Galois: let M be a Galois
extension of K containing L, then apply the fundamental identity to M/L and
M/K and use multiplicativity. ♢

Abstract valuation theory
We next introduce an abstract analogue of the valuation maps on unit groups,
which tie d and A together in a crucial way. The catch is that these valuations
will be valued not in Z but only in Ẑ; however, this is okay because we only
need them to normalize the definition of the reciprocity map.

Definition 5.1.8 With notation as in Definition 5.1.1 and Definition 5.1.5, a
henselian valuation of Ak with respect to d is a homomorphism v : Ak → Ẑ
such that:

1. the group Z = im(v) contains Z and satisfies Z/nZ ∼= Z/nZ for all
positive integers n;

2. for every finite extension K of k, v(NormK/k AK) = fK/kZ.

In this case, for each finite subextension K of k/k, we obtain a henselian
valuation vK : AK → Z by setting

vK = 1
fK/k

NormK/k .

Then vK(a) = vKg (ag) for any a ∈ A and g ∈ G, and for L/K a finite extension
of finite subextensions of k/k, vK(NormL/K(a)) = fL/KvL(a) for any a ∈ AL.

♢
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Example 5.1.9 By design, the previous conditions are satisfied in the case
where:

• k is a local field of characteristic 0 and k is its algebraic closure;

• A = k
∗ (the class field axiom is confirmed by Lemma 1.2.3 for H1

T and
Proposition 4.2.11 for H0

T );

• d : Gal(k/k)→ Ẑ the map coming from the identification of Gal(kunr/k)
with Ẑ;

• v : Ak → Ẑ is the composition of the valuation k∗ → Z with the inclusion
Z→ Ẑ.

One piece of content in this statement is the assertion that for any finite
extension K of k, Kunr ⊆ Kkunr. This holds because for any finite unramified
extension L of K, we can write L = KL0 where L0 is the unramified extension
of k with the same residue field as L. □

Example 5.1.10 A basic example of these constructions occurs for k finite; see
Exercise 1. A closely related example can be obtained from Example 5.1.9 by
replacing the algebraic closure of k with its maximal unramified subextension.

□

Remark 5.1.11 Suppose that we have an instance of Definition 5.1.8. Then
for any c ∈ Ẑ∗, the map v is also a henselian valuation of Ak with respect to
cd, but the definition of the reciprocity map will be affected; see Exercise 3.

Now suppose further that cZ = Z. Then cv is also a henselian valuation of
Ak with respect to cd, and in this case the definition of the reciprocity map
will be unaffected; see Exercise 4.

Cohomology of units
Before defining the reciprocity map, we collect some direct consequences of the
class field axiom. These are very similar to arguments we used in the proof
of local reciprocity except that there, we used the cohomology of unramified
extensions to establish the class field axiom, whereas here we are moving
information in the opposite direction!

Hypothesis 5.1.12 For the remainder of Chapter 5, fix k,A, d, v as in Defini-
tion 5.1.1, Definition 5.1.5, and Definition 5.1.8. In particular, A satisfies the
class field axiom and v is a henselian valuation of Ak with respect to d.

Definition 5.1.13 For any finite subextension K of k/k, define the unit
subgroup UK as the set of u ∈ AK with vK(u) = 0; this definition extends
naturally to infinite subextensions. We say that π ∈ AK is a uniformizer for
K if vK(π) = 1. ♢

Proposition 5.1.14 Under Hypothesis 5.1.12, let L/K be an unramified
extension of finite subextensions of k/k.

1. The groups Hi
T (Gal(L/K), UL) are all trivial.

2. The group H0
T (Gal(L/K), AL) is cyclic, generated by any uniformizer πL

for L.

Proof. We’ll drop Gal(L/K) from the notation, because it’s the same group
throughout the proof. Keep in mind that an unramified extension is always
Galois and cyclic, so we can apply periodicity of Tate groups (Theorem 3.4.1)
and Herbrand quotients.
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Consider the short exact sequence

0→ UL → AL → AL/UL → 0.

In this sequence, AL/UL is isomorphic to Z = im(v) with trivial group action,
so H0

T (Z) = Z/Norm(Z) is cyclic of order [L : K] generated by πL and
H−1
T (Z) = ker(Norm) is trivial. Using the class field axiom, we see that the

long exact sequence in Tate groups looks like

1 = H−1
T (AL/UL)→ H0

T (UL)→ H0
T (AL)→ H0

T (AL/UL)→ H1
T (UL)→ H1

T (AL) = 1

and the two groups in the middle have the same order. It is thus enough to
show that one of the outer groups is trivial, as then the middle map will be an
isomorphism.
We have now reduced to checking that H1

T (UL) = 1. Here is where we use that
L/K is unramified, not just cyclic: this means that any uniformer of K is also
a uniformizer of L, which allows us to split the surjection AL → AL/UL of
Gal(L/K)-modules. This in turn means that H1

T (UL) is a direct summand of
H1
T (AL), and the latter vanishes by the class field axiom. ■

Corollary 5.1.15 Under Hypothesis 5.1.12, for L/K an unramified extension
of finite subextensions of k/k, then UK = NormL/K UL. (Remember, this makes
sense even if L/K is not finite!)

Proof. Apply the i = 0 case of Proposition 5.1.14 to each finite subextension of
L/K. ■

Exercises
1. Show that the hypotheses of abstract class field theory (i.e., the class field

axiom and the conditions on a henselian valuation) are satisfied in the
following case:

• k is a finite field and k is its algebraic closure;

• d : Gal(k/k)→ Ẑ is the usual isomorphism;

• A is the group Z with the trivial action;

• v : Ak → Ẑ is the inclusion of Z into its profinite completion.

5.2 The abstract reciprocity map
We next define the reciprocity map in abstract class field theory (Defini-
tion 5.2.6). As a bonus, this definition will give an explicit recipe for computing
the reciprocity map in local class field theory, but we will not expand on this
point.

Construction of the reciprocity map
In order to define a candidate r : Gal(L/K) → AK/NormL/K AL for the
reciprocity map, we must first give a partial definition using a different domain.
See Remark 5.2.9 for motivation.
Definition 5.2.1 Under Hypothesis 5.1.12, let L/K be a Galois extension of
finite subextensions of k/k. Let H be the semigroup of g ∈ Gal(Lunr/K) such
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that dK(g) is a positive integer. Define the map

r′ : H → AK/NormL/K AL

as follows. For g ∈ Gal(Lunr/K), let M be the fixed field of g, so that

e(M/K) = e((M ∩ L)/K), f(M/K) = dK(g).

We may set r′(g) = NormM/K(πM ) for some uniformizer πM for M , once
we check that this doesn’t depend on the choice of πM . To wit, if π′

M is
another uniformizer for M , then πM/π

′
M ∈ UL belongs to NormLunr/L ULunr

by Corollary 5.1.15, so NormM/K(πM/π′
M ) belongs to NormLunr/K ULunr ⊆

NormL/K UL. So at least r′ is now a well-defined map, if not yet a semigroup
homomorphism. ♢

Remark 5.2.2 Before getting into the weeds, let’s make some other observations
about Definition 5.2.1.

First, r′ is invariant under conjugation: if we replace g by h−1gh, then its
fixed field M is replaced by Mh and we can take the uniformizer πhM .

Next, if g ∈ H is actually in Gal(Lunr/L), then r′(g) ∈ NormL/K AL.
In that case, M contains L, so r′(g) = NormM/K(πM ) can be rewritten as
NormL/K NormM/L(πM ) ∈ NormL/K AL. That is, if r′ were known to be
multiplicative, it would induce a group homomorphism from Gal(L/K) to
AK/NormL/K AL.

The remaining difficulty is to check that r′ is multiplicative. The issue here
is that the definition of r′(g) involves taking the norm from a field extension
that depends on g, so it is hopeless to directly compare different values of g.
Instead, we rewrite the definition in a more uniform manner.

Proposition 5.2.3 With notation as in Definition 5.2.1, put n = dK(g) and
choose ϕ ∈ H with dK(ϕ) = 1. Then for x ∈ AM ,

NormM/K(x) = NormLunr/Kunr(xxϕ · · ·xϕ
n−1

).

Proof. Put U = M ∩Kunr, so that NormM/K = NormU/K ◦NormM/U . The
group Gal(U/K) is of order n generated by ϕ, so for y ∈ AU we have
NormU/K(y) = yyϕ · · · yϕn−1

. Meanwhile, on AM we can view NormM/U

as the restriction of NormLunr/Kunr , so NormM/U (x) = NormLunr/Kunr(x).
By taking y = NormM/U (x) and rewriting yϕ

i as NormLunr/Kunr(x)ϕi =
NormLunr/Kunr(xϕi), we deduce the claim. ■

Using the formula from Proposition 5.2.3, we can now establish multiplica-
tivity, following [37], Proposition IV.5.5.

Lemma 5.2.4 With notation as in Definition 5.2.1, put G = Gal(Lunr/Kunr)
and choose ϕ ∈ H with dK(ϕ) = 1. If x ∈ H0(G,UM ) is fixed by ϕ, then
NormG(x) vanishes in H0(G,UM ).

Proof. By hypothesis, x is the class of some u ∈ UM for which there exist
u1, . . . , ur ∈ UM and τ1, . . . , τr ∈ G such that

uϕ=1 =
r∏
i=1

uτi−1
i .

Put n = [M : K] and σ = ϕn, and let Σ be the fixed field of σ, which contains
M . Let Σn be the unramified extension of Σ of degree n; it is the fixed field
of σn. Since H0

T (Gal(Σn/Σ), UΣn) vanishes by Proposition 5.1.14, we can find
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ũ, ũi ∈ UΣn
such that

u = NormΣn/Σ(ũ) = ũũσ · · · ũσ
n−1

ui = NormΣn/Σ(ũi) = ũiũ
σ
i · · · ũσ

n−1

i .

Since H−1
T (Gal(Σn/Σ), UΣn) vanishes by Proposition 5.1.14 again, we can find

ỹ ∈ UΣn with

ũϕ−1/

r∏
i=1

ũτi−1
i = ỹσ−1,

and so (because σ = ϕn)

ũϕ−1 = (ỹỹϕ · · · ỹϕ
n−1

)ϕ−1
r∏
i=1

ũτi−1
i .

Applying NormG yields

NormG(ũ)ϕ−1 = NormG(ỹỹϕ · · · ỹϕ
n−1

)ϕ−1.

That is, if we set

z = NormG(ũ)/NormG(ỹỹϕ · · · ỹϕ
n−1

),

we have zϕ−1 = 1 and so z ∈ UK . Put

y = ỹỹσ · · · ỹσ
n−1 = NormΣn/Σ(ỹ) ∈ UΣ;

using Proposition 5.2.3 we obtain

NormG(u) = NormG(ũũσ · · · ũσ
n−1

)

= NormG(yyϕ · · · yϕ
n−1

)zn

= NormΣ/K(y) NormM/K(u) ∈ NormM/K UM ,

proving the claim. (Compare [37], Lemma IV.5.4.) ■

Lemma 5.2.5 The map r′ : H → AK/NormL/K AL exhibited in Defini-
tion 5.2.1 is a homomorphism of semigroups.

Proof. Let g1, g2 ∈ H be arbitrary and put g3 = g1g2. Let Mi be the fixed field of
gi, let πi ∈ AMi

be a uniformizer of Mi, and put ρi = r′(gi) = NormMi/K(πi) ∈
AK . Put ρ = ρ1ρ2/ρ3; note that

vK(ρi) = f(Mi/K)vMi
(πi) = f(Mi/K) = dK(gi),

which implies that vK(ρ) = 0 and hence ρ ∈ UK . Our goal is to check that
ρ ∈ NormL/K AL; our plan is to rephrase this as a relation among units, to
which Lemma 5.2.4 will apply.
We first make an adjustment at the level of group elements. Put G =
Gal(Lunr/Kunr). Choose ϕ ∈ H such that dK(ϕ) = 1. Put di = dK(gi)
and τi = g−1

i ϕdi ∈ G; then

τ3 = g−1
2 g−1

1 ϕd1+d2 = g−1
2 ϕd2(ϕ−d2g1ϕ

d2)−1ϕd1 .

It will be convenient to replace g1 and τ1 with

g′
1 = ϕ−d2g1ϕ

d2 , τ ′
1 = (g′

1)−1ϕg1 ,
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so that τ ′
1τ2 = τ3. We correspondingly define M ′

1 to be the fixed field of g′
1 and

set π′
1 = πϕ

n2

1 ∈ AM ′
1
, noting that NormM ′

1/K
(π′

1) = NormM1/K(π1) = ρ1.
Let N be a finite subextension of Lunr/L containing M1,M2,M3,M

′
1. Set

σi = πiπ
ϕ
i · · ·π

ϕdi−1

i , σ′
1 = (π′

1)(π′
1)ϕ · · · (π′

1)ϕ
d1−1

and u = σ′
1σ2/σ3 ∈ UN ; by Proposition 5.2.3 we have ρ = NormG(u). By

defining
u1 = (π′

1)1−τ2 , u2 = π2/π
′
1, u3 = π3/π

′
1 ∈ UN

and using the equality τ ′
1τ2 = τ3, we compute that

uϕ−1 = (π′
1)τ

′
1−1πτ2−1

2 /πτ3−1
3 = u

τ ′
1−1

1 uτ2−1
2 /uτ3−1

3

vanishes in H0(G,UN ); by Lemma 5.2.4 we obtain NormG(u) ∈ NormN/K UN ,
proving the claim. ■

Definition 5.2.6 With notation as in Definition 5.2.1, by combining Defini-
tion 5.2.1, Remark 5.2.2, and Lemma 5.2.5, we obtain a semigroup homomor-
phism r′ : H → AK/NormL/K AL which kills Gal(Lunr/L) and thus induces a
homomorphism r = rL/K : Gal(L/K)→ AK/NormL/K AL. We call rL/K the
reciprocity map. ♢

Here are some consequences of the construction whose proofs are left to the
reader.
Proposition 5.2.7 Under Hypothesis 5.1.12, if L/K and L′/K ′ are Galois
extensions of finite subextensions of k/k such that K ⊆ K ′ and L ⊆ L′, then
the diagram in Figure 5.2.8 commutes.

Gal(L′/K ′)ab
rL′/K′
//

��

AK′/NormL′/K′ AL′

NormK′/K

��
Gal(L/K)ab rL/K // AK/NormL/K AL

Figure 5.2.8

Proof. See Exercise 1. ■

Remark 5.2.9 Note that Proposition 5.2.7 dictates the form of Definition 5.2.1:
we want to be able to compute the map r : Gal(L/K) → AK/NormL/K AL
by first computing the map r : Gal(ML/M)→ AM/NormML/M AML, which
should take Frobenius to a uniformizer (as ML/M is an unramified extension),
and then applying NormM/L. We will use this picture again in Lemma 5.3.2.

Proposition 5.2.10 Under Hypothesis 5.1.12, if L/K is a Galois extension of
finite subextensions of k/k and K ′ is an intermediate field, then the diagram
in Figure 5.2.11 commutes. Here V : Gal(L/K)ab → Gal(L/K ′)ab denotes the
transfer map for the inclusion Gal(L/K ′) ⊆ Gal(L/K) (Theorem 2.3.7).

Gal(L/K)ab rL/K//

V

��

AK/NormL/K AL

��
Gal(L/K ′)ab

rL/K′
// AK′/NormL/K′ AL

Figure 5.2.11

Proof. See Exercise 2. ■
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Exercises
1. Prove Proposition 5.2.7.

Hint. See [37], Proposition IV.5.8.
2. Prove Proposition 5.2.10.

Hint. See [37], Proposition IV.5.9.

3. Under Hypothesis 5.1.12, choose c ∈ Ẑ∗ and let sL/K be the reciprocity
map defined using cd instead of d. Show that sL/K = c−1rL/K .

4. Under Hypothesis 5.1.12, choose c ∈ Ẑ∗ which acts on im(v), and let sL/K
be the reciprocity map defined using cd, cv instead of d, v. Show that
sL/K = rL/K .

5.3 The theorems of abstract class field theory
We now establish that the reciprocity map is an isomorphism (Theorem 5.3.9).
We also obtain an analogue of the norm limitation theorem (Corollary 5.3.11)
and some tools which will help with the existence theorem (Remark 5.3.14).

Proof of the reciprocity law
Our goal is to prove that the homomorphism rL/K from Definition 5.2.6 induces
an isomorphism Gal(L/K)ab → AK/NormL/K AL. Any resemblance with the
proof of the local reciprocity law is not at all coincidental!

Lemma 5.3.1 Under Hypothesis 5.1.12, for L/K an unramified extension
of finite subextensions of k/k, rL/K : Gal(L/K) → AK/NormL/K AL is an
isomorphism sending the Frobenius of Gal(L/K) to a uniformizer of K.

Proof. Let g ∈ Gal(L/K) be the Frobenius and choose h ∈ Gal(Lunr/K) lifting
g. Then the fixed field of h is K itself, and from the definition of r′, r(g) = r′(h)
is a uniformizer of K. By Proposition 5.1.14, r(g) generates H0(Gal(L/K), AL).
By the class field axiom, rL/K maps between two groups of the same order,
and the previous paragraph implies that the map is surjective. It is thus an
isomorphism. ■

Lemma 5.3.2 Under Hypothesis 5.1.12, for L/K a cyclic, totally rami-
fied extension of finite subextensions of k/k, the map rL/K : Gal(L/K) →
AK/NormL/K AL is an isomorphism.

Proof. Put n = [L : K]. The extension Lunr/K is the compositum of two
linearly disjoint extensions L/K and Kunr/K, so its Galois group is canonically
a product Gal(L/K)×Gal(Kunr/K). Let g be a generator of the first factor
(which we can also identify with Gal(Lunr/Kunr)) and let ϕ be a generator of
the second factor with dK(ϕ) = 1. Put τ = gϕ and let M be the fixed field of τ .
Let N be the compositum of L and M and put N0 = N ∩Kunr. We now have
the field diagram Figure 5.3.3 in which each line denotes a Z/nZ-extension, the
dashed lines represent unramified extensions, and each label indicates one or
more generators of the Galois group g.
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N
ϕ

τ
g

L

g,τ

M

g,ϕ

N0

ϕ,τ

K
Figure 5.3.3
Pick uniformizers πL and πM of L and M , respectively. Since dK(τ) = 1, by
Proposition 5.2.3 we have rL/K(g) = NormLunr/Kunr(πM ).
Let j be the order of rL/K(g) in AK/NormL/K AL and put u = πjM/π

j
L ∈ UN .

Since both NormLunr/Kunr(πjM ) and NormLunr/Kunr(πjL) = NormL/K(πjL) belong
to NormL/K AL, we can choose v ∈ AL such that

NormLunr/Kunr(u) = NormL/K(v) = NormLunr/Kunr(v).

Since NormL/K(v) ∈ AK ∩ UN = UK , we must have v ∈ UL.
Applying the class field axiom to N/N0 yields

0 = H−1
T (Gal(N/N0), AN ) =

ker(NormN/N0 : AN → AN0)
{ag−1 : a ∈ AN}

.

Since NormN/N0(u/v) = NormLunr/Kunr(u/v) = 1, we can write u/v in the form
ag−1 = ag/a for some a ∈ AN . Then

(πjLv)g−1 = (πjLv)τ−1 = (πjMv/u)τ−1 = (v/u)τ−1 = (a/aτ )g−1.

If we put x = (πjLv)(aτ/a), then xg = x and so x ∈ AN0 . Hence

j = vN (x) = nvN0(x) ∈ nẐ.

That is, the order of rL/K(g) in AK/NormL/K AL is divisible by n in Ẑ, and
hence also in Z.
By the class field axiom, rL/K maps between two groups of the same order n,
and the previous paragraph implies that the map has image of size at least n.
It is thus an isomorphism. ■

Before continuing, we record a key commutative diagram which will be the
scene of a lot of diagram-chasing.

Remark 5.3.4 For L/K a Galois extension of finite subextensions of k/k and
M/K a Galois subextension, the diagram

1 // Gal(L/M) //

rL/M

��

Gal(L/K) //

rL/K

��

Gal(M/K) //

rM/K

��

1

AM/NormL/M AL
NormM/K// AK/NormL/K AL // AK/NormM/K AM // 1

Figure 5.3.5



CHAPTER 5. ABSTRACT CLASS FIELD THEORY 77

commutes (thanks to Proposition 5.2.7) and the rows are exact.

Lemma 5.3.6 Under Hypothesis 5.1.12, for L/K an abelian extension of finite
subextensions of k/k, the map rL/K : Gal(L/K) → AK/NormL/K AL is an
isomorphism.

Proof. If L/K is cyclic of prime order, We induct on [L : K]. then either it is
unramified or totally ramified, and we already know rL/K is an isomorphism in
those cases (by Lemma 5.3.1 or Lemma 5.3.2, respectively). Otherwise, let M
be a subextension of L/K. Then diagram chasing through Figure 5.3.5 gives
that rL/K is surjective. If L/K is cyclic, then the class field axiom implies that
rL/K is a map between two groups of the same order, and hence must be an
isomorphism. Otherwise, we see from Figure 5.3.5 again that the kernel of rL/K
lies in the kernel of Gal(L/K)→ Gal(N/K) for every cyclic subextension N of
L/K. Since L/K is abelian and not cyclic, the intersection of these kernels is
trivial. Thus rL/K is also injective, so is an isomorphism. ■

Lemma 5.3.7 Under Hypothesis 5.1.12, for L/K a Galois extension of finite
subextensions of k/k, the homomorphism rL/K from Definition 5.2.6 induces
an injection Gal(L/K)ab → AK/NormL/K AL.

Proof. Let M be the maximal abelian subextension of L/K. We have the
following commutative diagram:

Gal(L/K)ab rL/K//

��

AK/NormL/K AL

��
Gal(M/K)

rM/K// AK/NormM/K AM

Figure 5.3.8
in which the left vertical arrow and bottom horizontal arrows are isomor-
phisms (the latter by Lemma 5.3.6). Thus the composite Gal(L/K)ab →
AK/NormM/K AM is an isomorphism, so rL/K must be injective. ■

Theorem 5.3.9 Reciprocity law. Under Hypothesis 5.1.12, for each Galois
extension L/K of finite subextensions of k/k, the homomorphism rL/K from
Definition 5.2.6 induces an isomorphism Gal(L/K)ab → AK/NormL/K AL.

Proof. The map in question is injective by Lemma 5.3.7, so it only remains
to check that rL/K itself is surjective. If L/K is solvable, we may deduce
surjectivity from Lemma 5.3.6 by induction on [L : K] again by a diagram chase
on Figure 5.3.5.
For general L/K, we instead check that rL/K becomes a surjection upon
restriction to p-Sylow subgroups for each prime p. That is, for M the fixed
field of a Sylow p-subgroup of Gal(L/K) and Sp the Sylow p-subgroup of
AK/NormL/K AL, the composition

Gal(L/M)→ Gal(L/K)
rL/K→ AK/NormL/K AL → Sp

is surjective. (Compare the proof of Lemma 4.3.2.)
Here some caution is required because M/K need not be Galois, so we cannot
draw the full diagram Figure 5.3.5. However, the left square in that diagram still
makes sense and commutes. Meanwhile, we may apply the previous paragraph
to see that the left vertical arrow rL/M is an isomorphism. Now note that the

composition AK ⊆ AM
NormM/K→ AK is multiplication by [M : K], which is

coprime to p; it follows that the bottom horizontal arrow induces a surjection
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of Sylow p-subgroups. (One can also apply Proposition 5.2.10 here.) ■

Remark 5.3.10 Alternatively, one can derive Theorem 5.3.9 by an argument
closer to what we did in local class field theory. In this approach, one first
simulates the proofs of Proposition 4.2.17 and Proposition 4.2.18 to show that
H2(Gal(L/K), AL) is cyclic of order [L : K]; the latter argument ends up
being quite similar to the proof of Lemma 5.3.2, with the role of Theorem 90
(Lemma 1.2.3) being played by the H−1

T aspect of the class field axiom. One
must then check that the reciprocity map agrees with the map given by Tate’s
theorem Theorem 4.3.1; we leave the details to the interested reader, but see
Section 7.5 for a similar argument in the setting of global class field theory.

This directly implies a version of the norm limitation theorem.

Corollary 5.3.11 Norm limitation theorem. Under Hypothesis 5.1.12,
for L/K an arbitrary extension of finite subextensions of k/k and M the
maximal abelian subextension of L/K, we have NormL/K AL = NormM/K AM .
In particular, NormL/K AL depends only on the Galois closure of L/K.

Proof. The only issue is the inclusion NormM/K AM ⊆ NormL/K AL, which we
are free to check after enlarging L (as long as we do not change M). We may
thus assume that L/K is Galois.
By Proposition 5.2.7 and Theorem 5.3.9, we have a commutative diagram

Gal(L/K)ab // AK/NormL/K AL

��
Gal(M/K)ab // AK/NormM/K AM

Figure 5.3.12
in which the horizontal arrows are isomorphisms. This implies the claim. ■

By similar logic, we also obtain a uniqueness result.

Corollary 5.3.13 Under Hypothesis 5.1.12, let L1/K and L2/K be abelian
extensions of finite subextensions of k/k. If NormL1/K AL1 = NormL2/K AL2 ,
then L1 = L2.

Proof. The compositum L = L1L2 is also a finite abelian extension of K.
By Proposition 5.2.7, Gal(L1/K) ∼= AK/NormL1/K AL1 and Gal(L2/K) ∼=
NormL2/K AL2 must be the same quotient of Gal(L/K) ∼= AK/NormL/K AL,
which forces L1 = L2. ■

Remark 5.3.14 In a similar vein, note that every subgroup of AK containing
a subgroup of the form NormM/K AM for some finite extension M/K must
itself occur as NormL/K AL for some finite (and even abelian) extension L/K.
Consequently, proving an analogue of the existence theorem in this setting
amounts to computing the intersection of the groups NormM/K AM .

Following [37], one can view the groups NormM/K AM as the open subgroups
for a certain topology on AK , called the norm topology. One can then
assert that Gal(Kab/K) is isomorphic to the profinite completion of AK , or
equivalently its maximal Hausdorff quotient, for the family of quotients by open
subgroups in the norm topology.

5.4 A look ahead
We conclude our treatment of abstract class field theory by asking ourselves:
what does the construction of an abstract reciprocity law tell us about the
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global Artin reciprocity law (Theorem 2.2.6)? See Section 6.5 for a continuation
of this discussion with more of the details filled in.

Replacing the multiplicative group
For L/K a finite abelian extension of number fields, we need to compare
Gal(L/K) to a generalized ideal class group of K. This means that the group
A must somehow be related to ideal classes. You might try taking the group of
fractional ideals in L, then taking the direct limit over all finite extensions L of
K. In this case, we would have to find Hi(Gal(L/K), AL) for AL the group of
fractional ideals in L, where L/K is cyclic and i = 0,−1. Unfortunately, these
groups are not so well-behaved as that!

The cohomology groups would behave better if AL were “complete” in some
sense, in the way that K∗ is complete when K is a local field. But there
is no good reason to distinguish one place over another in the global case.
So we’re going to make the target group A by “completing K∗ at all places
simultaneously”.

Replacing the unramified extensions and the valuation
Even without A, I can at least tell you what d is going to be over Q. To
begin with, note that there is a surjective map Gal(Q/Q)→ Gal(Qcyc/Q) that
turns an automorphism into its action on roots of unity. The latter group
is unfortunately isomorphic to the multiplicative group Ẑ∗ rather than the
additive group Ẑ, but this is a start. To make more progress, write Ẑ as the
product

∏
p Zp, so that Ẑ∗ ∼=

∏
p Z∗

p. Then recall that there exist isomorphisms

Z∗
p
∼=

{
Z/(p− 1)Z× Zp p > 2
Z/2Z× Zp p = 2.

In particular, Z∗
p modulo its torsion subgroup is isomorphic to Zp, but not in

a canonical way. Paying this no mind, let us choose an isomorphism for each p
and then obtain a surjective map Ẑ∗ → Ẑ. Composing, we get a surjective map
Gal(Q/Q)→ Ẑ which in principle depends on some choices, but the ultimate
statements of the theory will be independent of these choices. (Note that in
this setup, every “unramified” extensions of a number field is a subfield of a
cyclotomic extension, but not conversely.)

As for the valuation v, this will be more straightforward. In the situation
we end up considering, the group AQ will end up having a natural map to
Gal(Qcyc/Q), which we can then use to map to Ẑ. This again involves an
artificial choice, but as long as we make the same artificial choice as we did for
d, we get the necessary compatibility between d and v.

Further remarks
Remark 5.4.1 In the function field setting, we have a much more straightfor-
ward alternative to the use of cyclotomic extensions: we may take the map to
the Galois group of the base finite field. The point is that in this case we have
an ample supply of everywhere unramified extensions of the base field (without
quotation marks).

In the number field setting, using cyclotomic extensions as a proxy for
abelian, everywhere unramified extensions is a rather productive idea even
outside of class field theory. For one, it is the central premise of Iwasawa
theory, in which one studies the behavior of class fields in certain towers of
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number fields and their relationship with p-adic L-functions (and other related
concepts). For another, it is the starting point of p-adic Hodge theory,
in which one studies the relationship between different cohomology theories
associated to algebraic varieties over local fields.
Remark 5.4.2 One can also apply the framework of abstract class field theory
to prove some forms of higher-dimensional class field theory, taking the
group A to be something coming from algebraic K-theory. See the remark at
the end of [37], IV.6.



Chapter 6

The adelic formulation

The p-adic numbers, and more general local fields, were introduced into number
theory as a way to translate local facts about number fields (i.e., facts concerning
a single prime ideal) into statements of a topological flavor. To prove the
statements of class field theory, we need an analogous global construction. To
this end, we construct a topological object that includes all of the completions
of a number field, including both the archimedean and nonarchimedean ones.
This object will be the ring of adèles, and it will lead us to the right target
group for use in the abstract class field theory we have just set up.

Remark 6.0.1 Spelling note. There is a lack of consensus regarding the
presence or absence of accents in the words adèle and idèle. The term idèle is
thought to be a contraction of “ideal element”; it makes its first appearance,
with the accent, in Chevalley’s 1940 paper [6]. The term adèle appeared in the
1950s, possibly as a contraction of “additive idèle”; it appears to have been
suggested by Weil as a replacement for Tate’s term “valuation vector” and
Chevalley’s term “repartition”. Based on this history, we have opted for the
accented spellings here.

6.1 Adèles
Reference. [36]; [37], VI.1 and VI.2; [33], VII.

Lattices of number fields
The basic idea is that we want some sort of “global completion” of a number
field K. Let us first recall an older version of this idea: Minkowski’s construction
of the Euclidean lattice associated to a number field. We follow [37], I.5.

Definition 6.1.1 Let K be a number field of degree n. It then has n distinct
embeddings τ : K → C. The product embedding

j : K →
∏
τ

C, a 7→ (τ(a))τ

induces an isomorphism of KC = K ⊗Q C with
∏
τ C.

The ring KC = K ⊗Q C admits an involution F which fixes K and acts on
C via complex conjugation. The corresponding action on

∏
τ C is

(zτ )τ 7→ (zτ )τ

81
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where τ denotes the composition of τ with complex conjugation on C. The
fixed subring under F is KR = K ⊗Q R.

Equip KC ∼=
∏
τ C with the standard Hermitian inner product, that is,

⟨z1, z2⟩ =
∑
τ

z1,τz2,τ .

This restricts to a positive definite inner product on KR.
Via the embedding of K into KR, oK corresponds to a lattice in KR, i.e., a

discrete cocompact subgroup. Similarly, any fractional ideal of K corresponds
to a lattice in KR. ♢

Profinite completions
Let us put aside the Minkowski construction for the moment and turn to some
more arithmetic considerations. We have already used in multiple places the
fact that the profinite completion Ẑ of the group Z can be identified, via the
Chinese remainder theorem, with the product

∏
p Zp. This generalizes to an

arbitrary number field as follows.

Remark 6.1.2 Before continuing, we should clarify our use of notation like ôK
to denote the profinite completion of oK for K a number field. We originally
defined this as an inverse limit over finite group quotients of oK . However,
remember that we can define the same inverse limit using any smaller collection
of quotients which is cofinal (that is, any finite quotient factors through some
chosen quotient). In particular, if G is a subgroup of oK of some finite index
n, then noK ⊆ G and so the quotient map oK → oK/G factors through the
ring quotient oK/noK . That is, ôK can be identified with the inverse limit
lim←−n oK/noK , and hence also carries the structure of a topological ring.

Lemma 6.1.3 For K a number field, there is a natural isomorphism of compact
topological rings

ôK →
∏
p

lim←−
m

oK/p
m

where p runs over (nonzero) prime ideals of oK .

Proof. As in Remark 6.1.2, we identify ôK with lim←−n oK/noK . This ring maps
to oK/p

m for each prime p and each positive integer m; putting these maps
together gives us a map ôK → lim←−m oK/p

m for each p, and hence a map to the
product.
To see that this map is a bijection, factor the ideal noK as pe1

1 · · · per
r for

some primes p1, . . . , pr and some positive integers e1, . . . , er. By the Chinese
remainder theorem for ideals in a Dedekind domain, the natural map

oK/noK →
r∏
i=1

oK/p
ei
i

is an isomorphism. This immediately implies that the original map is injective.
To see that the original map is surjective, we must also observe that for each
prime p and each positive integer m, there exists a positive integer n such that
noK is divisible by pm; for instance, we may take n to be the absolute norm of
pm. ■

Remark 6.1.4 We cannot help mentioning a variant of Remark 6.1.2 that
plays a key role in p-adic Hodge theory. Let Cp be a completed algebraic closure
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of Qp. Consider the inverse system

· · · x 7→xp

→ oCp

x 7→xp

→ oCp .

Since the maps are multiplicative but not additive, the inverse limit only appears
to carry the structure of a multiplicative monoid. However, it was originally
observed by Fontaine that the natural map from this inverse system to the
inverse system

· · · x 7→xp

→ oCp
/poCp

x 7→xp

→ oCp
/poCp

is an isomorphism. In this inverse system, the maps upgrade to ring homomor-
phisms because (x+ y)p = xp + yp in any ring in which p = 0; consequently, the
original inverse limit is upgraded to a ring! This then implies that the inverse
limit of the system

· · · x 7→xp

→ Cp
x 7→xp

→ Cp
is again a ring; it is in fact an algebraically closed field which is complete with
respect to a certain nonarchimedean absolute value. This construction has
come to be known as forming the tilt of Cp, and generalizes to a large class of
fields which are complete with respect to nonarchimedean absolute values (the
perfectoid fields). See [3] for an introduction to this circle of ideas.

The adèles (rational case)
Our next step is to put the Minkowski construction together with profinite
completion to define the ring of adèles. Let us do this first in the case of the
rational numbers.
Definition 6.1.5 We define the ring of finite adèles Afin

Q as any of the
following isomorphic objects:

• the tensor product Ẑ⊗Z Q;

• the direct limit of 1
n Ẑ over all nonzero integers n;

• the restricted direct product
∏′

p
Qp, where we only allow tuples (αp)

for which αp ∈ Zp for almost all p. See Definition 6.1.6.

This is a locally compact topological ring, with the groups 1
n Ẑ forming a

fundamental system of neighborhoods of 0 consisting of compact subgroups.
The natural group homomorphism

Q/Z→ Afin
Q /Ẑ

is an isomorphism. ♢
In preparation for the definition of adèles associated to a general number

field, we introduce the formalism of restricted products.

Definition 6.1.6 Let I be an index set. For each i ∈ I, let Gi be a set and let
Hi be a set of Gi. The restricted (direct) product G of the pairs (Gi, Hi)
is the set of tuples (gi)∞

i=1 such that gi ∈ Hi for all but finitely many indices i.
Another way to say this is to define, for each finite subset S ⊆ I, the set

GS =
∏
i∈S

Gi ×
∏
i/∈S

Hi

and take G =
⋃
S GS .

We upgrade this construction from sets to richer categories as follows.
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• If each Gi is a group and each Hi is a subgroup, then G admits a group
structure.

• If each Gi is a ring and each Hi is a subring, then G admits a ring
structure. (However, if each Gi is a field, then G cannot be a field unless
I is a singleton set.)

• If each Gi is a locally compact topological space and each Hi is a compact
subspace, then G may be viewed as a locally compact topological space.
One way to see this is to use a system of neighborhoods of the identity
given by taking products of compact neighborhoods Si ⊆ Gi in which
Si = Hi for all but finitely many i. (Remember that by Tikhonov’s
theorem, any product of compact topological spaces is compact.) Another
way is to equip each subset GS with the product topology, then declare
a subset U ⊂ G to be open if its intersection with each GS is an open
subset of GS .

• Likewise, if each Gi is a locally compact topological group/ring and each
Hi is a compact subgroup/subring, then G may be viewed as a locally
compact topological group/ring.

♢

Definition 6.1.7 Define the ring of adèles over Q as AQ = R× Afin
Q . Then

AQ is a locally compact topological ring with a canonical embedding Q ↪→ AQ.
We refer to the elements of Q as principal adèles within AQ.

We may also view AQ as a restricted direct product of the pairs

(R, {0}), (Q2,Z2), (Q3,Z3), . . . ;

note that taking the subgroup {0} of R has no real effect because the definition
of the restricted product involves checking membership in the chosen subgroup
for all but finitely many indices. ♢

Remark 6.1.8 Note that AQ contains the neighborhood U of 0 consisting of
tuples (x)v where |x|∞ < 1 and |x|p ≤ 1 for all primes p. Any element of the
intersection U ∩ Q must be an integer (because of the condition at primes),
but cannot be a nonzero integer (due to the condition at the real place); hence
U ∩ Q = {0}. That is, just as Z sits inside R as a discrete subgroup, Q sits
inside AQ as a discrete subgroup.

In fact, we can do somewhat better. Just as the quotient group R/Z is
covered by the compact subset [0, 1] of R (and therefore is compact: a continous
map from a compact topological space to Hausdorff topological space has
compact image), the quotient group AQ/Q is covered by a compact subset

[0, 1]×
∏
p

Zp.

(see Exercise 1).

The adèles (general case)
We now put the Minkowski construction together with profinite completion to
define the ring of adèles of a number field.

Definition 6.1.9 Let K be a number field. By Lemma 6.1.3, the profinite
completion ôK is canonically isomorphic to

∏
p oKp

. We may thus define the



CHAPTER 6. THE ADELIC FORMULATION 85

ring of finite adèles Afin
K as any of the following isomorphic objects:

• the tensor product ôK ⊗oK
K;

• the direct limit of 1
α ôK over all nonzero α ∈ oK ;

• the restricted direct product of the pairs (Kp, oKp
) over all primes p of

K.

The natural homomorphism

K/oK → Afin
K /ôK

is an isomorphism.
The ring of adèles AK is the product KR × Afin

K . In other words, this is the
restricted product of the pairs (Kv, {0}) for infinite places v and (Kv, oKv ) for
finite places v. We again have a diagonal embedding K ↪→ AK ; we again refer
to the elements of the image of this embedding as principal adèles. ♢

Definition 6.1.10 For each place v of K, let | • |v be the absolute value on
the completion Kv normalized as follows.

• For v real, take the usual real absolute value.

• For v complex, take the square of the usual absolute value. (This does
not satisfy the triangle inequality; sorry.)

• For v a finite place above the prime p, normalize so that |p|v = p−1.

We then have a well-defined function | • | on AK given by

|x|K =
∏
v

|x|v;

this makes sense because by virtue of the definition of a restricted direct product,
all but finitely many of the values |x|v are equal to 1. ♢

Proposition 6.1.11 Product formula. If α ∈ K, then |α|K = 1.

Proof. The normalizations have been chosen so that for each place v of
Q, for each α ∈ K, the product of |α|w over all places w of K above p
equals |NormL/K(α)|v. Taking the product over v, we deduce that |α|K =
|NormL/K(α)|Q. That is, the product formula reduces to the case K = Q,
which we may check directly: if we write α = ±pe1

1 · · · per
r , then |α|v equals

pe1
1 · · · per

r if v =∞, p−ei
i if v = pi, and 1 otherwise. ■

Corollary 6.1.12 The subset K of AK is discrete.

Adelic S-integers

Definition 6.1.13 For any finite set S of places, let AK,S (resp. Afin
K,S) be the

subring of AK (resp. Afin
K ) consisting of those adèles which are integral at all

finite places not contained in S. The elements of AS might be thought of as
“adelic S-integers”. ♢

We can formulate an adelic analogue of the Chinese remainder theorem.

Proposition 6.1.14 For any finite set S of places, K + Afin
K,S = Afin

K and
K + AK,S = AK .

Proof. See Exercise 2. ■
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We end up with an adelic analogue of the Minkowski embedding, but with
the role of oK played by the entire field K!

Corollary 6.1.15 The quotient group AK/K is compact.

Proof. Choose a compact subset T of the Minkowski space M containing a
fundamental domain for the lattice oK . Then every element of M × Afin

K is
congruent modulo oK to an element of T×Afin

K . By the proposition, the compact
set T × Afin

K surjects onto AK/K, so the latter is also compact. ■

Remark 6.1.16 We mention in passing that just as the various completions
of Q are “rigid” in the sense that they have no nontrivial automorphisms even
if you ignore the topology (Exercise 3), the ring AQ also has no nontrivial
automorphisms even if you ignore the topology (Exercise 6).

The approximation theorem
We already mentioned one analogue of the Chinese remainder theorem (Propo-
sition 6.1.14). Here is another one.

Proposition 6.1.17 Approximation theorem. Let S be a finite set of places
of K. For each v ∈ S, let Uv be an open subgroup of Kv. Then K∩

⋂
v∈S Uv ̸= ∅.

Proof. See Exercise 7. ■

Exercises
1. Prove that the map from [0, 1]×

∏
p Zp to AQ/Q is surjective.

2. Prove Proposition 6.1.14.
3. Let K be a number field and let v be a place of K. Prove that every

automorphism of the field Kv (as a ring without topology) is continuous.
Hint. Let q be the cardinality of the residue field of v. Show first that
an element of K∗

v belongs to o∗
Kv

if and only if it has an m-th root for
every positive integer m coprime to p(q − 1). Then note that an element
of Kv belongs to oKv

iff it is a difference of two elements of o∗
Kv

.
4. Let S be a finite set of places of a number field K, none of which is complex.

Prove that every automorphism of
∏
v∈S Kv (as a ring without topology)

is continuous.
Hint. Using Exercise 3, reduce to checking that for two noncomplex
places v and w of K, lying over distinct places of Q, the completions Kv

and Kw are not isomorphic as underlying rings. To prove this, consider
the set of x ∈ K which are squares in Kv, and similarly for w.

5. Let K be a number field and let v be a place of K which is not complex.
Let Q(x, y, z) be a quadratic form over K defined as follows.

• If v is real, put Q(x, y, z) = x2 + y2 + z2.

• If v is finite lying over the rational prime p, choose a ∈ K ∩ o∗
Kv

whose image in the residue field of v is not a quadratic residue, and
put Q(x, y, z) = x2 − ay2 + pz2.

Let T be the intersection of the images of the maps cQ : A3
K → AK over

all c ∈ K∗. Prove that T = ker(AK →
∏
w∈S Kw) for some finite set S of

places of K containing v.
Hint. Use Hensel’s lemma to show that for w a finite place not lying
above 2, a, b, c ∈ o∗

Kw
, and t ∈ K∗

w, the equation ax2 +by2 +cz2 = t always
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has a solution with a, b, c ∈ K∗
w.

6. Prove that every automorphism of the ring AQ, not necessarily continuous,
is trivial.
Hint. Use Exercise 4 and Exercise 5 to prove that the map AQ →

∏
v Qv

is equivariant for any automorphism of AQ and the trivial action on
∏
v Qv.

7. Prove Proposition 6.1.17.
Hint. Prove by induction on n that given any pairwise distinct places
v1, . . . , vn, we can find x ∈ K with

|x|v1@gt; 1, |x|v2@lt; 1, . . . , |x|vn
@lt; 1.

Then make a careful linear combination of powers of such elements. For
more details, see [37], Theorem II.3.4.

6.2 Idèles and class groups
Reference. [36]; [37], VI.1 and VI.2; [33], VII.

We now shift from additive to multiplicative considerations.

Idèles
Definition 6.2.1 Let K be a number field and let AK be the ring of adèles
associated to K (Definition 6.1.9). We define the group of idèles IK associated
to K as the group of units of the ring AK . In other words, an element of IK is
a tuple (αv), one element of K∗

v for each place v of K, such that αv ∈ o∗
Kv

for
all but finitely many finite places v.

As a set, IK is the restricted product of the pairs (K∗
v , {1}) for infinite

places v and (Kv, o
∗
Kv

) for finite places v. We use this interpretation to give
IK the structure of a locally compact topological group. ♢

Definition 6.2.2 For S a finite set, let IK,S be the set of x ∈ IK for which
xv ∈ o∗

Kv
for each finite place v /∈ S; then IK =

⋃
S IK,S . By analogy with

Definition 6.1.13, the elements of IK,S can be thought of as “adelic S-units”. ♢

Remark 6.2.3 Warning. While the embedding of the idèle group IK into
the adèle group AK is continuous, the restricted product topology on IK does
not coincide with the subspace topology for the embedding! For example, each
set IK,S is open in IK but is not the intersection with an open subset of AK .

This is a more serious version of the same issue that came up in Exercise 6,
and the same fix applies: namely, identify IK with GL1(AK) and topologize it
accordingly (Exercise 1).

The idèle class group
Definition 6.2.4 For each α ∈ K∗, the principal adèle α ∈ AK is an idèle, so
we have an embedding K∗ ↪→ IK . We refer to elements of the image of this
embedding as principal idèles. Define the idèle class group of K as the
quotient CK = IK/K

∗ of the idèles by the principal idèles. ♢

The terminology idèle class group is justified on account of the following
construction.
Definition 6.2.5 There is a homomorphism from IK to the group of fractional
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ideals of K:
(αν)ν 7→

∏
p

pvp(αp),

which is continuous for the discrete topology on the group of fractional ideals.
(Note that we are ignoring the infinite places; that is, this map factors through
Ifin
K viewed as a quotient of IK .) By unique factorization of fractional ideals,

this homomorphism is surjective; its kernel is precisely IK,S for S the set of
infinite places.

Under this map, the principal idèle corresponding to α ∈ K maps to the
principal ideal generated by α. Thus we have a surjection CK → Cl(K) with
kernel IK,SK∗/K∗. ♢

Remark 6.2.6 What are the open subgroups of IK? For each formal product
m of places, one gets an open subgroup of idèles (αv)v such that:

1. if v is a real place occurring in m, then αv > 0;

2. if v is a finite place corresponding to the prime p, occurring to the power
e, then αv ≡ 1 (mod pe).

This then projects to an open subgroup of CK , the quotient by which is the
ray class group of modulus m! (Here we are using the fact that any element of
CK can be represented by an element of IK which has trivial valuation at any
finite place dividing m. See Definition 7.2.1 for an elaboration of this point.)

Consequently, the quotients of CK by open subgroups are isomorphic to (and
in bijection with) the generalized ideal class groups, with the added convenience
that they are all quotients of one group (not a group that depends on m). This
correspondence is what will allow us to translate between the classical and
adelic versions of Artin reciprocity.

Compactness and consequences
Definition 6.2.7 By the product formula (Proposition 6.1.11), we get a well-
defined norm map | · | : CK → R∗

+. Let C0
K be the kernel of the norm map; then

C0
K also surjects onto Cl(K). (The surjection onto Cl(K) ignores the infinite

places, so you can adjust there to force norm 1.) ♢

Proposition 6.2.8 The group C0
K is compact.

Proof. We first show (see Exercise 2) that there exists a real number c > 1 with
the following property: every idèle of norm 1 is (multiplicatively) congruent
modulo K∗ to an idèle whose components all have norms in [c−1, c].
The set of idèles with each component having norm in [c−1, c] is the product of
“annuli” in the archimedean places and finitely many of the nonarchimedean
places, and the group of units in the rest. (Most of the nonarchimedean places
don’t have any absolute values strictly between 1 and c.) This is a compact
set, the set of idèles therein of norm 1 is a closed subset and so is also compact,
and the latter set surjects onto C0

K , so that’s compact too. ■

While Proposition 6.2.8 may look innocuous, it actually implies two key
theorems of algebraic number theory which are traditionally proved using the
Minkowski lattice construction. (In fact we are really doing the same arguments
in slightly different language.)

Corollary 6.2.9 The class group Cl(K) of K is finite.
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Proof. The group C0
K is compact by Proposition 6.2.8 and it surjects onto

Cl(K), so the latter must also be compact for the discrete topology, and hence
finite. ■

Corollary 6.2.10 There exists a finite set S of places of K such that

IK = IK,SK
∗.

In particular, for any such S, CK is a quotient of IK,S.

Proof. Since Cl(K) = IL/K
∗ is finite, it is generated by some finite set of

primes. By taking S to include the corresponding places, we achieve the desired
effect. ■

Corollary 6.2.11 Dirichlet’s units theorem. The group of units of oK fits
into an exact sequence

0→ µK → o∗
K → Zr+s−1 → 0

in which µK is the (finite cyclic) group of roots of unity of K and r and s are
the number of real and complex places, respectively. More generally, for any
finite set S of places containing all infinite places, the group of units of the ring
oK,S of S-integers fits into an exact sequence

0→ µK → o∗
K,S → Z#S−1 → 0.

Proof. Define the map log : IK,S → R#S by taking log of the absolute value of
the norm of each component in S (normalizing as in Definition 6.1.10). By the
product formula (Proposition 6.1.11), this map carries o∗

K,S into the trace-zero
hyperplane H in R#S . By Kronecker’s theorem, any algebraic number with
trivial valuation at all finite and infinite places must be a root of unity, so the
kernel of o∗

K,S → H equals µK .
Restricting an element of o∗

K,S to a bounded subset of H bounds all of its
absolute values. Hence the discreteness of K in AK (Corollary 6.1.12) implies
that the image of the group o∗

K,S is discrete in H.
Let W be the span in H of the image of o∗

K,S ; it remains to check that W = H,
as this will imply that o∗

K,S is a lattice in H and hence has rank dimH = #S−1.
We may check this after enlarging S; by Corollary 6.2.10, we can assume that
IK,SK

∗ = IK and hence

CK = IK/K
∗ ∼= IK,S/o

∗
K,S .

Using this isomorphism, we obtain a continuous homomorphism C0
K → H/W

whose image generates H/W . Since C0
K is compact (Proposition 6.2.8), so is

its image; this is a contradiction unless H/W is the zero vector space. Thus ■

Remark 6.2.12 One corollary of the proof of Corollary 6.2.9 is that the
component group of CK surjects onto Cl(K), and hence is nontrivial in general.

This of course does not say anything in the case K = Q, and in this case one
can give a more direct description of CK . Namely, given an arbitrary idèle in
IQ, there is a unique positive rational with the same norms at the finite places.
Thus

CQ ∼= R+ ×
∏
p

Z∗
p.

Returning to the case of general K, there is a natural way to define a volume
measure on CK in such a way that the volume of the kernel of C0

K → Cl(K) is
exactly the unit regulator of K. Consequently, the total volume of C0

K equals
the product of the class number and the unit regulator, and it is this product
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which shows up in the analytic class number formula (based on the residue of
the Dedekind zeta function of K at the point s = 1; see Theorem 6.6.9).

Aside: beyond class field theory
Remark 6.2.13 Via the identification IK ∼= GL1(AK) from Remark 6.2.3,
class field theory can be viewed as a correspondence between one-dimensional
representations of Gal(K/K) and certain representations of GL1(AK). This
is the form in which class field theory generalizes to the nonabelian case: the
Langlands program predicts a correspondence between n-dimensional represen-
tations of Gal(K/K) and certain representations of GLn(AK). See Appendix A
for further discussion.

Exercises
1. Show that the restricted direct product topology on IK is the subspace

topology for the embedding into AK ×AK given by the map x 7→ (x, x−1),
and moreover this embedding has closed image.

2. Complete the proof of Proposition 6.2.8 by establishing the existence of
the constant c. This can be done using the finiteness of the class group
(Corollary 6.2.9) or the units theorem (Corollary 6.2.11); alternatively, with
more work one can give a direct proof via which both of the aforementioned
results become corollaries of Proposition 6.2.8.
Hint. For the direct approach, see for example [33], Section V.1, Theorem
0.

6.3 Adèles and idèles in field extensions
Reference. [37], VI.1 and VI.2.

Up to now, we have considered the ring of adèles associated to a single
number field. We now turn to the effect of a field extension on this construction.

Adèles in field extensions
Definition 6.3.1 If L/K is an extension of number fields, we get an embedding
AK ↪→ AL as follows: given α ∈ AK , each place w of L restricts to a place v of
K, so it makes sense to declare that the w-component of the image of α shall
equal αv. This embedding induces an inclusion IK ↪→ IL of idèle groups.

All automorphisms of L/K act naturally on on AL and IL. More generally,
if g ∈ Gal(K/K), then g maps L to some other extension Lg of K, and g
induces isomorphisms

AL → ALg , IL ∼= ILg , CL → CLg .

Explicitly, if (αw)w ∈ AL and g ∈ G, then g maps the completion Lw of
L to a completion Lwg of Lg. (Remember that a place w of L corresponds
to an absolute value | · |w on L; the absolute value | · |wg on Lg is given by
|ag|wg = |a|w.) ♢

Remark 6.3.2 A more conceptual interpretation of the previous discussion is
to identify AL with the tensor product AK ⊗K L. In particular, this is a good
way to see the Galois action on AL. See Exercise 1.



CHAPTER 6. THE ADELIC FORMULATION 91

Remark 6.3.3 When K is totally real, it is possible to show that every
automorphism of AK is induced by an automorphism of K over Q, even if we
ignore topology and consider automorphisms of the underlying ring which need
not be continuous. See Exercise 4. This breaks down when K has complex
places because C has many automorphisms as a field without topology: the
automorphism group acts transitively on C \Q.

Trace and norm
Definition 6.3.4 For L/K an extension of number fields, we define the trace
map TraceL/K : AL → AK and the norm map NormL/K : IL → IK by the
formulas

TraceL/K(x) =
∑
g

xg, NormL/K(x) =
∏
g

xg

where g runs over coset representatives of Gal(K/L) in Gal(K/K). Here the
sum and product take place in the adèle and idèle rings of the Galois closure of
L over K; in particular, if L/K is Galois, g simply runs over Gal(L/K) and
the arithmetic takes place in AL.

In terms of components, these definitions translate as

(TraceL/K(α))v =
∑
w|v

TraceLw/Kv
(αw)

(NormL/K(α))v =
∏
w|v

NormLw/Kv
(αw).

The trace and norm as defined here are compatible with the usual definitions
for principal adèles/idèles. In particular, the norm induces a map NormL/K :
CL → CK . ♢

Remark 6.3.5 You can also define the trace of an adèle α ∈ AL as the trace
of addition by α as an endomorphism of the finite free AK-module AL, and
the norm of an idèle α ∈ IL as the determinant of multiplication by α as an
automorphism of the finite free AK -module AL. (Yes, the action is on the adèles
in both cases. Remember from Remark 6.2.3 that idèles should be thought of
as automorphisms of the adèles, not as elements of the adèle ring, in order to
topologize them correctly.)

Idèle groups and class groups
Proposition 6.3.6 If L/K is a Galois extension with Galois group G, then
AGL = AK and IGL = IK .

Proof. If v is a place of K, then for each place w of K above v, the decomposition
group Gw of w is isomorphic to Gal(Lw/Kv). So if (α) is an adèle or idèle
which is G-invariant, then αw is Gal(Lw/Kv)-invariant for each w, so belongs
to Kv. Moreover, G acts transitively on the places w above v, so αw = αw′ for
any two places w,w′ above v. Thus (α) is an adèle or idèle over K. ■

This has the following consequence for idèle class groups. Note that for
L/K any extension of number fields, we can see that CK → CL is injective
from the fact that L∗ ∩ IK = K∗ within IL, which follows from the fact that
L ∩ AK = K within AL (e.g., by Exercise 2).

Corollary 6.3.7 Galois descent. If L/K is a Galois extension with Galois
group G, then G acts on CL, and the G-invariant elements are precisely CK .
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Proof. We start with an exact sequence

1→ L∗ → IL → CL → 1

of G-modules. Taking G-invariants, we get a long exact sequence

1→ (L∗)G = K∗ → (IL)G = IK → CGL → H1(G,L∗),

and the last term is 1 by Theorem 90 (Lemma 1.2.3). So we again have a short
exact sequence, and CGL

∼= IK/K
∗ = CK . ■

Remark 6.3.8 There is no analogue of Corollary 6.3.7 for ideal class groups: the
map Cl(K)→ Cl(L)G is neither injective nor surjective in general (Exercise 5).
This is our first hint of why the idèle class group will be a more convenient
target for a reciprocity map than the ideal class group.

The group Cl(L)G is classically known as the group of ambiguous classes
of L/K. This is related to the concept of a Pólya field from Remark 2.3.13;
see [5].

Exercises
1. Let L/K be a finite extension of number fields. Prove that the natural

map AK ⊗K L → AL is an isomorphism. In other words, if α1, . . . , αn
form a basis of L as a K-vector space, then they also form a basis of AL
as an AK-module.
Hint. Show first that for any place v of K, any basis of L as a K-vector
space also forms a basis of

∏
w|v Lw as a Kv-vector space.

2. Let K be a number field. Prove that the integral closure of Q in AK is
equal to K.
Hint. Suppose to the contrary that the integral closure contains some
larger number field L. By Corollary 2.4.12, there are infinitely many primes
of K which do not split in L; use one of these to obtain a contradiction.

3. Prove the following converse to Exercise 2: if L/K is an extension of
number fields such that K + AL,S = AL for some finite set of places S of
L, prove that K = L.
Hint. Use the fact that there are infinitely many primes of K that do
not split completely in L (Corollary 2.4.12).

4. Let K be a totally real Galois number field. Prove that the automorphism
group of AK as a bare ring (ignoring its topology) equals Gal(K/Q).
Hint. By Exercise 2, any automorphism of AK acts on K. We thus have
homomorphisms Gal(K/Q)→ Aut(AK)→ Gal(K/Q) whose composition
is the identity; it thus remains to check that Aut(AK) → Gal(K/Q) is
injective. For this, apply Exercise 5 as in Exercise 6.

5. Let L/K be a Galois extension of number fields with Galois group G.

(a) Give an example for which Cl(K)→ Cl(L)G fails to be injective.

(b) Give an example for which Cl(K)→ Cl(L)G fails to be surjective.

Hint. One way to produce failures of injectivity is via the principal ideal
theorem (Theorem 2.3.1). One way to produce failures of surjectivity is to
find quadratic fields with class group Z/4Z.
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6.4 The adelic reciprocity law and Artin reci-
procity

We now describe the setup by which we create a reciprocity law in global class
field theory, imitating the “abstract” setup from local class field theory but
using the idèle class group in place of the multiplicative group of the field. We
then work out why the reciprocity law and existence theorem in the adelic
setup imply Artin reciprocity and the existence theorem (and a bit more) in
the classical language.

Convention note. We are going to fix an algebraic closure Q of Q, and
regard “number fields” as finite subextensions of Q/Q. That is, we are fixing
the embeddings of number fields into Q. We’ll use these embeddings to decide
how to embed one number field in another.

The adelic reciprocity law and existence theorem
Here are the adelic reciprocity law and existence theorem; notice that they look
just like the local case except that the multiplicative group has been replaced
by the idèle class group.

Theorem 6.4.1 Adelic reciprocity law. There is a canonical map rK :
CK → Gal(Kab/K) which induces, for each Galois extension L/K of number
fields, an isomorphism rL/K : CK/NormL/K CL → Gal(L/K)ab. Moreover,
NormL/K CL is an open subgroup of CK .

Proof. We will first prove an “abstract” form of this theorem, in which we do
not say much about the identity of the map rK ; see Theorem 7.3.8. We then
prove a more precise version including a more specific recipe for the map; see
Proposition 6.4.5 for the recipe and Proposition 7.5.7 for the comparison with
the abstract version. (For the assertion that NormL/K CL is open in CK , see
Remark 7.1.7.) ■

Theorem 6.4.2 Adelic existence theorem. For every number field K
and every open subgroup H of CK of finite index, there exists a finite (abelian)
extension L of K such that H = NormL/K CL.

Proof. See Theorem 7.4.8. ■
We will also obtain a global analogue of the local norm limitation theorem,

which was not even suggested by the classical language. (Well, not in this
treatment anyway. See Lemma 7.2.2 for an interpretation of the quotient
CK/NormL/K CL in ideal-theoretic terms.)

Theorem 6.4.3 Adelic norm limitation theorem. Let L/K be an extension
of number fields and put M = L ∩Kab. Then NormL/K CL = NormM/K CM .

Proof. See Theorem 7.3.10. ■

More on the reciprocity map
We next use local class field theory and the principle of local-global compat-
ibility to come up with a candidate for the map rK in the adelic reciprocity
law (Theorem 6.4.1). We note in passing that this principle also lies at the
heart of the extension of class field theory envisioned in the Langlands program
(Remark 6.2.13).
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Definition 6.4.4 Let L/K be an abelian extension of number fields and v a
place of K. Put G = Gal(L/K) and let Gv be the decomposition group of
v, that is, the set of g ∈ G such that vg = v. Then for any place w above v,
Gv ∼= Gal(Lw/Kv). We will define a map rK,v : K∗

v → Gv ⊆ G as follows.

• If v is a finite place, use the local reciprocity map (Theorem 4.1.2).

• If v is a real place, use the sign map R∗ → {±1} ∼= Gv.

• If v is a complex place, then Gv is trivial and so there is nothing left to
specify.

We obtain a well-defined product map

r̃K : IK → G, (αv) 7→
∏
v

rK,v(αv) :

for (αv) ∈ IK , αv is a unit for almost all v and Lw/Kv is unramified for
almost all v (we may ignore infinite places here). For the (almost all) v in both
categories, rK,v maps αv to the identity.

Since each of the maps rK,v is continuous, so is the map r̃K . That means
the kernel of r̃K : IK → Gal(L/K) is an open subgroup of IK . ♢

Here is the subtle point, and the real source of “reciprocity” in this con-
struction.
Proposition 6.4.5 For L/K an abelian extension of number fields, the map
r̃K : IK → Gal(L/K) is trivial on K∗. It thus factors through a map rK :
CK → Gal(L/K).

Proof. See Proposition 7.5.7. ■

Remark 6.4.6 In case L = K(ζn) for some n, we can verify Proposition 6.4.5
by an explicit computation, similar to the direct verification of Artin reciprocity
for these extensions. This suggests that in general, we must first prove the
adelic existence theorem (Theorem 6.4.2) before establishing Proposition 6.4.5.
In the interim, we will derive a makeshift form of adelic reciprocity from the
framework of abstract class field theory.

Proposition 6.4.7 Let L/K be an abelian extension of number fields. Given
Theorem 6.4.1 and Proposition 6.4.5, let U be the kernel of rK , identify CK/U
with a generalized ideal class group (Remark 6.2.6) of some conductor m. Then
the map CK/U → Gal(L/K) is the Artin map; consequently, Theorem 2.2.6
holds.
Proof. The idèle α = (1, 1, . . . , π, . . . ) with a uniformizer π of oKp

in the
p component and 1s elsewhere maps onto the class of p in CK/U . On the
other hand, rK(α) = rK,p(π) is (because L is unramified over K) precisely the
Frobenius of p. So indeed, p is being mapped to its Frobenius, so the map
CK/U → Gal(L/K) is indeed Artin reciprocity. ■

Remark 6.4.8 The argument from Proposition 6.4.7 also gives some additional
information about the Artin map. First, the Artin map factors through a
generalized ideal class group whose conductor m is divisible precisely by the
ramified primes. Second, we can exactly describe the kernel of the classical
Artin map: it is generated by

• all principal ideals congruent to 1 modulo m;

• norms of ideals of L not divisible by any ramified primes.
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6.5 Adelic reciprocity: what remains to be done
We now pick up the thread from Section 5.4 to outline the proofs of the main
results of class field theory, to be presented in Chapter 7. Many of these steps
will be analogous to the steps in local class field theory; however, we do not
directly attempt to verify Proposition 6.4.7 except for cyclotomic extensions, for
which the explicit calculation suggested in Remark 6.4.6 will be an important
input into the machine. Instead, we postpone this step all the way until the
end.

Abstract reciprocity
Our first goal is to establish the conditions for abstract class field theory
(Section 5.1), in the setup described at the end of Section 5.3 using the idèle
class groups CK . This requires verifying the class field axiom (Definition 5.1.4),
plus a compatibility between the homomorphism d on the absolute Galois group
and the valuation map v.

We treat the class field axiom in two steps. The first step is to show that
for L/K cyclic, the Herbrand quotient of CL as a Gal(L/K)-module is [L : K].
This implies the First Inequality (Theorem 7.1.2):

#H0
T (Gal(L/K), CL) ≥ [L : K].

The argument will be to replace the group IL with the subgroup IL,T for some
suitable set of places T of L, and reduce to studying lattices in the manner of
the proof of Dirichlet’s units theorem Corollary 6.2.11).

The next step will to prove the Second Inequality (Theorem 7.2.10):

#H0
T (Gal(L/K), CL) ≤ [L : K],

which combined with the previous point yields

#H0
T (Gal(L/K), CL) = [L : K], #H1

T (Gal(L/K), CL) = 1.

This step is trivial in local CFT by Theorem 90 (Lemma 1.2.3), but is pretty
subtle in the global case. We will first describe a proof using analytic methods
(properties of L-functions); there is also an algebraic approach, more on which
below.

Finally, we check the compatibility between d and v using the explicit nature
of Artin reciprocity for cyclotomic extensions. Plugging into the machine then
gives an “abstract” reciprocity map (Theorem 7.3.8), not yet known to be
related to Artin reciprocity except for cyclotomic extensions. We also establish
the norm limitation theorem (Theorem 7.3.10).

The existence theorem and local-global compatibility
Our next step is to prove the adelic existence theorem (Theorem 6.4.2). As in
the local setting, having the reciprocity law (even only in abstract form, and
even without any compatibility with the Artin map) and the norm limitation
theorem in hand allows us to reduce to showing that every open subgroup of
CK of finite index contains a norm group (Theorem 7.4.8). This can be done
after enlarging K, so we can get into the realm of Kummer theory; this is
closely related to the algebraic proof of the Second Inequality mentioned above.

We then turn around and use the existence theorem to deduce that for every
finite abelian extension of the completion of a number field at some place is
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itself the completion of a finite extension of the number field (Theorem 7.5.9).
This will allow us to show, making careful use of cyclotomic extensions, that the
“abstract” global reciprocity map restricts to the usual reciprocity map from local
class field theory (Proposition 7.5.7). This will finally imply Proposition 6.4.5,
thus yielding the adelic reciprocity map (and also showing that it coincides
with the abstract reciprocity map).

Another approach via Brauer groups
We will also briefly sketch the approach taken in [36], in which one uses Galois
cohomology in place of abstract class field theory. Specifically, one first checks
that H2(Gal(L/K), CL) is cyclic of order [L : K] in certain “unramified” (i.e.,
cyclotomic) cases; as in the local case, one can then deduce this result in general
by induction on degree. Using Tate’s theorem (Theorem 4.1.14), one gets a
reciprocity map

Gal(L/K)ab = H−2
T (Gal(L/K),Z)→ H0

T (Gal(L/K), CK/NormL/K CL)

which again can be reconciled with local reciprocity to get the Artin reci-
procity map (Proposition 7.6.17). This approach will also yield some additional
information, notably a description of the Brauer group of a number field
(Theorem 7.6.10).

6.6 Adelic Fourier analysis after Tate
Reference. The original source is [4], XV; note that the “valuation vectors”
used therein are our adèles, as per Remark 6.0.1. For a modern (and much less
terse) treatment, see [42].

As an aside, we describe another classic use of adèles in algebraic number
theory: the derivation of the analytic continuation and functional equation of
Dedekind zeta functions and Dirichlet L-functions via Fourier analysis on the
adèles, as described by Tate in his PhD thesis. This is meant merely as a guide
to the latter, so we omit essentially all proofs.

Additive characters
Lemma 6.6.1 Let K be a number field and let v be a place of K. Then the dual
group (K+

v )∨ of continuous characters from K+
v to {z ∈ C : |z| = 1} is a locally

compact topological group. Moreover, for any nontrivial element X ∈ (K+
v )∨,

the map
K+
v → X, η 7→ (ξ 7→ X(ηξ))

defines a continuous isomorphism K+
v → (K+

v )∨.

Proof. See [4], XV, Lemma 2.2.1. ■

Remark 6.6.2 To choose a character X as in Lemma 6.6.1, we may precompose
with a trace map to reduce to the case K = Q. In that case, for v = ∞ we
may take X to be the character t 7→ e−2πit; for v = p, we may take it to be
t 7→ e−2πiλ(t) where λ(t) ∈ Z(p) is congruent to t modulo Zp.

This discussion globalizes directly to the adèles, as long as we are careful
about normalization.
Theorem 6.6.3 Let K be a number field. For each place v of K, let Xv be a
nontrivial additive character on K+

v as in Remark 6.6.2, and define the additive
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character X on A+
K via

X(α) =
∏
v

Xv(αv).

Then the dual group (A+
K)∨ is a locally compact topological group, and the map

α 7→ (β 7→ X(αβ))

defines a continuous isomorphism A+
K → (A+

K)∨.

Proof. See [4], XV, Theorem 4.1.1. ■

Fourier inversion
Theorem 6.6.4 Local Fourier inversion. Let K be a number field and
let v be a place of K. Fix a Haar measure on K+

v and a nontrivial character
X ∈ (K+

v )∨. For f ∈ L1(K+
v ), define the Fourier transform

f̂(η) =
∫
f(ξ)X(ηξ) dξ.

If f̂ ∈ L1(K+
v ) also, then

f(ξ) = c

∫
f̂(η)X(−ηξ) dη = c

̂̂
f(−ξ)

for some c > 0 which depends only on the Haar measure and the character X.
In particular, these can be normalized so that c = 1.

Proof. See [4], XV, Theorem 2.2.2. ■

Theorem 6.6.5 Global Fourier inversion. Let K be a number field, fix
a Haar measure on AK , and define the additive character X on A+

K as in
Theorem 6.6.3. For f ∈ L1(A+

K), define the Fourier transform

f̂(η) =
∫
f(ξ)X(ηξ) dξ.

If (̂f) ∈ L1(K+
v ) also, then

f(ξ) = c

∫
f̂(η)X(−ηξ) dη = c

̂̂
f(−ξ)

for some c > 0 which depends only on the Haar measure and the character X.
In particular, these can be normalized so that c = 1.

Proof. See [4], XV, Theorem 4.1.2. ■

Remark 6.6.6 Crucially, there is also a version of the Poisson summation
formula in this context. In classical Fourier analysis, this involves summing a
function and its Fourier transform over the lattice Z in R. In the adelic setup,
the “lattice” is the subgroup K of AK , and the result can also be viewed as
an analogue of the Riemann-Roch theorem in complex geometry! See [4], XV,
Theorem 4.2.1.
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The space of quasi-characters
Definition 6.6.7 Let K be a number field. By a quasi-character on the idèle
class group CK , we will mean any continuous homomorphism from this group
into C∗. By contrast, a character is required to map into the unit circle.

For each quasi-character c, there exists a unique real number s such that
|c(α)| = |α|s for all α ∈ IK (where |α| is defined as in Definition 6.2.7). We call
s the exponent of c.

The space of quasicharacters on CK contains a distinguished copy of C:
each complex number s corresponds to the character α 7→ |α|s. The exponent
of this character is precisely the real part of s. ♢

Remark 6.6.8 The adelic zeta function of K will be a function on the space
of quasi-characters. Its restriction to the distinguished copy of C will give the
usual zeta function. If we take the translate of this copy of C by some other
quasi-character, we will end up computing the L-function associated to some
Hecke character. The idea of the adelic setup is to package all of these Hecke
L-functions together into a single object, which can be studied by an adelic
analogue of the classical proof of analytic continuation for the Riemann zeta
function. More on this below.

Zeta functions and L-functions
The classical approach to deriving the analytic continuation and functional
equation for a Dedekind zeta function, or for Dirichlet L-functions, is to in-
terpret via an integral representation (technically, as a Mellin transform of
a theta series). The functional equation then follows from Poisson summa-
tion. Something similar is possible in the adelic situation, with the additional
advantage of admitting a “local-global compatibility”.

Theorem 6.6.9 For suitable functions f : AK → C, define the associated zeta
function as the following function of quasicharacters on CK with exponent
greater than 1:

ζ(f, c) =
∫
f(α)c(α) dα.

This function is single-valued and holomorphic except at the points corresponding
to s = 0 and s = 1 where it has simple poles with residues −κf(0) and κf̂(0),
respectively, where

κ = 2r1(2π)r2
hR√
|∆K |ωK

(with r1 the number of real places, r2 the number of complex places, h the class
number, R the unit regulator, ∆K the discriminant, and ωK the order of the
group of roots of unity). Moreover, we have the functional equation

ζ(f, c) = ζ(f̂, ĉ)

where ĉ(α) = αc(α)−1 (so in particular s 7→ 1− s).

Proof. See [4], XV, Theorem 4.4.1. ■

Remark 6.6.10 Theorem 6.6.9 looks a lot like what we are expecting except
for the presence of the mysterious test function f . To get back to more classical
statements like Theorem 2.4.2 and Theorem 2.4.5, one must choose f so that
one can evaluate f̂ and have it come out to be something similar to f . See the
very end of [4], XV for further discussion.



Chapter 7

The main results

We finally embark on the proof of the main results of global class field theory,
via the adelic reformulation (Section 6.4) and specifically the outline from
Section 6.5.

7.1 Cohomology of the idèles I: the “First In-
equality”

Reference. [36] VII.2-VII.4; [37] VI.3, but see below. See also this blog post
by Akhil Mathew1.

By analogy with local class field theory, we want to prove that for L/K a
cyclic extension of number fields and CK , CL the respective idèle class groups
of K and L,

H1(Gal(L/K), CL) = 1, H2(Gal(L/K), CL) = Z/[L : K]Z.

Our first step is to calculate the Herbrand quotient.

Theorem 7.1.1 For L/K a cyclic extension of number fields,

h(CL) = [L : K].

Proof. This will follow by combining Corollary 7.1.5, Definition 7.1.9, and
Lemma 7.1.10. ■

This will end up reducing to a study of lattices in a real vector space, much
as in the proof of Dirichlet’s units theorem (Corollary 6.2.11).

From Theorem 7.1.1, we will deduce the so-called “First Inequality”.

Theorem 7.1.2 First Inequality. For L/K a cyclic extension of number
fields,

#H0
T (Gal(L/K), CL) ≥ [L : K].

Proof. Apply Theorem 7.1.1 and remember that #H1
T (Gal(L/K), CL) ≥ 1. ■

The “Second Inequality” will be the reverse, which will be a bit more subtle
(see Theorem 7.2.10).

1amathew.wordpress.com/2010/05/30/the-first-inequality-cohomology-of-the-idele-classes/
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Some basic observations
Definition 7.1.3 Let L/K be a Galois extension of number fields with Galois
group G. (We do not yet need G to be cyclic.) For any finite set S of places
of K containing all infinite places, write IL,S to mean the group IL,T where T
denotes the set of places of L lying over some place in S. Similarly, write oL,S
to mean oL,T .

Note that each IL,S is stable under the action of G and that IL is the direct
limit of the IL,S over all S. Moreover, by Corollary 6.2.10, for S sufficiently
large we have

IL = IL,SL
∗.

♢

Proposition 7.1.4 Let L/K be a Galois extension of number fields with Galois
group G. For each i > 0,

Hi(G, IL) =
⊕
v

Hi(Gw, L∗
w),

where v runs over places of K and w denotes a single place of L above v.
Similarly, for each i,

Hi
T (G, IL) =

⊕
v

Hi
T (Gw, L∗

w).

Proof. View IL as the direct limit of the IL,S over all finite sets S of places of K
containing all infinite places and all ramified places; then Hi(G, IL) is the direct
limit of the Hi(G, IL,S). The latter is the product of Hi(G,

∏
w|v L

∗
w) over all

v ∈ S and Hi(G,
∏
w|v o

∗
Lw

) over all v /∈ S, but the latter is trivial because
v /∈ S cannot ramify. By Shapiro’s lemma (Lemma 3.2.3), Hi(G,

∏
w|v L

∗
w) =

Hi(Gw, L∗
w), so we have what we want. The argument for Tate groups is

analogous. ■

Corollary 7.1.5 Let L/K be a Galois extension of number fields with Galois
group G. Then

H1(G, IL) = 0, H2(G, IL) =
⊕
v

1
[Lw : Kv]

Z/Z.

Proof. This follows by combining Proposition 7.1.4, the computation of coho-
mology of local fields (Lemma 1.2.3 and Proposition 4.2.1), and the equality

H2(Gal(C/R),C∗) ∼= H0
T (Gal(C/R),C∗) = R∗/R+ ∼= Z/2Z.

■

Remark 7.1.6 Sanity check. The case i = 0 of Proposition 7.1.4 asserts
something that is evidently true: an idèle in IK is a norm from IL if and only
if each component is a norm.
Remark 7.1.7 If S contains all infinite places and all ramified places, then

NormL/K IL,S =
∏
v∈S

Uv ×
∏
v/∈S

o∗
Kv

where Uv is open in K∗
v . The group on the right is open in IK , so NormL/K IK

is open.
By quotienting down to CK , we see that NormL/K CK is open. In fact, the

snake lemma on the diagram
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0 // L∗ //

NormL/K

��

IL //

NormL/K

��

CL //

NormL/K

��

0

0 // K∗ // IK // CK // 0
Figure 7.1.8

implies that the quotient IK/(K∗ × NormL/K IL) is isomorphic to
CK/NormL/K CL.

Cohomology of the units: first steps
Definition 7.1.9 Let L/K be a cyclic extension of number fields with Galois
group G. Apply Corollary 6.2.10 to choose a finite set S of places of K so that
IL = IL,SL

∗. From the exact sequence

1→ o∗
L,S → IL,S → IL,S/o

∗
L,S = CL → 1

we have an equality of Herbrand quotients

h(CL) = h(IL,S)/h(o∗
L,S).

By Corollary 7.1.5,

h(IL,S) =
∏
v∈S

#H0
T (Gv, L∗

w) =
∏
v∈S

[Lw : Kv].

(Since G is abelian, we write Gv instead of Gw.) To get h(CL) = [L : K], it will
thus suffice to establish Lemma 7.1.10 below. ♢

Lemma 7.1.10 Let L/K be a cyclic extension of number fields. Let S be a
finite set of places of K containing all infinite places. Then

h(o∗
L,S) = 1

[L : K]
∏
v∈S

[Lw : Kv].

Proof. See the calculations in Definition 7.1.11 and Definition 7.1.13, plus
Lemma 7.1.14. ■

Cohomology of the units: a computation with S-units
At this point, we have reduced the computation of the Herbrand quotient h(IL),
and by extension the First Inequality, to the computation of h(o∗

L,S) for a
suitable set S of places of K. We treat this point next, using similar ideas to
the proof of Dirichlet’s units theorem (Corollary 6.2.11).

Definition 7.1.11 Let L/K be a cyclic extension of number fields with Galois
group G. Let S be a finite set of places of K containing all infinite places, and
let T be the set of places of L lying above places of S. Let V be the real vector
space consisting of one copy of R for each place in T . Define the map o∗

L,S → V
by

α→
∏
w∈T

log |α|w
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with normalizations as in Definition 6.1.10. By the product formula (Proposi-
tion 6.1.11) and Dirichlet’s units theorem (Corollary 6.2.11), the kernel of this
map consists of roots of unity, and the image M is a lattice in the trace-zero
hyperplane H of V . Since G acts compatibly on o∗

L,S and V (the latter by
permuting the factors), it also acts on M . ♢

Remark 7.1.12 Caveat. At this point, we deviate from [37] due to an
error therein. Namely, Lemma VI.3.4 is only proved assuming that G acts
transitively on the coordinates of V , but in Definition 7.1.11 this is not the case:
G permutes the places above any given place v of K but those are separate
orbits. So we’ll follow [36] instead.

Definition 7.1.13 Continuing from Definition 7.1.11, we can write down two
natural lattices in V . One of them is the lattice generated by M together with
the all-ones vector, on which G acts trivially. As a G-module, the Herbrand
quotient of that lattice is h(M)h(Z) = [L : K]h(M). The other is the lattice M ′

in which, in the given coordinate system, each element has integral coordinates.
To compute its Herbrand quotient, notice that the projection of this lattice
onto the coordinates corresponding to the places w ∈ T above some v ∈ S form
a copy of IndGGv

Z. Thus

h(G,M ′) =
∏
v∈S

h(G, IndGGv
Z) =

∏
v∈S

h(Gv,Z) =
∏
v∈S

#Gv =
∏
v∈S

[Lw : Kv].

♢
To sum up, the calculations from Definition 7.1.11 and Definition 7.1.13

reduce Lemma 7.1.10 to the following statement (Lemma 7.1.14).

Herbrand quotients of real lattices
We conclude the proof of the First Inequality with the following statement.

Lemma 7.1.14 Let V be a real vector space on which a finite cyclic group G
acts linearly, and let L1 and L2 be G-stable lattices in V for which at least one
of h(L1) and h(L2) is defined. Then h(L1) = h(L2) (and both are defined).

Proof. Note that L1 ⊗Z Q and L2 ⊗Z Q are Q[G]-modules which become
isomorphic to V , and hence to each other, after tensoring over Q with R.
By Lemma 7.1.15, this implies that L1 ⊗Z Q and L2 ⊗Z Q are isomorphic as
Q[G]-modules.
From this isomorphism, we see that as a Z[G]-module, L1 is isomorphic to
some sublattice of L2. Since a lattice has the same Herbrand quotient as any
sublattice (the quotient is finite, so its Herbrand quotient is 1), that means
h(L1) = h(L2). ■

Lemma 7.1.15 Let F/E be an extension of infinite fields. Let G be a finite
group. Let V1 and V2 be two right E[G]-modules which are finite-dimensional
as E-vector spaces. If V1 ⊗E F and V2 ⊗E F are isomorphic as F [G]-modules,
then V1 and V2 are isomorphic.

Proof. By hypothesis, the F -vector space

WF = HomF (V1 ⊗E F, V2 ⊗E F ),

on which G acts by the formula T g(x) = T (xg−1)g, contains an invariant vector
which, as a linear transformation, is invertible. Now WF can also be written as

W ⊗E F, W = HomE(V1, V2).
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The fact that WF has an invariant vector says that a certain set of linear
equations has a nonzero solution over F , namely the equations that express the
fact that the action of G leaves the vector invariant. But those equations have
coefficients in E, so

WG ⊗E F = WG
F ;

in particular, the space of invariant vectors in W is also nonzero.
It remains to check that some element of WG corresponds to a map V1 → V2
which is actually an isomorphism; for this, we argue as in Exercise 3. Fix an
isomorphism of vector spaces between V2 ⊗E F and V1 ⊗E F (which need not
respect the G-action). By composing each element of W with this isomorphism
and taking the determinant, we get a well-defined polynomial function on W ,
which we can restrict to WG. By hypothesis, this function is not identically
zero on WG

F , so (because E is infinite) it cannot be identically zero on WG

either. ■

Splitting of primes
As a consequence of the First Inequality, we record the following fact which
was previously stated as a consequence of the Chebotaryov density theorem
(Theorem 2.4.11), but which will be needed logically earlier in the arguments.
(See [37], Corollary VI.3.8 for more details.)

Corollary 7.1.16 For any nontrivial extension L/K of number fields, there
are infinitely many primes of K which do not split completely in L.

Proof. Suppose first that L/K is cyclic. Suppose that all but finitely many
primes split completely; we can then take a finite set S of places which contains
all of them as well as all of the infinite places and all of the ramified places.
For each v ∈ S, the group Uv = NormLw/Kv

L∗
w is open of finite index in K∗

v .
For any α ∈ IK , using the approximation theorem (Proposition 6.1.17) we can
then find β ∈ K∗ such that (α/β)v ∈ Uv for all v ∈ S. For each place v /∈ S,
we have Lw = Kv, so α/β ∈ NormL/K IL. We deduce that the class of α in
CL is a norm; that is, CK = NormL/K CL, whereas Theorem 7.1.2 asserts that
H0
T (Gal(L/K), CL) ≥ [L : K], contradiction.

In the general case, let M be the Galois closure of L/K; then a prime of K
splits completely in L if and only if it splits completely in M . Since Gal(M/K)
is a nontrivial finite group, it contains a cyclic subgroup; let N be the fixed field
of this subgroup. By the previous paragraph, there are infinitely many prime
ideals of N which do not split completely in M , proving the original result. ■

Exercises
1. Let K be a number field. Let L1, . . . , Lr be cyclic extensions of K of the

same prime degree p such that Li ∩ Lj = K for i ̸= j. Using the First
Inequality (Theorem 7.1.2), prove that there are infinitely many primes of
K which split completely in L2, . . . , Lr but not in L1.

7.2 Cohomology of the idèles II: the “Second
Inequality”

Reference. [36] VII.5; [37] VI.4. See also this blog post by Akhil Mathew1.
1amathew.wordpress.com/2010/06/05/the-algebraic-proof-of-the-second-inequality-i/

https://amathew.wordpress.com/2010/06/05/the-algebraic-proof-of-the-second-inequality-i/


CHAPTER 7. THE MAIN RESULTS 104

In Section 7.1, we proved that for L/K a cyclic extension of number fields,
the Herbrand quotient h(CL) of the idèle class group of L is equal to [L : K]
(Theorem 7.1.1) and deduced that #H0

T (Gal(L/K), CL) ≥ [L : K] (the “First
Inequality”; Theorem 7.1.2). This time we’ll prove the reverse inequality, and
even a somewhat stronger statement (see Theorem 7.2.10 below).

For this step, we have no local analogue to draw upon: the corresponding
assertion in local class field theory is covered by Theorem 90 (Lemma 1.2.3).
Unfortunately, there seems to be no direct approach to computing either
H−1
T (Gal(L/K), CL) orH1(Gal(L/K), CL), so some alternate strategy is needed.

We take an analytic approach motivated by the proof of Dirichlet’s theorem
on primes in arithmetic progressions; see Lemma 7.2.7. There is also an
algebraic approach, but we prefer to postpone discussing it until we are ready
to tackle the existence theorem, as these two topics share similar ideas; see
Theorem 7.4.14.

Back to ideals
For the analytic proof, we need to recast the Second Inequality back into
classical, ideal-theoretic language. In this argument, there is no need to assume
that L/K is cyclic.

Definition 7.2.1 Let L/K be a finite Galois extension and m a formal product
of places of K. As in Definition 2.2.3, let Jm

K be the group of fractional ideals of
K coprime to m; similarly, let Jm

L be the group of fractional ideals of L coprime
to m.

Let ImK be the subset of α ∈ IK such that:

1. for each finite prime p of K, αv ≡ 1 (mod pe) where e is the exponent of
p in m;

2. for each real place v in m, αv > 0.

Define ImL similarly.
Let Pm

K be the subgroup of Jm
K consisting of principal ideals admitting a

generator α ∈ K∗ ∩ ImL ; define Pm
L similarly. In this notation,

Clm(K) = Jm
K/P

m
K , Clm(L) = Jm

L /P
m
L .

The homomorphism IK → JK from Definition 6.2.5 restricts to a ho-
momorphism ImK → Jm

K , which in turn induces a surjective homomorphism
ImK/(K∗ ∩ ImK) → Clm(K). On the other hand, as indicated in Remark 6.2.6,
we have K∗ImK = IK and hence ImK/(K∗ ∩ ImK) ∼= CK , yielding a surjection
CK → Clm(K). ♢

Lemma 7.2.2 With notation as in Definition 7.2.1, the composition

CK/NormL/K CL ∼= ImK/(K∗ NormL/K I
m
L )→ Jm

K/P
m
K NormL/K J

m
L

is an isomorphism for some m.

Proof. The map in question is surjective because ImK → Jm
K is; we thus need to

check injectivity for suitable m. Let S be the set of finite places of K which
ramify in L. For each v ∈ S, apply local class field theory (see Theorem 4.1.5)
to see that for w a place of L above v, the image of NormLw/Kv

L∗
w is an open

subgroup Uv of K∗
v of finite index. We may then choose m to include every real

place and each place in S, and to ensure that for each v ∈ S, (ImK)v ⊆ Uv.
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We now prove the claim for such a choice of m. Given an element of ImK whose
image in Jm

K belongs to Pm
K NormL/K J

m
L , we can factor it as an element of

K∗ ∩ ImK times an element of NormL/K I
m
L times an element α ∈ ImK such that

for each finite place v, αv ∈ o∗
Kv

. We see that α ∈ NormL/K I
m
L by looking

separately at real places (which are okay because these places appear in m),
complex places (which are okay for trivial reasons), finite places in S (which
are okay by our choice of m), and finite places not in S (which are okay because
these places are unramified in L). ■

With Lemma 7.2.2 in hand, we can reduce the Second Inequality to proving
that

[Jm
K : Pm

K NormL/K J
m
L ] ≤ [L : K].

A special case of Chebotaryov density
We will need a special case of the Chebotaryov density theorem, which fortu-
nately we can prove without already having all of class field theory. We use
the notion of Dirichlet density for sets of prime ideals in a number field; see
Definition 2.4.8 and the remainder of the discussion in Section 2.4.
Proposition 7.2.3 Let L be a finite extension of K and let M/K be its Galois
closure. Then the set S of prime ideals of K that split completely in L has
Dirichlet density 1/[M : K] (in the sense of Definition 2.4.8).

Proof. A prime of K splits completely in L if and only if it splits completely
in M , so we may assume L = M is Galois. Recall that the set T of unramfied
primes q of L of absolute degree 1 has Dirichlet density 1 (see Exercise 1 and
Exercise 2); each such prime lies over an unramified prime p of K of absolute
degree 1 which splits completely in L.
The set T having Dirichlet density 1 means that∑

q∈T

1
Norm(q)s ∼

1
s− 1 s↘ 1

(s approaching 1 from above, that is). If we group the primes in T by which
prime of S they lie over, then we get

[L : K]
∑
p∈T

1
Norm(p)s ∼

1
s− 1 .

That is, the Dirichlet density of S is 1/[L : K]. ■

Example 7.2.4 For L/Q a quadratic extension, Proposition 7.2.3 states that
the set of prime ideals of Q that split completely in L has Dirichlet density 1/2.
As this splitting is governed by a congruence condition thanks to quadratic
reciprocity, this assertion also follows from Dirichlet’s theorem on primes in
arithmetic progressions. □

This gives the following result about splitting of primes, which may be of
independent interest.

Lemma 7.2.5 With notation as in Definition 7.2.1, for any subgroup H of
Jm
K of finite index containing Pm

K , the set of primes in H has Dirichlet density
equal to either 0 or 1/[Jm

K : H].

Proof. For χ : Jm
K/P

m
K → C∗ a character, we defined in Definition 2.4.4 the
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L-function
L(s, χ) =

∏
p̸|m

1
1− χ(p) Norm(p)−s .

By Theorem 2.4.2,

logL(s, 1) ∼ log ζK(s) ∼ log 1
s− 1 s↘ 1,

while if χ is not the trivial character, by Theorem 2.4.5, L(s, χ) is holomorphic
at s = 1. If L(s, χ) = (s− 1)m(χ)g(s) where g is holomorphic and nonvanishing
at s = 1, then m(χ) ≥ 0, and

logL(s, χ) ∼ m(χ) log(s− 1) = −m(χ) log 1
s− 1 .

By discrete Fourier analysis (or equivalently orthogonality of characters),∑
χ:Jm

K
/H→C∗

logL(s, χ) ∼ [Jm
K : H]

∑
p∈H

1
Norm(p)−s .

We conclude that the set of primes in H has Dirichlet density

1−
∑
χ̸=1 m(χ)

[Jm
K : H] ;

this is 1/[Jm
K : H] if the m(χ) are all zero and 0 otherwise. ■

Remark 7.2.6 Using Theorem 2.4.7 one can see that in the proof of
Lemma 7.2.5, we must have m(χ) = 0 for all χ ̸= 1; consequently, the set
of primes in H cannot in fact have density 0. However, we will not need this
refinement for the proof of the Second Inequality.

From the proof of Lemma 7.2.5, we see incidentally that at most one of
the m(χ) can be nonzero, in which case it equals 1. This already implies that
m(χ) = 0 when χ is of order greater than 2, as in this case χ is distinct from
its complex conjugate χ but m(χ) = m(χ).

The Second Inequality
We are now ready to prove the Second Inequality.

Lemma 7.2.7 With notation as in Definition 7.2.1, we have

[Jm
K : Pm

K NormL/K J
m
L ] ≤ [L : K].

Proof. Define the group H = Pm
K NormL/K J

m
L ⊆ Jm

K . The group H includes
every prime of K that splits completely, since such a prime is the norm of any
prime of L lying over it. Thus on one hand, by Proposition 7.2.3 the set of
primes in H has Dirichlet density at least 1/[L : K]. On the other hand, by
Lemma 7.2.5 the same set has density either zero or 1/[Jm

K : H]. We conclude
that [Jm

K : H] ≤ [L : K], as desired. ■

Corollary 7.2.8 Let L/K be a Galois extension of number fields. Then

#H0
T (Gal(L/K), CL) ≤ [L : K].

Proof. This follows from Lemma 7.2.7 by translating back into the language of
idèles using Lemma 7.2.2. ■
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Remark 7.2.9 We do not consider Corollary 7.2.8 to be a component of the
Second Inequality because it is not needed in order to verify the class field
axiom (and we will not reproduce it in the algebraic approach). In fact, once
we complete the proofs of the reciprocity law (Theorem 6.4.1) and the norm
limitation theorem (Theorem 6.4.3), Corollary 7.2.8 will also follow from those
two statements together.

On the other hand, if one wants to avoid abstract class field theory, then it
is helpful to have Corollary 7.2.8 in hand. See Remark 7.6.19.

Theorem 7.2.10 Second Inequality. Let L/K be a Galois extension of
number fields. Then:

1. the group H1(Gal(L/K), CL) is trivial;

2. the group H2(Gal(L/K), CL) is finite of order at most [L : K].

Proof. For L/K cyclic, combining Corollary 7.2.8 with the periodicity of Tate
groups (Theorem 3.4.1) shows that #H2(Gal(L/K), CL) ≤ [L : K]. Combining
with the First Inequality (Theorem 7.1.2) yields that H1(Gal(L/K), CL) is
trivial and #H2(Gal(L/K), CL) = [L : K].
For L/K solvable, we may proceed by induction on [L : K]. If [L : K] is not
cyclic, choose an intermediate subextension K ′/K . By the induction hypothesis,
H1(Gal(L/K ′), CK′) vanishes, so we may apply the inflation-restriction exact
sequence (Corollary 4.2.16) to see that for i = 1, 2,

0→ Hi(Gal(K ′/K), CK′) Inf→ Hi(Gal(L/K), CL) Res→ Hi(Gal(L/K ′), CL)

is exact. This allows us to complete the induction.
For L/K general, put G = Gal(L/K), let p be a prime, and let Gp be a Sylow
p-subgroup of G. Then for any i > 0, Hi(G,CL) is killed by the order of G and

Res : Hi(G,CL)→ Hi(Gp, CL)

is injective on p-primary components (both by the relationship between restric-
tion and corestriction, from Example 3.2.22). Since Gp is solvable, we may
deduce both assertions from the solvable case. ■

Aside: the Hasse norm theorem
We record a byproduct of the Second Inequality (not needed in what follows).

Theorem 7.2.11 Hasse norm theorem. Let L/K be a cyclic extension of
number fields. Then an element x ∈ K∗ belongs to NormL/K L

∗ if and only if
for each (finite or infinite) place v of K, for some (and hence every) place w
of L lying over K, x ∈ NormLw/Kv

L∗
w.

Proof. By the Second Inequality (Theorem 7.2.10), H−1
T (G,CL) = 1. This

implies that H0
T (G,L∗) → H0

T (G, IL) is injective. Now if x ∈ K∗ belongs to
NormLw/Kv

L∗
w. then it defines the zero class in H0

T (G, IL), so by the previous
logic it must also define the zero class in H0

T (G,L∗); this proves the claim. ■

Remark 7.2.12 The conclusion of Theorem 7.2.11 fails completely if L/K is
abelian but not cyclic. See Exercise 1.
Remark 7.2.13 Another related fact is the Grunwald-Wang theorem. It
was originally announced (and published) in an incorrect form by Grunwald
[16], who asserted that for K a number field and n a positive integer, an element
x ∈ K∗ is an n-th power if and only if it is an n-th power in Kv for all but
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finitely many places v of K.
It was then shown by Wang [53] that this statement fails in the following

way: the element 16 is an 8th power in Kv for any place v not lying above 2
(see Exercise 2) but need not be an 8th power in K.

Finally, Wang [55] established a corrected version of the theorem, which
shows that the original statement is “nearly” true. For example, it holds as
written whenever n is odd.

The Albert-Brauer-Hasse-Noether theorem
We record another byproduct of the Second Inequality, called the Albert-
Brauer-Hasse-Noether theorem.
Theorem 7.2.14 Albert-Brauer-Hasse-Noether theorem. For any
number field K, the map

H2(Gal(K/K),K∗)→
⊕
v

H2(Gal(Kv/Kv),Kv
∗)

is injective, where the sum runs over places v of K.

Proof. This follows from Theorem 7.2.10 via the exact sequence

1 = H1(Gal(L/K), CL)→ H2(Gal(L/K), L∗)→
⊕
v

H2(Gal(Lw/Kv), L∗
w)

for any Galois extension L/K, where w denotes some place of L above K. ■

Exercises
1. Show that the Hasse norm theorem (Theorem 7.2.11) fails for K = Q,

L = Q(
√

13,
√

17). (This example is due to Serre and Tate.)
Hint. Prove that every square in L is a local norm, but 52 is not a global
norm.

2. Show that in any field K of characteristic not equal to 2, 16 is an 8th
power in K if and only if one of −1, 2,−2 is a square in K. Then deduce
that for K a number field, 16 is an 8th power in Kv for any place v not
lying above 2, even though it is not always an 8th power in K.

3. Put K = Q(
√

7). Show that 16 is an 8th power in every completion of K,
but not in K itself.

4. Let K be a number field and choose a, b, c ∈ K∗. Prove that the equation
ax2 + by2 + c2 = 0 has a solution with x, y, z ∈ K not all zero if and only
if for each place v of K, there exists a solution with x, y, z ∈ Kv not all
zero. (This is a special case of the Hasse-Minkowski theorem.)
Hint. The equation has a solution in K if and only if −c is a norm from
K(
√
−b/a) to K.

7.3 An “abstract” reciprocity map
Reference. [36] VII.5; [37] VI.4, but only loosely.

We next manufacture a canonical isomorphism Gal(L/K)ab → CK/NormL/K CL
for any finite extension L/K of number fields, where CK and CL are the cor-
responding idèle class groups (Theorem 7.3.8). However, we won’t yet know
it agrees with our proposed reciprocity map, which is the product of the local
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reciprocity maps. We’ll come back to this point after we establish the existence
theorem (see Section 7.5).

Abstract unit groups and the class field axiom

We will be applying abstract class field theory with k = Q and k = Q, an
algebraic closure of Q. We first specify the Gal(Q/Q)-module A which will give
rise to abstract unit groups.

Definition 7.3.1 Set A =
⋃
K CK ; by Corollary 6.3.7, AK = CK for every

number field K. Our earlier calculations (Theorem 7.1.2, Theorem 7.2.10) imply
that the class field axiom is satisfied: for L/K a cyclic extension of number
fields,

#H0
T (Gal(L/K), CL) = [L : K], #H1

T (Gal(L/K), CL) = 1.

♢

Remark 7.3.2 In Definition 7.3.1, it will follow from the reciprocity law that
the group H0

T (Gal(L/K), CL) is cyclic. However, the class field axiom does not
require advance knowledge of this.

Cyclotomic extensions and abstract ramification theory
The cyclotomic extensions of a number field play a role in class field theory
analogous to the role played by the unramified extensions in local class field
theory. This makes it essential to make an explicit study of them for use in
proving the main results. However, we will not need the Kronecker-Weber
theorem (Theorem 1.1.2); instead, we will recover it as part of the reciprocity
law.

We first make a distinction which is of marginal significance in the totality
of number theory, but is critical for our use of the machinery of abstract class
field theory.

Definition 7.3.3 The extension
⋃
nQ(ζn) of Q obtained by adjoining all roots

of unity has Galois group Ẑ∗ =
∏
p Z∗

p. That group has a lot of torsion, since
each Z∗

p contains a torsion subgroup of order p− 1 (or 2, if p = 2).
If we take the fixed field for the torsion subgroup of Z∗, we get a slightly

smaller extension, which I’ll call the small cyclotomic extension of Q and
denote Qsmcy. Its Galois group is isomorphic to

∏
p Zp = Ẑ, but not canonically

so.
For K a number field, define Ksmcy = KQsmcy. Then Gal(Ksmcy/K) ∼= Ẑ

as well, even if K contains some extra roots of unity. ♢
With this definition in hand, we can set up the homomorphism d needed to

define abstract ramification theory for the base field k = Q.

Definition 7.3.4 Choose an isomorphism of Gal(Qsmcy/Q) with Ẑ; our results
are not going to depend on the choice (see Remark 7.3.11). That gives a
continuous surjection

d : Gal(Q/Q)→ Gal(Qsmcy/Q) ∼= Ẑ;

recall that this means we are going to regard Qsmcy/Q as the “maximal unram-
ified extension” of Q.

As in the general setup, for any finite extension L/K of number fields,
we define the abstract ramification index eL/K and the abstract inertia
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degree fL/K by setting

fL/K = [L ∩Qsmcy : K ∩Qsmcy], eL/K = [L : K]
fL/K

.

♢

An abstract henselian valuation
To complete the setup of abstract class field theory, we need an abstract
henselian valuation v : CQ → Ẑ with respect to d. Recall from Definition 5.1.8
that this means:

1. v(CQ) is a subgroup Z of Ẑ containing Z with Z/nZ ∼= Z/nZ for all
positive integers n;

2. v(NormK/Q CK) = fK/QZ for all finite extensions K/Q.

Definition 7.3.5 To define the map v, we write

IQ = Q∗ × R+ × Ẑ∗

as in Remark 6.2.12. We then define v as the projection onto the third factor
followed by the projection

Ẑ∗ ∼= Gal(Qcyc/Q)→ Gal(Qsmcy/Q) ∼= Ẑ.

The first condition of Definition 5.1.8 holds by construction. We will check the
second condition using Artin reciprocity for cyclotomic extensions. ♢

Lemma 7.3.6 The map v defined in Definition 7.3.5 is a henselian valuation in
the sense of Definition 5.1.8 (with respect to the map d from Definition 7.3.4).

Proof. Since we already know from Definition 7.3.5 that v factors through
CQ and surjects onto Ẑ, it suffices to check that for every number field K,
v(NormK/Q IK) = fK/QẐ. We may establish this by checking that the map

IK
NormK/Q→ IQ → Gal(Qcyc/Q)

has image Gal(Kcyc/K) ⊆ Gal(Qcyc/Q), as then we get the desired condition
by projecting from Gal(Qcyc/Q) to Gal(Qsmcy/Q). Note that for K = Q, this
follows from Artin reciprocity for cyclotomic extensions (Definition 1.1.7).
In one direction, the fact that IK maps into Gal(Kcyc/K) is a corollary of local
reciprocity (Theorem 4.1.2) plus Artin reciprocity for cyclotomic extensions as
used above.
In the other direction, the same logic shows that for each positive integer n,
the image of IK in Gal(K(ζn)/K) equals the image of the classical Artin map
for K(ζn)/K; it will thus suffice to check that these maps are surjective. It is
convenient to deduce this from the First Inequality; see Proposition 7.3.7 below.

■
Here is the consequence of the First Inequality used in the proof of Lemma 7.3.6.

Proposition 7.3.7 For L/K an abelian extension of number fields, the Artin
map always surjects onto Gal(L/K).

Proof. Let H be the image of the Artin map; the fixed field M of H has
the property that all but finitely many primes of K split completely in M .
We’ve already seen that this contradicts the First Inequality unless M = K
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(Corollary 7.1.16). ■

Consequences of abstract CFT
We now apply abstract class field theory to obtain an “abstract adelic reciprocity
law”.
Theorem 7.3.8 Abstract adelic reciprocity law. For every Galois
extension L/K of number fields, we obtain an isomorphism

r′
L/K : CK/NormL/K CL

∼→ Gal(L/K)ab.

Proof. The hypotheses of abstract class field theory are satisfied by taking
k = Q k = Q; A =

⋃
K CK as in Definition 7.3.1 (using Theorem 7.1.2 and

Theorem 7.2.10 to verify the class field axiom); d : Gal(Q/Q) → Ẑ as in
Definition 7.3.4; and v : CQ → Ẑ as in Definition 7.3.5 (using Lemma 7.3.6).
We may thus apply Theorem 5.3.9 to conclude. ■

Definition 7.3.9 By Proposition 5.2.7, the maps r′
L/K from Theorem 7.3.8 fit

together to give a map r′
K : CK → Gal(Kab/K); but we do not yet know that

this coincides with the product of the local reciprocity maps, so we cannot yet
recover Artin reciprocity. However, we can at least deduce the norm limitation
theorem (Theorem 6.4.3). See also Remark 7.3.11 below. ♢

Theorem 7.3.10 Norm limitation theorem. If L/K is a finite extension
of number fields and M = L ∩Kab, then NormL/K CL = NormM/K CM .

Proof. Apply Corollary 5.3.11. ■

Remark 7.3.11 Although we do not have a complete description of the
isomorphism r′

L/K coming from abstract class field theory, we do know one
specific fact about this map: for “unramified” extensions L/K (i.e., L ⊆ Ksmcy),
the “Frobenius” in Gal(L/K) maps to a “uniformizer” in CK . That is, the
element of Gal(L/K) coming from the element of Gal(Ksmcy/K) which maps
to 1 under dK corresponds via reciprocity to the element of CK which maps to
1 under vK .

The broader point here is that the definitions of both d and v involve the
same artificial choice of an isomorphism Gal(Qsmcy/Q) ∼= Ẑ, which thus does
not affect the reciprocity map. Compare Remark 5.1.11 and Exercise 4.

7.4 The existence theorem
Reference. [36] VII.6, VII.9, [37] VI.4, VI.6.

With the “abstract” reciprocity theorem in hand, we now prove the existence
theorem in its idelic formulation (see Theorem 6.4.2). Modulo the pending rec-
onciliation of Artin reciprocity with abstract reciprocity (see Proposition 7.5.7),
this will imply the classical version of the existence theorem: every generalized
ideal class group of a number field is identified by Artin reciprocity with the
Galois group of a suitable abelian extension (Theorem 2.2.8).

As in the proof of the local existence theorem (Theorem 4.3.11), having
access to the (abstract) reciprocity law and the norm limitation theorem reduces
the task of proving the existence theorem to the “topological” assertion that
every open subgroup of CL of finite index contains a norm subgroup. For this,
we can essentially rerun the Kummer-theoretic argument from the local case.

We then give the closely related algebraic proof of the Second Inequality
(Theorem 7.2.10).
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A base case for the existence theorem
As in the proof of the local existence theorem (Theorem 4.3.11), the key to
the proof of Theorem 7.4.8 is showing that for any given number field K, we
can find finite extensions L/K for which the groups NormL/K CL can be made
arbitrarily small. In preparation for an inductive proof, we establish a key base
case using Kummer theory.

Lemma 7.4.1 Let K be a number field containing a primitive p-th root of unity
for some prime p. Let U be an open subgroup of CK of index p. Then for some
finite set S of places of K containing the infinite places and all places above p,
IK = K∗IK,S and the preimage of U in IK,S contains

WS =
∏
v∈S

(K∗
v )p ×

∏
v/∈S

o∗
Kv
.

Proof. Let J be the preimage of U under the projection IK → CK , so that J is
open in IK of finite index. Then J contains a subgroup of the form

V =
∏
v∈S
{1} ×

∏
v/∈S

o∗
Kv

for some finite set S of places of K containing the infinite places, which by
Corollary 6.2.10 we may choose large enough so that K∗IK,S = IK . The group
J must also contain IpK , and hence WS . ■

We continue with a lemma that allows to detect whether certain elements
of a number field are p-th powers based on whether this happens locally. This
amounts to a carefully chosen special case of the Grunwald-Wang theorem
(Remark 7.2.13).

Lemma 7.4.2 With notation as in Lemma 7.4.1,

WS ∩K∗ = (o∗
K,S)p.

Proof. It is clear that
(o∗
K,S)p ⊆WS ∩K∗.

To prove the reverse inclusion, note that for any y ∈ WS ∩ K∗, if we set
L = K(y1/p), then every place v ∈ S is split in L and every place v /∈ S is
unramified in L, yielding

NormL/K IL,S = IK,S .

Since IK = K∗IK,S , this implies NormL/K CL = CK . By the First Inequality
(Theorem 7.1.2), this implies L = K and so y ∈ (K∗)p. ■

This will in turn enable us to compute the norm group for a certain com-
positum of Kummer extensions.

Lemma 7.4.3 With notation as in Lemma 7.4.1, put s = #S and

L = K(u1/p : u ∈ o∗
K,S).

Then [L : K] = ps and

NormL/K CL = K∗WS/K
∗ ⊂ CK .

Proof. By Corollary 6.2.11 and the assumption that K contains a primitive p-th
root of unity, the group o∗

K,S/(o∗
K,S)p is finite of order ps, yielding [L : K] = ps.
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By local reciprocity (Lemma 4.3.8), we have K∗WS/K
∗ ⊆ NormL/K CL; to

prove equality, it will suffice to check that these groups have the same index in
CK .
Consider now the exact sequence

1→
o∗
K,S

o∗
K,S ∩WS

→ IK,S
WS

→ CK
K∗WS/K∗ → 1.

By Lemma 7.4.2, the group on the left has order [o∗
K,S : (o∗

K,S)p] = ps. By
Lemma 7.4.4, the group in the middle has order p2s. Thus using the abstract
global reciprocity isomorphism (Theorem 7.3.8), we obtain

[CK : K∗WS/K
∗] = ps = [L : K] = [CK : NormL/K CL],

as desired. ■
Here is the local calculation used in the proof of Lemma 7.4.3.

Lemma 7.4.4 For K a number field, v a place of K, and p a prime such that
ζp ∈ K,

[K∗
v : (K∗

v )p] = p2

|p|v
.

Proof. We separate cases as follows.

1. If v is a real place, then p = 2, p2/|p|v = 2, and

K∗
v/(K∗

v )p = R∗/(R∗)2 = R∗/R+ ∼= Z/2Z.

2. If v is a complex place, then p2/|p|v = 1 according to our conventions
(Definition 6.1.10), and K∗

v/(K∗
v )p is trivial because C∗ is p-divisible.

3. If v is a finite place not lying above p, then p2/|p|v = p2 and K∗
v/(K∗

v )p
is generated by ζp and a uniformizer of Kv.

4. If v is a finite place above p, then |p|v = p−n for some positive integer
n, so p2/|p|v = pn+2. Since K∗

v
∼= o∗

Kv
× Z, it suffices to check that

[o∗
Kv

: (o∗
Kv

)p] = pn+1. For this, see Exercise 1.

■
We finally put everything together to get a key special case of the existence

theorem.
Lemma 7.4.5 Let K be a number field containing a primitive p-th root of unity
for some prime p. Let U be an open subgroup of CK of index p. Then there
exists a finite extension L of K such that NormL/K CL ⊆ U .

Proof. This now follows from Lemma 7.4.1 and Lemma 7.4.3. which by
Corollary 6.2.10 we may choose large enough so that K∗IK,S = IK . ■

Proof of the existence theorem
Building on the base case offered by Lemma 7.4.5, we now finish the proof of
the existence theorem.
Lemma 7.4.6 Let K be a number field. Let U be an open subgroup of CK
of some prime index p. Then there exists a finite extension L of K such that
NormL/K CL ⊆ U .



CHAPTER 7. THE MAIN RESULTS 114

Proof. Take K ′ = K(ζp). Let U ′ be the inverse image of U in CK′ . By
Theorem 7.3.8, [CK : NormK′/K CK′ ] = [K ′ : K] is coprime to p; consequently,
[CK′ : U ′] = p. By Lemma 7.4.5, there exists a finite extension L/K ′ such that
NormL/K′ CL ⊆ U ′; then NormL/K CL ⊆ NormK′/K U

′ ⊆ U . ■

Lemma 7.4.7 Let K be a number field. Let U be an open subgroup of
CK of finite index. Then there exists a finite extension L of K such that
NormL/K CL ⊆ U .

Proof. We proceed by induction on the index [CK : U ], with Lemma 7.4.6 as
the base case. Otherwise, choose an intermediate subgroup V between U and
CK . By the induction hypothesis, V contains N = NormL/K CL for some finite
extension L of K. Then

[N : (U ∩N)] = [UN : U ] ≤ [V : U ].

Let W be the subgroup of CL consisting of those x whose norms lie in U . Then

[CL : W ] ≤ [N : U ∩N ] ≤ [V : U ],

so by the induction hypothesis W contains NormM/L CM for some finite exten-
sion M/L. Thus U contains NormM/K CM , as desired. ■

Theorem 7.4.8 Adelic existence theorem. For K a number field, the
finite abelian extensions L/K are in bijection with the open subgroups of CK of
finite index via the map L 7→ NormL/K CL.

Proof. For any finite abelian extension L/K, NormL/K CL is a subgroup of CK
which is open (by Remark 7.1.7) of index [L : K] (by Theorem 7.3.8). Moreover,
by Corollary 5.3.13, the correspondence L 7→ NormL/K CL is injective.
Conversely, let U be an open subgroup of CK of finite index. By
Lemma 7.4.7, there exists a finite extension L1/K such that NormL1/K CL1 ⊆
U . By the adelic norm limitation theorem (Theorem 6.4.3), we also have
NormL1/K CL1 = NormL2/K CL2 ⊆ U for L2/K the maximal abelian subexten-
sion of L1/K. By Theorem 7.3.8 again, we have an isomorphism Gal(L2/K) ∼=
CK/NormL2/K CL2 , via which the subgroup U/NormL2/K CL2 corresponds to
a subgroup H of Gal(L2/K). Taking L to be the fixed field of H, we deduce
that NormL/K CL = U as desired. ■

Remark 7.4.9 As with the proof of the local existence theorem, the proof
of Theorem 7.4.8 is constructive in principle but not in practice: it involves
constructing some extension much larger than the desired abelian extension,
then invoking the norm limitation theorem to get down to an abelian extension.
We remind the reader that there is no easy fix known for this (Remark 2.2.10).

An algebraic approach to the Second Inequality
Drawing inspiration from the calculation of norm groups given in Lemma 7.4.3,
we now explain how to use similar ideas to give an algebraic proof of the
Second Inequality. Again, the key case is where L/K is a cyclic extension of
number fields of prime degree p and ζp ∈ K. To modify the calculation from
Lemma 7.4.3 to compute the norm group of a single Kummer extension, we
use a second set of places.

Lemma 7.4.10 Let K be a number field containing ζp for some prime p. Let
L/K be a cyclic extension of number fields of degree p. We can then choose the
following.
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1. A finite set S of s places of K containing all infinite places, all places
that ramify in L, and all places above p, for which IK = IK,SK

∗.

2. A second set T of s − 1 places of K disjoint from S, such that o∗
K,S →∏

v∈T K
∗
v/(K∗

v )p is surjective with kernel ∆ and L = K(∆1/p).

Proof. By Kummer theory (Theorem 1.2.6), we can choose a finite set S of places
of K containing all infinite places, all places that ramify in L, and all places
above p so that L = K(∆1/p) for ∆ = o∗

K,S ∩ (L∗)p. This remains true after
enlarging S, so by Corollary 6.2.10 we can further ensure that IK = IK,SK

∗.
Put N = K((o∗

K,S)1/p). By Kummer theory again

Gal(N/K) ∼= Hom(o∗
K,S/(o∗

K,S)p,Z/pZ).

By Corollary 6.2.11, o∗
K,S/(o∗

K,S)p ∼= (Z/pZ)s. Choose generators g1, . . . , gs−1
of Gal(N/L); these correspond in Hom(o∗

K,S/(o∗
K,S)p,Z/pZ) to a set of homo-

morphisms whose common kernel is precisely ∆/(o∗
K,S)p. We thus need to find,

for each gi, a place vi such that the kernel of gi is the same as the kernel of
o∗
K,S → K∗

vi
/(K∗

vi
)p; we can then take T = {v1, . . . , vs−1}.

Let Ni be the fixed field of gi; by Corollary 7.1.16 (which we deduced from the
First Inequality), there are infinitely many primes of Ni that do not split in N .
So we can choose a place wi of each Ni such that their restrictions vi to K are
distinct, not contained in S, and don’t divide p.
We claim Ni is the maximal subextension of N/K in which vi splits completely
(i.e., the decomposition field of vi). On one hand, vi does not split completely
in N , so the decomposition field is no larger than Ni. On the other hand, the
decomposition field is the fixed field of the decomposition group, which has
exponent p and is cyclic (since vi does not ramify in N). Thus it must have
index p in N , so must be Ni itself.
Thus L =

⋂
Ni is the maximal subextension of N in which all of the vi split

completely. We conclude that for x ∈ o∗
K,S , x belongs to ∆ iff Kvi(x1/p) = Kvi

for all i, which occurs iff x ∈ Kp
vi

. That is, ∆ is precisely the kernel of the map
o∗
K,S →

∏
iK

∗
vi
/(K∗

vi
)p. This proves the claim. ■

We have the following modified version of Lemma 7.4.2.

Lemma 7.4.11 With notation as in Lemma 7.4.10, write

WS,T =
∏
v∈S

(K∗
v )p ×

∏
v∈T

K∗
v ×

∏
v/∈S∪T

o∗
Kv
.

Then
WS,T ∩K∗ = (o∗

K,S∪T )p.

Proof. It is again clear that

(o∗
K,S∪T )p ⊆WS,T ∩K∗.

To prove the reverse inclusion, it will again suffice to prove that y ∈WS,T ∩K∗,
if we set L = K(y1/p), then NormL/K CL = CK ; namely, Theorem 7.1.2 will
then imply L = K and so y ∈ (K∗)p.
Since o∗

K,S →
∏
v∈T o∗

Kv
/(o∗

Kv
)p is surjective, any element of IK,S∪bigT can be

written as the product of an element of o∗
K,S with an element of IK,S∪T which

is a p-th power at each place of T . In particular, by Lemma 4.3.8 such an
element is a norm from L at each place of T ; we can now reprise the proof of
Lemma 7.4.2, skipping over the places in T , to deduce that we have a norm
from L. ■
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Lemma 7.4.12 With notation as in Lemma 7.4.10 and Lemma 7.4.11,
K∗WS,T /K

∗ is contained in NormL/K CL and has index p in CK . Conse-
quently, the Second Inequality holds for L/K.

Proof. By Lemma 7.4.11, we have an exact sequence

1→
o∗
K,S∪T

(o∗
K,S∪T )p →

IK,S∪T

WS,T
→ CK

K∗WS,T /K∗ → 1,

with which we may compute as in Lemma 7.4.3: the left group has order
p#(S∪T ) = p2s−1 by Corollary 6.2.11 while the middle group has order p2s by
Lemma 7.4.4, so

[CK : K∗WS,T /K
∗] = p.

Meanwhile, we can check by local reciprocity that NormL/K IL,S = IK,S (com-
pare the proof of Lemma 7.4.11).

• For v ∈ S, elements of (K∗
v )p are norms from any abelian extension of Kv

of exponent p (by Lemma 4.3.8).

• For v ∈ T , v splits in L and so Lw = Kv.

• For v /∈ S ∪ T , v is unramified in L and so NormLw/Kv
o∗
Lw

= o∗
Kv

.

Dence K∗WS,T ⊆ NormL/K CL, completing the proof. ■

Lemma 7.4.13 Let L/K be a cyclic extension of number fields of prime degree
p and let K ′ = K(ζp), L′ = L(ζp). Then the map

H0
T (Gal(L/K), CL)→ H0

T (Gal(L′/K ′), CL′)

induced by the inclusion CL → CL′ is injective.

Proof. For x ∈ CK , NormL/K(x) = xp; this implies that both groups in question
are killed by p. In particular, multiplication by d = [K ′ : K], which divides
p− 1, is an isomorphism on these groups.
Suppose x ∈ CK maps to the identity in H0

T (Gal(L′/K ′), CL′). We can then
choose a representative of class of x in H0

T (Gal(L/K), CL) of the form yd; then y
also maps to the identity in H0

T (Gal(L′/K ′), CL′). That is, y = NormL′/K′(z′)
for some z′ ∈ CL′ , and

yd = NormK′/K(y) = NormL′/K(z′) ∈ NormL/K CL.

Thus x ∈ NormL/K CL, as needed. ■

Theorem 7.4.14 Second Inequality (algebraic proof). Let L/K be a
Galois extension of number fields with Galois group G. Then:

1. the group H1(G,CL) is trivial;

2. the group H2(G,CL) is finite of order at most [L : K].

Proof. As in the proof of Theorem 7.2.10, we use an induction argument to
reduce to proving that for L/K cyclic,

H0
T (Gal(L/K), CL) ≤ [L : K].

In fact, the same induction (considering H2 in place of H0
T ) allows us to further

reduce to the case where [L : K] = p is prime.
Let K ′ = K(ζp) and L′ = L(ζp); then K ′ and L are linearly disjoint over K
(since their degrees are coprime), so [L′ : K ′] = [L : K] = p and the Galois
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groups of L/K and L′/K ′ are canonically isomorphic. By Lemma 7.4.12 and
Lemma 7.4.13,

#H0
T (Gal(L/K), CL) ≤ #H0

T (Gal(L′/K ′), CL′) ≤ [L′ : K ′] = p

as desired. ■

Exercises
1. Complete the proof of Lemma 7.4.4 by showing that if |p|v = p−n for some

positive integer n, then [o∗
Kv

: (o∗
Kv

)p] = pn+1. (Remember that K is a
number field containing a primitive p-th root of unity.)
Hint. Using the logarithm map, we obtain an isomorphism o∗

Kv
/µKv

∼=
Znp (even when p = 2). See [37], Proposition II.5.7 for details.

2. Let K be a number field. Prove that for every positive integer n, CnK is the
intersection of the norm groups NormL/K CL over all abelian extensions
L/K of exponent n.

7.5 Local-global compatibility
Reference. [37] VI.5.

Let L/K be a Galois extension of number fields. So far, we’ve used abstract
class field theory to construct reciprocity isomorphisms and to establish the
adelic form of the existence theorem (Theorem 7.4.8).

It remains to verify that the “abstract” reciprocity map coincides with the
product of the local reciprocity maps (Definition 6.4.4). As noted earlier, this
is enough to recover the classical Artin reciprocity law (Proposition 6.4.7); this
will finally complete the proof of all of the statements originally asserted in
Chapter 2).

Compatibility for cyclotomic extensions
Definition 7.5.1 Let L/K be a Galois extension of number fields. Let

rL/K : IK → Gal(L/K)ab

be the product of the local reciprocity maps Definition 6.4.4. Meanwhile, let

r′
L/K : IK → Gal(L/K)ab

be the map obtained by inverting the isomorphism Gal(L/K)ab →
CK/NormL/K CL given by Theorem 7.3.8. ♢

As a base case for our work, we need to know that rL/K = r′
L/K when L is

contained in a small cyclotomic extension. Note that this is very similar to the
proof that the map v is an abstract henselian valuation (Lemma 7.3.6).

Lemma 7.5.2 With notation as in Definition 7.5.1, suppose that L ⊂ Ksmcy.
Then rL/K = r′

L/K .

Proof. In the setting of abstract class field theory, L/K is viewed as an “unrami-
fied” extension. Consequently, the reciprocity map r′

L/K : CK/NormL/K CL →
Gal(L/K) is described completely by Lemma 5.3.1: it is given by com-
posing the valuation map vK : CK → Ẑ with the inverse of the map
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dK : Gal(Ksmcy/K) ∼= Ẑ, then projecting from Gal(Ksmcy/K) to Gal(L/K).
(Note that as per Remark 7.3.11, this does not depend on the artificial choice
of the isomorphism dK , because vK is defined using the same choice.) Con-
sequently, in this case we end up with the usual Artin map for a cyclotomic
extension (Definition 1.1.7), which is compatible with local reciprocity by direct
calculation (Example 4.1.4). ■

For the purposes of illustration, we sketch an alternate approach to that
calculation in terms of Lubin-Tate formal groups. This approach has the benefit
that it does not depend on global reciprocity, and so can be adapted more
easily to extensions which are not cyclotomic.

Lemma 7.5.3 Via the identifications Gal(Q(ζpm)/Q) with (Z/pmZ)∗, we have

rQℓ(ζpm )/Qℓ
(a) =


sign(a) ℓ =∞
ℓvℓ(a) ℓ ̸=∞, p
u−1 ℓ = p.

Proof. This is straightforward for ℓ =∞. For ℓ ̸=∞, p, we have an unramified
extension of local fields, where we know the local reciprocity map takes a
uniformizer to a Frobenius. In this case the latter is simply ℓ.
The hard work is in the case ℓ = p. For that computation one uses what
amounts to a very special case of the Lubin-Tate construction of explicit class
field theory for local fields, using formal groups. Put K = Qp, ζ = ζpm and
L = Qp(ζ).
Suppose without loss of generality that u is a positive integer, and let σ ∈
Gal(L/K) be the automorphism corresponding to u−1. Since L/K is totally
ramified at p, we have Gal(L/K) ∼= Gal(Lunr/Kunr), and we can view σ as
an element of Gal(Lunr/K). Let ϕL ∈ Gal(Lunr/L) denote the Frobenius, and
put τ = σϕL. Then τ restricts to the Frobenius in Gal(Kunr/K) and to σ in
Gal(L/K). As per Definition 5.2.1, we may compute r−1

L/K(σ) as NormM/K πM ,
where M is the fixed field of τ and πM is a uniformizer. We want that norm to
be u times a norm from L to K, i.e.,

r−1
L/K(σ) ∈ uNormL/K L

∗.

Define the polynomial
e(x) = xp + upx

and put
P (x) = e(n−1)(x)p−1 + pu,

where e(k+1)(x) = e(e(k)(u)). Then P (x) satisfies Eisenstein’s criterion, so its
splitting field over Qp is totally ramified, any root of P is a uniformizer, and the
norm of said uniformizer is (−1)[L:K]pu ∈ NormL/K L

∗, since NormL/K(ζ−1) =
(−1)[L:K](p).
The punch line is that the splitting field of P (x) is precisely M ! Here is where
the Lubin-Tate construction comes to the rescue... and where I will stop this
sketch. See [37] V.2, V.4 and/or [36] I.3. ■

Compatibility for general extensions
Lemma 7.5.4 With notation as in Definition 7.5.1, suppose that L∩Ksmcy = K.
Then rL/K = r′

L/K .
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Proof. In the setting of abstract class field theory, L/K is viewed as a “totally
ramified” extension. Consequently, we may set notation as in the proof of
Lemma 5.3.2, then apply Proposition 5.2.7 to obtain a commutative diagram

CM/NormN/M CN
r′

N/M //

NormM/K

��

Gal(N/M)

��
CK/NormL/K CL

r′
L/K // Gal(L/K)

Figure 7.5.5
in which the horizontal arrows are isomorphisms (Theorem 7.3.8) and the right
vertical arrow is an isomorphism, as then is the left vertical arrow. We also
have a corresponding diagram on the local side:

IM
rN/M//

NormM/K

��

Gal(N/M)

��
IK

rL/K// Gal(L/K)
Figure 7.5.6
This means that we can reduce checking the compatibility for L/K to the corre-
sponding statement for the “unramified” extension N/M , to which Lemma 7.5.2
applies. ■

At last, we obtain the desired compatibility of reciprocity maps, and with
it the completion of the proofs from global class field theory. Hooray! (See
Remark 7.6.18 for another approach.)

Proposition 7.5.7 For any Galois extension L/K of number fields, rL/K =
r′
L/K ; that is, the abstract reciprocity map coincides with the product of the

local reciprocity maps.

Proof. By the norm limitation theorem (Theorem 7.3.10), we may assume that
L/K is abelian. By Proposition 5.2.7, we may check the comparison of maps
after replacing L with a larger abelian extension of K.
We may split the exact sequence

1→ Gal(Kab/Ksmcy)→ Gal(Kab/K)→ Gal(Ksmcy/K) ∼= Ẑ→ 1

by choosing an element of Gal(Kab/K) lifting the generator 1 ∈ Ẑ. Using this,
we can split Kab as the compositum of Ksmcy and an abelian extension which is
linearly disjoint from Ksmcy. Using the previous paragraph, we can split some
finite extension of L as the compositum of linearly disjoint cyclic extensions,
one contained in Ksmcy and the others linearly disjoint from Ksmcy. Applying
Lemma 7.5.2 to the first extension and Lemma 7.5.4 to the others, we deduce
the desired compatibility for abelian extensions. ■

Remark 7.5.8 It’s worth repeating that only now do we know that the product
rL/K of the local reciprocity maps kills principal idèles (Proposition 6.4.5).
That fact, which relates local behavior for different primes in a highly global
fashion, is the basis of various higher reciprocity laws. See [36], Chapter
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VIII for details.

Globalization of local abelian extensions
As a complement to Proposition 7.5.7, we show that every local abelian extension
is the completion of a global abelian extension. Over Q, this holds because
the local Kronecker-Weber theorem (Theorem 1.3.4) and the Kronecker-Weber
theorem (Theorem 1.1.2) are expressed in terms of the same family of extensions
of Q, namely the cyclotomic extensions; however, in the general case we must
take a less explicit approach.

Theorem 7.5.9 Let K be a number field, let v a place of K, and let M a finite
abelian extension of Kv. Then there exists a finite abelian extension L of K
such that for any place w of L above v, Lw contains M . (This conclusion can
be formally improved; see Exercise 1.)

Proof. We can quickly dispatch the cases where v is infinite: if v is complex
there is nothing to prove, and if v is real then we may take L = K(

√
−1). So

assume hereafter that v is finite.
By the existence theorem (Theorem 7.4.8) plus local-to-global compatibility
(Proposition 7.5.7), it suffices to produce an open subgroup V of CK of finite
index such that the preimage of V under K∗

v → CK is contained in N =
NormM/Kv

M∗. Let S be the set of infinite places and let T = S ∪ {v}. By
Corollary 6.2.11, o∗

K,T is a finitely generated abelian group and G = o∗
K,T ∩N

is a subgroup of o∗
K,T of finite index.

Pick a finite place u /∈ T . The image of o∗
K,T in K∗

u is a finitely generated
subgroup of o∗

Ku
. Hence we can choose a sufficiently small neighborhood U of

the identity in o∗
Ku

so as to ensure that U ∩ o∗
K,T ⊆ G.

Now put

W = N × U ×
∏
w∈S

K∗
w ×

∏
w/∈S∪{u,v}

o∗
K , V = K∗W/K∗.

If αv ∈ K∗
v maps into U , then there exists β ∈ K∗ such that αvβ ∈W . On one

hand, this implies that αvβv ∈ N . On the other hand, it implies that β ∈ o∗
K,T

and βu ∈ U , so β ∈ G and so βv ∈ N . Thus αv ∈ N , as desired. ■

Exercises
1. Prove that Theorem 7.5.9 can be formally promoted to the conclusion that

Lw = M .
Hint. Since L/K is abelian, the kernel of the map Gal(Lw/Kv) →
Gal(M/Kv) is normal in Gal(L/K); take its fixed field.

7.6 Brauer groups and the reciprocity map
Reference. [36] IV (for the general theory of Brauer groups); VII.7 and VII.8
(for the application to reciprocity). For the general theory, see also [24], Chapter
4.

We discuss Brauer groups of fields, especially number fields. On one hand
these can be used to give an alternate construction of the global reciprocity map,
not based on abstract class field theory; on the other hand, they carry important
information from class field theory which is useful in numerous applications.

In this lecture, we reprise a bit of shorthand from Section 4.2, writing
Hi(L/K) to mean Hi(Gal(L/K), L∗).
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The Brauer group of a field
Definition 7.6.1 Recall from Definition 4.1.15 that we have defined the Brauer
group of a field K as the group

Br(K) = H2(K/K) = lim−→
L/K

H2(L/K)

where L runs over finite Galois extensions of K and the transition maps in the
direct limit are inflation maps. By Lemma 1.2.3 and Proposition 4.2.14, these
maps are all injective, so the direct limit is actually a union. ♢

This definition of Brauer groups is not the original one; we give that next.

Lemma 7.6.2 For any field K, there is a natural bijection between Br(K)
and the isomorphism classes of division algebras which are finite-dimensional
K-algebras with center K.

Proof. See [36], Corollary IV.3.16; [46], Chapter X, Proposition 9; or [24],
Theorem 8.11. ■

Example 7.6.3 For K an algebraically closed field, every division algebra
which is finite dimensional over K is trivial. Namely, if D is such an algebra,
then for each x ∈ D, multiplication by x defines a K-linear endomorphism
of D, which necessarily has at least one eigenvalue y ∈ K. Then x − y is an
element of D which cannot be invertible (since multiplication by this element
is a K-linear endomorphism of D with 0 as an eigenvalue), so it must be zero;
hence x ∈ K. □

Example 7.6.4 For K a finite field, Br(K) is trivial. In the classical inter-
pretation, this is Wedderburn’s theorem that every finite division algebra is
commutative. In the cohomological interpretation, it follows from Proposi-
tion 4.2.4 via the periodicity of Tate groups Theorem 3.4.1. □

Remark 7.6.5 While Lemma 7.6.2 only characterizes the Brauer group as a
set, the original construction of Brauer included the group structure. Namely,
for any two central simple algebras D1, D2 over K, we have an isomorphism of
K-algebras

D1 ⊗K D2 ∼= Mn(D)

for some positive integer n and some division algebra D with center K, and D
is the product of D1 and D2 in Br(K) (in particular, it is characterized by this
construction up to isomorphism).

In this construction, the identity element in Br(K) is K viewed as a division
algebra with itself as the center. The inverse element of a division algebra D is
the opposite algebra in which multiplication is reversed.
Remark 7.6.6 The property of a field K of characteristic 0 having trivial
Brauer group is useful in the theory of finite group representations: for such
a field, any K-valued character of a finite group arises from a representation
defined over K. (This follows from Schur’s lemma: the character in question
appears within some irreducible K-linear representation, whose endomorphism
ring is a division algebra; the triviality of the Brauer group forces this to split
without any base extension.)

By contrast, for G = {±1,±i,±j,±k} the unit quaternion group, the
standard 2-dimensional representation of G has a Q-valued character but cannot
be realized as a representation over Q. In other words, this representation has
nontrivial Schur index.
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Remark 7.6.7 One can also associate Brauer groups to arbitrary rings and
even to schemes in algebraic geometry, by replacing division algebras (or
more precisely, central simple algebras) with Azumaya algebras and Galois
cohomology with étale cohomology. See [15].

The Brauer group of a number field
We state the formula for the Brauer group of a number field, and prove it
modulo one key step.

Lemma 7.6.8 Let L/K be a cyclic extension of number fields of degree n.
Then there is a commutative diagram as in Figure 7.6.9 in which the vertical
arrows are isomorphisms.

K∗/NormL/K L
∗ //

��

IK/NormL/K IL
rL/K //

��

Gal(L/K)

��
H2(L/K) //⊕

vH
2(Lw/Kv) // 1

nZ/Z

Figure 7.6.9

Proof. The left square comes from applying Theorem 3.4.1 to the morphism
L∗ → IL of Gal(L/K)-modules. Since rL/K is defined in terms of local reci-
procity maps, the right square comes from Lemma 4.2.21. ■

Theorem 7.6.10 For any number field K, the group Br(K) fits into an exact
sequence of the form

0→ Br(K)→ Br(AK) =
⊕
v

Br(Kv)→ Q/Z→ 0

in which

Br(Kv) =


Q/Z for v finite
1
2Z/Z for v real
0 for v complex

and the map on the right is summation.

Proof. The map Br(K) →
⊕

v Br(Kv) is the injection from Theorem 7.2.14.
The value of Br(Kv) for v finite is given by Lemma 4.2.21. For v complex, it is
evident that Br(Kv) = 0. For v real, by Theorem 3.4.1 we have

Br(R) = H2(Gal(C/R),C∗)
∼= H0

T (Gal(C/R),C∗)

∼= R∗/NormC/R C∗ = R∗/R+ ∼=
1
2Z/Z.

Since the values of Br(Kv) are the ones given, the surjectivity of the map⊕
v Br(Kv)→ Q/Z is evident.

It remains to establish exactness at the middle of the sequence. For any finite
Galois extension L/K, we have the exact sequence

H2(Gal(L/K), L∗)→ H2(Gal(L/K), IL)→ H2(Gal(L/K), CL).

If L/K is cyclic, then by reciprocity (Theorem 7.3.8), the top row of the
commutative diagram in Lemma 7.6.8 is exact, as then is the bottom row.
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Consequently, we could conclude the proof if we knew that every class in Br(K)
is the image of a class in H2(Gal(L/K), L∗) for some finite cyclic extension L
of K. In fact, something even stronger is true; see Proposition 7.6.13. ■

Definition 7.6.11 For K a number field and α ∈ Br(K), the image of α in
Br(Kv) is often called the local invariant of α at v. The exact sequence
appearing in Theorem 7.6.10 is sometimes called the fundamental exact
sequence associated to K; it can be viewed as another source of “reciprocity”
in class field theory. For example, applying the fundamental exact sequence to a
quaternion algebra over Q (see Exercise 5) gives rise to Hilbert’s reformulation
of the law of quadratic reciprocity using Hilbert symbols.

The fundamental exact sequence also plays a key role in various applications
of Brauer groups in number theory. One of these is the detection of obstructions
to the existence of rational points on algebraic varieties over number fields, called
Brauer-Manin obstructions. This construction is based on the following
observation: for X an algebraic variety over a number field K, each class in
Br(X) gives rise to a commutative diagram

X(K) //

��

X(AK)

��
0 // Br(K) // Br(AK) // Q/Z // 0

Figure 7.6.12
in which the vertical maps are evaluation maps and the bottom row is the

fundamental exact sequence. ♢

All Brauer classes are (cyclic) cyclotomic
Recall that in the cohomological approach to local class field theory, the crucial
computation was that of the Brauer groups of local fields, which involved
first studying unramified extensions and then transferring the knowledge to
general extensions (see the proof of Proposition 4.2.18). The missing step in
Theorem 7.6.10 is of a very similar nature, except that we have to vary the
extension based on the class.
Proposition 7.6.13 Let L/K be a Galois extension of number fields. Then
for any element x of H2(L/K), there exist a cyclic cyclotomic extension M of
K and an element y of H2(M/K) such that x and y map to the same element
of H2(ML/K).

Proof. By Theorem 7.2.14, any class in H2(L/K) is determined by its images
in H2(Lw/Kv) for all places v in K (where w denotes any place of L above v),
with only finitely many of these being nonzero. Moreover, a class in H2(Lw/Kv)
of some order m is killed by replacing Kv by any extension of degree m (by
Remark 4.2.22 and Proposition 4.2.23; see also [36], Theorem III.2.1). It thus
suffices to find a cyclic cyclotomic extension for which, for some fixed finite
set of finite places S of K, the degrees [Lw : Kv] for all v ∈ S are conveniently
large; for this, see Exercise 1. (Compare also [36], Proposition VII.7.2.) ■

Remark 7.6.14 By Proposition 7.6.13, the field Qab has trivial Brauer group.
Since in addition every complex character of a finite group has values in Qab, it
follows that every irreducible complex representation of a finite group can be
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realized over Qab; for a more direct proof of this, see [45], Chapter 12, Theorem
24.

Local-global compatibility via Brauer groups
To conclude, we turn things around and show that Proposition 7.6.13 can be used
to recover local-global compatibility for the reciprocity map (Proposition 6.4.5).
This makes no use of abstract class field theory, although it does use the same
inputs (notably the First and Second Inequality).

Proposition 7.6.15 Let K be a number field and put L = K(ζn). Then
rL/K : IK → Gal(L/K) maps all principal idèles to the identity.

Proof. For K = Q, this follows from the explicit description of the Artin
map given in Definition 1.1.7 (or from Lemma 7.5.3). In general, we have a
commutative diagram

IL //

NormLw/Qp

��

Gal(Lw(ζn)/Lw)

��
IQ // Gal(Qp(ζn)/Qp)

Figure 7.6.16
and we know the bottom row kills principal idèles and the right column is
injective. Thus the top row kills principal idèles too. ■

Proposition 7.6.17 For any cyclic extension L/K of number fields, the map
rL/K : IK → Gal(L/K) kills principal idèles.

Proof. To begin with, Proposition 7.6.15 implies that rL/K kills principal idèles
whenever L/K is a cyclotomic extension, and Lemma 7.6.8 implies that in this
case the composite H2(L/K) → Q/Z along the bottom row of Figure 7.6.9
vanishes. By Proposition 7.6.13, the same then holds for any cyclic extension
L/K. By Lemma 7.6.8 again, the composition along the top row of Figure 7.6.9
vanishes, proving the claim. ■

Remark 7.6.18 Let L/K be a cyclic extension of number fields. At this
point, rL/K kills both principal idèles (by Proposition 6.4.5) and norms (since
it does so locally), so it induces a map CK/NormL/K CL → Gal(L/K). By
the surjectivity of the Artin map, as deduced from the First Inequality (Propo-
sition 7.3.7), this map is surjective; by comparing orders using the Second
Inequality (Theorem 7.2.10), we see that the map is also an isomorphism. This
establishes local-global compatibility (Proposition 6.4.5) for cyclic extensions,
from which it directly follows also for abelian extensions. Hooray again!

Remark 7.6.19 Note that for a cyclic extension L/K of number fields, Re-
mark 7.6.18 establishes not just local-global compatbility, but the entire reci-
procity isomorphism

CK/NormL/K CL ∼= Gal(L/K)ab

without use of abstract class field theory. One can say the same for an abelian
extension: in this case, local reciprocity (Theorem 4.1.2) and Remark 7.6.18
together imply that we have a well-defined map. Using the cyclic case, we may
see that this map is surjective; by Corollary 7.2.8 (a side effect of our proof of
the Second Inequality), the map is forced to be an isomorphism.
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It is less clear how to recover the norm limitation theorem, which is needed
to prove the existence theorem. The difficulty is that if L/K is not abelian
and M/K is its maximal abelian subextension, then the maximal abelian
subextension of a completion of L can be strictly larger than the corresponding
completion of M ; so we cannot simply apply the local norm limitation theorem.
Instead, one first uses the fundamental exact sequence (Theorem 7.6.10, whose
proof depended on reciprocity only for cyclic extensions) to argue that CL
satisfies the hypotheses of Tate’s theorem (Theorem 4.3.1), which yields an
isomorphism

Gal(L/K)ab ∼= H−2
T (Gal(L/K),Z)→ H0

T (Gal(L/K), CL) = CK/NormL/K CL.

By comparing with the construction of the local reciprocity map, we see that the
inverse of this isomorphism is exactly rL/K , which yields the norm limitation
theorem. See [36], Theorem VIII.4.8 for more details.

Exercises
1. Let K be a number field, let S be a finite set of finite places of K, and

let m be a positive integer. Prove that there exists a subextension L of
Ksmcy/K (which is necessarily cyclic) such that for all v ∈ S, for some
place w of L above K, [Lw : Kv] is divisible by m.
Hint. See [36], Lemma VII.7.3.

2. Let D be a quaternion algebra over a field K (see Exercise 5). Prove the
following statements directly (without using Lemma 7.6.2).

(a) D is isomorphic to its opposite algebra.

(b) There is an isomorphism D ⊗K D ∼= M4(K) of K-algebras. Conse-
quently, if D is not split, then it represents an element of Br(K) of
order 2.



Appendix A

Parting thoughts

Class field theory encompasses a vast expanse of mathematics, so it’s worth
concluding by taking stock of what we’ve seen and what we haven’t. First, a
reminder of the main topics we have covered.

• The Kronecker-Weber theorem: the maximal abelian extension of Q is
generated by roots of unity (Theorem 1.1.2).

• The Artin reciprocity law for an abelian extension of a number field
(Theorem 2.2.6).

• The existence theorem classifying abelian extensions of number fields in
terms of generalized ideal class groups (Theorem 2.2.8).

• The Chebotaryov density theorem, describing the distribution over primes
of a number field of various splitting behaviors in an extension field
(Theorem 2.4.11).

• Some group cohomology “nuts and bolts”, including the periodicity of
Tate cohomology for a cyclic group (Theorem 3.4.1) and Tate’s theorem
(Theorem 4.3.1).

• The local reciprocity law (Theorem 4.1.2), the local existence theorem
(Theorem 4.1.5), and the norm limitation theorem (Theorem 4.1.7).

• The Artin-Tate framework of abstract class field theory, including the
abstract reciprocity law (Theorem 5.3.9) and the abstract norm limitation
theorem (Corollary 5.3.11).

• Adèles, idèles, and the idelic formulations of the reciprocity law (Theo-
rem 6.4.1) and the existence theorem (Theorem 6.4.2).

• Computations of group cohomology in the local case (multiplicative group;
Proposition 4.2.1) and the global case (idèle class group; Theorem 7.1.2,
Theorem 7.2.10).

We also gave brief summaries of Brauer groups of number fields (Section 7.6)
and of adelic Fourier analysis (Section 6.6).

Now, some things that we haven’t covered. When this course was first
taught, these topics were assigned as final projects to individual students in
the course.

• The Lubin-Tate construction of explicit class field theory for local fields
(see [4], IV).
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• More details about zeta functions and L-functions, including the class
number formula and the distribution of norms in ideal classes.

• Another application of group cohomology: to computing ranks of elliptic
curves via Selmer groups (see [51], X).

• Orders in number fields, and the notion of a ring class field.

• An analogue of the Kronecker-Weber theorem over the function field
Fq(t), and even over its extensions (see [19]).

• Explicit class field theory for imaginary quadratic fields, via elliptic curves
with complex multiplication (see [4], XIII; [10]).

• Quadratic forms over number fields and the Hasse-Minkowski theorem
(see [44]).

• Artin (nonabelian) L-series, the basis of “nonabelian class field theory.”

Some additional topics for further reading would include the following.

• Duality in Galois cohomology, including Tate local duality and Poitou-
Tate global duality (see [17]).

• The Golod-Shafarevich inequality and the class field tower problem (see
[4], IX).

• Class field theory for function fields (see [47]) and its use to produce
curves over finite fields with unusually many points (see manypoints.org1

and the forthcoming [50]).

• Application of Artin reciprocity to cubic, quartic, and higher reciprocity
(see [36]).

• Algorithmic class field theory (see [8], [9]).

• Clausen’s K-theoretic approach to Artin reciprocity (see [7]).

• Higher-dimensional class field theory (see [28]).

• Brauer-Manin obstructions to the existence of rational points on algebraic
varieties (see [41], Chapter 8).

And finally, some ruminations about where number theory has gone since
the mid-20th century, expanding upon Remark 6.2.13. In its cleanest form, class
field theory describes a correspondence between one-dimensional representations
of Gal(K/K), for K a number field, and certain representations of GL1(AK),
otherwise known as the group of idèles. But what about the nonabelian
extensions of K, or equivalently the higher-dimensional representations of
Gal(K/K)?

Building on work of many authors, Langlands has proposed that for every
n, there should be a correspondence between n-dimensional representations of
Gal(K/K) and representations of GLn(AK). This correspondence is the heart
of the so-called Langlands Program, an unbelievably deep web of statements
which has driven much of the mathematical establishment for the last few
decades. For example, for n = 2, this correspondence includes on one hand
the 2-dimensional Galois representations coming from elliptic curves, and on
the other hand representations of GL2(AK) corresponding to modular forms

1manypoints.org

http://manypoints.org
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(see [12] for the reinterpretation of the classical theory of modular forms in
this language). In particular, it includes the modularity of elliptic curves,
proved by Breuil, Conrad, Diamond, and Taylor [2] following on the celebrated
work of Wiles [57] and Taylor-Wiles [52] on Fermat’s Last Theorem.

Various analogues of the Langlands correspondence have been worked out:
for local fields by Harris and Taylor [18], with subsequent simplifications by
Henniart [20] and Scholze [43]; and for function fields by L. Lafforgue [29],
building on the case n = 2 which was treated by Drinfeld. Moreover, one can
pin things down better by replacing GLn with a more general algebraic group;
in the function fields, this case is addressed by V. Lafforgue [30]. The work
of Waldspurger [54] of Laumon and Ngô [34] on the Langlands fundamental
lemma is also part of this story.

Recently, some intriguing links have emerged between the Langlands program
and some duality theories appearing in mathematical physics, leading to fruitful
transfers of ideas in both directions. See [27] for the starting point.

This discussion could continue ad infinitum, so I had to make an arbitrary
decision to stop somewhere, and this is that point. Thanks for reading!
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