Scaling laws for fully developed turbulent flow in pipes*
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Mathematical and experimental evidence is presented to the effect that the velocity profile in the

intermediate region of turbulent shear flow in a pipe obeys a Reynolds-number dependent scal-
ing (power) law rather than the widely believed von Kdrmén-Prandt] universal logarithmic law.

In particular, it is shown that similarity theory and the lzakson-Millikan-von Mises overlap ar-
gument support the scaling law at least as much as they support the logarithmic law, while the
experimental evidence overwhelmingly supports the scaling law. This review article includes 39

references

1 INTRODUCTION

Turbulent flow in pipes is among the flows most important
to humans, in engineering practice and elsewhere. It has
been the object of much attention and its properties are
widely taught. [t is therefore particularly surprising that a
widsly used description of that flow by means of the von
Kérmén-Prandtl universal logarithmic law of the wall should
be inappropriate. We shall show this to be the case, and we
shall show that another description, by a certain Reynolds-
number dependent scaling {power) law, constitutes a sub-
stantiat improvement. It is ironical that power laws had been
used by engineers before theoreticians persuaded them that
they should be abandoned.

Consider a long cylindrical pipe with a circular cross-
section, and the time-averaged flow in its working section,
ie, far from its inlet and outlet. The emphasis will be on the
time-averaged flow rather than on the instantaneous flow,
because instantaneous flow varies sharply in both space and
time, its analysis tequires advanced tools that are not yet
available, and it is not of prime concern in practical prob-

lems. By contrast, the averaged values are useful, reproduci-

ble, and form relatively simple patterns.

Since the days of Reynolds, data about turbulent flow are
presented in a dimensionless form, making possible a unified
description of flows of different fluids (for example, air and
water), in pipes of various diameters, etc. This dimensionless
description should be independent of the choice of the mag-
nitude of the basic units of measurement. In particular, it is
customary to represent the average longitudinal velocity u as

b=ulu, (1.1

where u, is the dynamic or friction velocity that defines a
velocity scale: :

Transmitted by Associate Editor SA Berger

u, = 1/, (1.2}

where p is the density of the fluid and ¢ is the shear stress at’

the pipe’s wall determined as

_Apd
T (1.3)
Here Ap is the pressure drop over the working section of the
pipe, L is the length of the working section, and 4 is the
pipe’s diameter, The dimensionless distance from the pipe
wall is represented as
n=22 (i4)
v
where y is the actual, dimensional distance from the wall and
v is the kinematic viscosity. Note that the natural length
scale v/u, used in (1.4) is typicaily very small — of the order
of tens of microns or even less in some of the experiments
described below.
The basic dimensionless parameter of the problem is the
Reynolds number
Re= P2 (1.5)
v
where & is the mean velocity averaged over the cross-
section, ie, the time-averaged fluid flux (discharge rate) di-
vided by the area of the cross-section. The Reynolds number
(1.5) can be viewed as the ratio of 4 and a second natural
length scale v/# , which is much smaller yet than vfu, ..

When the Reynolds number Re is large, one observes that
the cross-section is divided into three parts (Fig 1): a thin
ring (1) near the wall, where the velocity gradient is so large
that the shear stress due to molecular viscosity, ie, the rate of
momentum transfer by the thermal motion of the fluid’s
moiecules, is comparable to the turbulent shear stress, ie, to

* Supported In pant by the Apptisd Mathemalical Sciences subprogram of the Office of Energy Research, USDOE, under cantract DE-AC03-76-SF00098, and in part
by the Natlopat Sclence Foundation under grants DMS94-14631 and DMS85-19074.

ASME Reprint No AMR217 $18

App! Mech Rev vol 50, ne 7, July 1997 ’ 413

® 1997 American Society of Mechanical Engineers

¥
¥
3
3
I
i
j
i
i



414 Barenblatt et af. Scaling laws for turbulent flow in pipes

the rate of momentum transfer due to the turbulent vortices.
This is the viscous sublayer. In a cylinder (2} surrounding
the pipe's axis, the velocity gradient is small, and the aver-
age velocity is close to its maximum. Our analysis will focus
on the intermediate region (3) which occupies the major part
of the cross-section. .

During the more than 60 years of active research into tur-
bulent pipe flow, two contrasting laws for the velocity distri-
bution in the intermediate region have coexisted in the lit-
erature (see, eg Schlichting [35]): the first is the power or
scaling law,

p=Cn" (1.6)
where the C and o are constants (je parameters independent
of 1) believed to depend weakly on Re. Laws such as (1.6)
were in particular proposed by engineers in the early years of
turbulence research. The second law found in the literature is
the universal, Reynolds number independent logarithmic
law,

¢=%]nn+B (1.7)

where k (von Kirman’s constant) and B are assumed to be
universal, ie Re-independent, constants.

In more recent decades, the logarithmic law (1.7) has
been emphasized over the power law (1.6}, sometimes even
to the exciusion of the latter. The reasons have been mainly
theoretical: it was not recognized that the power law has an
equally valid theoretical derivation and satisfies the appro-
priate seif-consistency (overlap) condition. This theoretical
bias has been allowed to obscure the fact that the experi-
mental data unequivocally militate in favor of the power law
(1.6).

A commonly-accepted derivation of the universal loga-
rithmic law (1.7), due originally to von Kdrman [25] and
Prandtl [33], and, its final form, to Landau and Lifshitz [28],
procesds as follows: Assume that the velocity gradient

ayu,[ay a-;;J in the intermediate region (3) of Fig | de-

u
Fig 1. Flow in a long cylindrical pipe: structure at large Reynolds
number: 1) Viscous sublayer, 2) Near-axis region, and 3) Interme-
diate region
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pends on the following variables: the coordinate y, the shear
stress at the wall <, the pipe diameter 4, and the properties of
the fluid, specifically, its kinematic viscosity v and density p.
We choose 1o consider the velocity gradient 8 u rather than

u itself because the values of « depend on the flow in the
viscous sublayer where the basic assumptions we shall use
are not valid. Thus

dyu=f(y.ud,v.p) (1.8)
Dimensional analysis (see the next section) gives

ay” :E‘_(D(rl, Re)’ Re=£, n = E.:‘..‘K’
bs v v (1.9)

where @ is a dimensioniess function of its arguments, which
remains undetermined at this stage. The same kind of dimen-
sional analysis gives for the “friction” velocity

u,d ud F(Re) )
v v (1L.10)

where F is a dimensionless function of its argument and the
Reynolds number Re is given by equation (1 5) Thus equa-
tion (1.8) can be rewritten in the form

6¢=-—fb(n,Re), b=
"o ity (L1D)

Qutside the viscous sublayer n is large, of the order of sev-
eral tens and more; in the kind of turbulent flow we wish to
consider the Reynolds number Re is also Iarge, of the order
of 10" at least. It may therefore have been natural to assume
that for such large values of n and Re the function ® no
longer varies with its arguments and can be repiaced by its

limiting value K_l = (oo, 00}, Substitution into (1.11) yields
,]¢r =—, (1.12)

and an mtegratnon then yields the !oganthm:c law (1.7).
However, as we shall see in detail below, there is no over-
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Fig 2. Comparison of the universal logarithmic Taw with experi-
ment: (after Schlichting [36]): 1) ¢ = n (sublayer), 2) Transition
from the viscous sublayer to the fully turbulent core, 3) Universal
logarithmic law: (¢ = 2.5lnm+ 5.5), 4) ¢ = 8.74n"" (Blasius), 5} ¢
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whelming reason to assume that the function @ has a con-
stant, non-zero limit as its arguments tend to infinity. When
that limit does not exist other conclasions must be reached.

It is generally thought that the universal logarithmic law
(1.7) is in satisfactory agreement with the experimental data
both in pipes and in boundary layers. The graphs in Fig 2
(drawn after Schiichting [35]), and in Fig 3 (drawn after
Monin and Yaglom [29]) have been adduced as evidence.
However, the scaling law (1.6) has also found experimental
support, provided the dependence of the quantities o and C
on the Reynolds number was properly taken into account,
Indeed, Schlichting, following Nikuradze, showed (Fig 4)
that the experimental data agree with the scaling law over
practically the whole cross-section of a pipe.

We now set out to determine which of these laws, if any,
best describes turbulent flow of fluids such as air or water.
This question is of great practical as well as theoretical sig-
nificance, We proceed as follows. First, we present a short
survey of dimensional analysis and of modern, advanced
similarity methods; we use these technigues to present the
derivation of the universal logarithmic law and of the scaling
law as consequences of specific similarity assumptions
within the framework of these methods. In the absence of
further information, these derivations are equally convine-
ing. We present a first processing of experimental data that
shows that the scaling law, with a certain specific choice of
constants, fits the data best. We then use vanishing-viscosity
asymptotics to extrapolate our results to higher Reynolds
numbers, to refine the comparison with experiment, and to
show that the power law satisfies a version of the well-
known overlap condition that is compatible with the data.
Finally, we consider some recent experimental data, show
that at low and moderate Re they confirm the scaling law
with the right constants, but that at large Re, while these data
still support a scaling law, our analytical tools reveal a major
flaw in the experiment from whigh they originate.
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Fig 3. Comparison of the universal logarithmic law with experi-
ment (after Monin and Yaglom [297])
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Our conclusion is that the appropriate description of the
intermediate region in turbulent pipe flow is given by the
scaling law. This conclusion has far-reaching practical as
well as theoretical consequences.

Some historical comments:” The overfap argument of
lzakson, Millikan and von Mises (IMM) (see [18], [297 and
Section 5 below) is generally thought to have won the day
for the logarithmic law so that even when data supporting
the power law appeared, they were disregarded (this point is
discussed in [37]); we shall show, following [4], [5], [6], that
the IMM argument supports the power law at teast as much
as it supports the logarithmic law, Some recent books either
omit the power law completely {28] or describe it as be-
longing to history ([29], p 309); this despite the steady
stream of data that favor the power law (see eg [11], [21],
[26], [36]) — a (temporafy)} victory of prejudice over fact.
The specific form of the power law we shall end up with was
first presented in [2], [3], [9]. A further processing of the
data was performed in [7]. An illuminating survey of dimen-
sionless variables in fluid mechanics and of their history can
be found in [34].

2 SCALING LAWS AND
ADVANCED SIMILARITY METHODS
Fluid dynamicists are familiar with the concept of dynamic
Reynolds number similarity: 1f one has found a flow in a
given geometry, with a length scale L, viscosity v and veloc-
ity scale U, one can find a flow in a similar geometry, with a
different length scale and a diffzrent viscosity, by scaling the
velocity so that the Reynolds number Re = UL/v is the same;
in other words, if the length scale and the viscosity change,
one can obtain a solution of the new problem by multiplying
(scaling) the velocity field by the appropriate constant that
keeps Re fixed, We wish to generalize this simple analysis of
the effects of changes in scales.

Consider a physically meaningful relation between physi-
cal variables:

y=fx1.%90 0 %0,0) . @0
where the arguments x,, X,,... have independent dimensions
while the dimensions of y and ¢ are monomials in the powers

of the dimensions of the x;:
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Fig 4. Data of Nikuradze [31] represented in a form showing that a
proper choice of power allows one to describe the velocity distri-
bution by a power law nearly across the entire cross-section {after
Schlichting [35])
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bl=ls] - u].
)= ][]

Here [x] denotes the dimensions of the variable x and for
simplicity we restrict ourselves to the case of a single inde-
pendent variable ¢ with dependent dimensions.

A physical relationship similar to (2.1) must be held for
all observers even if they use a different system of physically
equivalent units having different magnitudes. The change
from one observer to another is expressed by the trans-
formation of the values of y, x,,....x,, ¢, of the form deter-
mined by the dimensions (2.2):

(2.2)

x{=A'|x1, ...,.I;; =Akxk,

2.3
y=AF. ALy, ' =A].. A @3)

The quantities which remain invariant after the transition
from one observer to the next are obviously

M= 4 IM, = ¢ H

Al
x.xy xf.xg

thus the invariant form of equation (2.1) is
IT=@(f1,), 2.4

where @ is a dimensionless function; a comparison of equa-
tions (2.1) and (2.4) shows that the function f{x,,...x,,c} has
the important generalized homogeneity property

Py T B [ - CXSJ @.5)

Xy Xy

These considerations belong to standard dimensional analy-
sis.

Consider now what happens when the variable II, is
small, 1, << 1. In such cases one is accustomed to tel] un-
dergraduates that the function ¢ can be replaced by the con-
stant C = 40 and the problem is greatly simplified. If this
is indeed true, then for small enough II, one can replace
equation (2.1) by the simpler relation

y=Cxf ooz, (2.6)

Here C is a single constant to be determined, and the pa-
rameter ¢ completely disappears from the equation for small
I1,. The powers p,...,r can be found by simple dimensional
analysis. When this situation holds, one says that one has
compiete similarity in the parameter I1,. The strong implicit
assumption here is that as IT, — 0, @ tends to a constant
non-zero limit C. This is exactly what was assumed in the
derivation of the logarithmic law in the introduction. How-
over, it is obvious that in general complete similarity does
not hold; in general, there is no reason to believe that & has
a finite non-zero limit when IT, — 0, and the parameter I,
far from disappearing, may well become essential, even
when, or particularly when, it is small.

Here there is an important special case. Assume that @
has no non-zero finite limit when I1, tends to zero, but that

Appl Mech Rev voi 50, no 7, July 1997

in the neighborhood of IT, = 0 one has for & a representation
as a power of the form

®(I1,)=CII} +..., ' @7

for some C and o, where the dots represent smaller terms.
Substituting (2.7) into (2.4} for I1, small we find

=CT7, 2.8
or, refurning to dimensional variables,
y=Cef ™ %", (2.9)

ie, the power relation is of the same general form as in (2.6),
but with two essential differences: The powers of the vari-
ables x, { = 1,....k cannot be obtained by dimensional analy-
sis and must be derived by an additional, separate analysis,
and the argument ¢ has not disappeared from the resulting
relation. We refer to such cases as cases of incomplete simi-
larity in the parameter T1: A scaling law is obtained, but the
parameter ¢ does not disappear and enters that law, albeit
only in a certain well-defined power combination with the
parameters x,,...,x,. Although the determination of the pa-
rameter o requires an cffort beyond dimensional analysis,
the relation (2.9) has a sealing (power) form. Such scaling
relations have a long history in engineering, where a widely-
shared opinion held, until recently, that since they cannot be
obtained from dimensional considerations, they were nothing
more than empirical correlations. In fact they are merely a
more complicated case of similarity.

The occurrence of incomplete similarity can remain hid-
den if one fails to perform a sufficiently thorough examina-
tion of a problem. For more information about similarity
methods sze [1].

3 SIMILARITY AND THE DERIVATION OF THE
SCALING LAW AND OF THE LOGARITHMIC LAW
We now return to the derivation of the universal logarithmic
law given in the introduction. It was already mentioned there
that the relation (1.12) is derived from the basic relation
(1.11) by assuming that the function ®(n, Re) has, as 1 -
and Re — oo, a finite limit different from zero. Moreover, the
passage from (1.11) to (1.12), from which the universal loga-
rithmic law is obtained by integration, {s based alse on the
assumption that both the Reynolds number Re and the values
of 7 in the intermediate region are large enough for the
function @ to be replaced by its limit.

Our knowledge of the Navier-Siokes equations and of
their solutions is not sufficient to decide whether such a limit
exists. Assume to the contrary that this limit does not exist,
but that at large 1 the function ®© can be represented as a
power in the form:

®(n,Re) = An® + smaller quantities, @an

where the quantities 4 and o = O are allowed to depend on
the Reynolds number. In the language of the preceding sec-
tion, we are assuming incomplete similarity in the parameter
n and no similarity nor any other invariance in the parameter
Re.
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[t is important to note that it is not the limit of ®(n,Re) as
1 — oo that is of interest, but the behavior of the basic equa-
tion (1.11) for large but finite values of v, when the points
that correspond to these values are outside the viscous
sublayer but not yet in the vicinity of the axis of the pipe. It
is therefore possible to neglect the smaller quantities in (3.1}
and write ' :

@ = An°, (3.2)
50 that
dyb= An®, (3.3)

By integration, equation (3.3) yields

b= -Z—n“ + constant. (34

The scaling law (1.6) is obtained if 4/« is denoted by C
-and the additive constant is set equal to zero. This last con-
dition is an important independent statement; it is not a con-
sequerice of the no-slip condition at the wall because equa-
tion (3.4} is not valid in the viscous sublayer near the wall.
The ultimate justification for the dropping of the additive
constant is a comparison with experiment.

An important conclusion has been reached: The power
law (1.6} and the logarithmic law (1.7) can be derived with
equal rigor but from different assumptions. The universal
logarithmic taw is obtained from the assumption of complete
similarity in both parameters n and Re; physically, this as-
" sumption means that neither the molecular viscosity v nor
the pipe diameter 4 influences the flow in the intermediate

region. The scaling law (1.6) is obtained from an assumption .

of incomplete similarity in 1} and no similarity in Re; this as-
sumption means that the effects of both v and d are percepti-
ble in the intermediate region.

Note immediately a significant difference between the
cases of complete and incomplete similarity. In the first case
the experimentai data should cluster, in the (Inn, ¢} plane (¢
= wlu,, v = w,y/v), on the universal straight line of the loga-
rithmic law. In the second case the experimental points oc-
cupy an area in the (inn), ¢) plane.

Both similarity assumptions are very specific. The possi-
bility that & has no non-zero limit yet canmot be represented
asymptotically as a power of 1 has not been excluded. Both
assumptions must be subjected to careful scrutiny. In the ab-
sence of reliable, high-Re numerical solutions of the Navier-
Stokes equation and of an appropriate rigorous theory, this
scrutiny must be based on careful comparisor with experi-
Tnental data.

4 FURTHER SPECIFICATION OF THE SCALING
LAW AND BASIC EXPERIMENTAL VERIFICATION

Under the assumption of incomplete similarity in n and lack
of similarity in Re, we have arrived at the relation

®(n, Re) = A(Rejn®*)
in conjunction with the general relations

\ 1
d,u= iy-d)('q,Re),_ or  Onb= ECD(n,Re]. (4.2)

(@.1)
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The case of complete similarity in 1 and Re was consid-
ered in the introduction, Before proceeding to a comparison
with experiment, we have to specify further the conditions
under which we expect (4.1) to hold, and narrow down the
possible choices for A(Re) and a{Re).

We expect equations (4.1) and (4.2} to hold in fully de-
veloped turbulence. These equations depend on Re, and it is
thus not consistent to view fully developed turbulence as a
single, well-defined state with properties independent of Re.
We may expect a single, well-defined, fully turbulent regime
in the limit of infinite Reynolds number, but experience
shows that what anyone would consider to be fully devel-
oped turbulence still exhibits a perceptible dependence on
Re. We thus define fully developed turbulence as turbulence
whose mean propetties (for example, the parameters in (4.1))
vary with Reynolds number like K+ K &, where K, K| are
constants and g is a small parameter that depends on Re,
small enough so that its higher powers are negligible, yet not
so small that its effects are imperceptible in Situations of
practical interest; the latter condition rules out choices such
as £ = (Re)”". Under these conditions we expect A(Re) and
a{Re) in (4.1) to have the form

A(Re)= Ay + Az, o(Re)=ay+os. 4.3)
In formulating our definition of fully develeped turbulence
we have implicitly used vanishing-viscosity asymptotics, ie,
we have used the fact that as the viscosity v tends to zero
those properties that we are examining have a weil-defined
limit. This limit exists in particular for moments of the ve-
Tocity field, as long as they are not of too high an order. An
analysis of this property, based on statistical mechanics ar-
guments, has been given in [13], [14], [15], [16]. It is im-
plicit in the work of Onsager [17], {32]. We shall draw a
number of conclusions from the existence of the vanishing-
viscosity limit; here the existence of the limit requires that
g(Re) — 0 as Re — . Indeed, we formulate the existence of
the vanishing-viscosity limit as a basic hypothesis:

Hypothesis: There exists a well-defined limit of the veloc-

Ity gradient as the viscosity v tends to Zero.
To find the precise implications of this hypothesis, rewrite
equation (4.1) in the form

= (A4 + Aig)exp(ag lnn + o8 inn) @4

We see that as v —> 0, Re —r o, and a well defined limit in
the argument of the exponential exists if and only if oy =0,

(the constant factor in & can be taken

. 1
and either &=
InRe

equal to one because one can always rescale the constants ¢,
£

— 0 as Re — w. Comparison with experi-
In Re

and 4,), or

is the

. Tl
mental data shows that the threshold choice & = —

one to use; this is the choice that allows the largest effect of
the Reynolds number on the mean propetties of the turbu-
lence without violating our basic principle.
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Table L. o as a function of Re
(following Schlichting [35])

Re (1—'
3

4x 10 6.0

23x%10° 6.6
L0 7.0

L 10t 2.8

20x10° 10
32x10° 0

A further argument in favor of the specific choice

1
E(Re) “inRe
totic covariance of the resulting law [8], [22]. Equations
(4.1)-(4.3) should be invariant under a change in the defini-
tion of Reynelds number, which contains an arbitrary choice
of length scale and velocity scale. A change in these choices
multiplies Re by a constant Z, and we expect formulas (4.3)
to remain valid, with the same 4,, 4, oy, o, when Re is re-

placed by Z - Re. (or else these constants too are functions of
the choice of scales, and must be subjected to a scaling
analysis that wifl bring us back to the form (4.1)). The obvi-
ous relation In{ZRe) = In Re + InZ ~ In Re for large Re en-

for the small parameter results is the asymp-

8x107 gx 1
| - =]
. L
Remgzx1p? * RomaB4xi0b o
3 : .
£ 4x17 ¢ x| .
(4]
e . E1xP Ny *
o .
. et , 23t
M . .- .o
. :_'..--4"“73 v el 0 1672104
0 160 200 300 0 400 800 1200
ax 1012 181014 oy
(e} e I
. .} Re=1538x108 *
2 12x 1012 Re=386%10° . .
i .
= . 08x107} .
o . . L1x108
= 1xip2f . e
K 205x10% Lt TEEaad
e ".'- - . »> o
et 106x105 sloree B
0 3:103116;(?03 ax103 0 tx10f 2 3xi0t
189 x 3015
(&) o
Ra=324x106 »
2 1210151 + 279%108
© . "
- .
o » 235x108
€ 60x108 -
.
LT e L 1858XI05
.d;.'.' i "1536::106
0 T2 108 PR Bx10¢

Fig 5. Graphs of ¢t2m ™ a5 functions of 7 reveal straight intervals

int the intermediate range of values of 1 at various Reynolds num-
bers. These graphs are used to determine the coefficients in the
scaling law (1.6).

[
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sures that this is so. Thus

A
o-(Arpk =

in the range of Re we shall be considering. Substitution of
(4.5) into (4.1) and integration yields

T

inRe (4.5

=2 = (Cyln Re+ C JinFe e (4.6)
where the add:tmnal condition $(0) = 0 has been used.

According to the logic of the derivation given above, the
coefficients C,, C,, o, are universal constants, and should be
the same in all past and all future experiments of sufficiently
high quality performed in pipe flows at large Reynolds num-
bers. A decision was taken to compare the predicted scaling
law for smooth walls (4.5} with what seemed to be the best -
available data, produced by Nikuradze [31] under the guid-
ance of L Prandtl at his institute in Géottingen. It is particu-
larly important that these data are avajlable in tabular form
and not only as graphs. The comparison was performed in
several steps.

Step 1. Following Nikuradze, Schlichting [35] presented a
best fit for . = a{Re) in tabular form (Table [ and Fig 4). A
simple caleulation shows that this table is in good agreement
with the hypothesis o, = 0, «, = 3/2, We have already seen

that the resuit o, = 0 is in fact a consequence of a general
principle, and the experimental verification of this conclu-
ston is a check on the data.

Step 2. The preliminary result a(Re) = 3/2InRe was sub-
jected to an exhaustive verification. Indeed, if the scaling
law (1.6} is valid, then the relation

¢’l.fa - Cl."a,rl (4‘7)
should hold, where C is a function of Re alone. Thus if the

values of ¢ taken from the leuradze tables are raised to the
power /o= (2In Re)/3, and ¢ is plotted as a function of 1,

. the result should be a straight line. This is a rigorous test be-

cause the power 1/¢ is predetermined and not adjustable, It
is also large, of the order of 10, and thus even small devia-
tions from the proposed scaling law should produce a large
distortion of the straight line. Figure 5 shows that for all of
the 16 series of Nikuradze’s expenment, correspondlng to
Reynolds numbers in the range 4 x 10 to 3.24 x 10° (three

1 1

i 14
In Re )
Fig 6. Function C(In Re) obtained by processing Nikuradze’s data
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orders of magnitude), the relation between d)m and i was
well-represented by a straight line in the intermediate range
of values of 1.

Step 3. Once the conjectured relation «, = 3/2 was
confirmed, the values of the coefficient C = C(Re) in (4.6)
could be found, allowing us to verify the relation C = Cjln
Re + C, and to determine C, and C|. The function C = C(Re)
is presented in Fig 6, and is well approximated by the rela-
tion

C=-l-lnRe+-;- : A48

A

[Co =—-!—, G -—-5/2]. In fact, statstical processing has

V3

given C, = 0.578 £ 0.001, while —]-=0.57735; the form

3

_J% simplifies the formulas below. Similarly, the processing

of the data yielded C, = 2.50 + 0.016, in the neighborhood of
2.5. Thus the final result is

b= (—-J%in Re+§)n3’2‘““’, “.9)
or, equivalently,
V3 +5a 3
= | ——— u,. = . 4.1
¢ [ e ) T imRe @10

Step 4. A further form of (4.9) can be obtained as follows:
introduce the variable y,

i 2o
=—In—. 4.11
v o 3+35a @1
Equation (4.9) then reduces to
y=Inn. 4.12)

Equation (4.12) is particularly important in what follows. As
we have noted at the end of the previous section, & key dif-
ference between the universal logarithmic law and the scal-
ing taw is that, while the former implies that all the data
points in the (Inn, ¢) plane cluster on a single curve, the lat-
ter produces one curve ¢ = ¢(n)) per Reynolds number Re,
and the corresponding data points should fill out an area in
the (Inm, ¢) plane. The transformation (4.11) reverses the
roles of the two laws. According to the scaling law, all the
data points should cluster in the (Inn, v) plane on a single
curve, and a particuiarly simple one at that: the bisecirix of
the first quadrant. By contrast, if the universal logarithmic
law holds, the data points should be area-filling.

In Fig 7, we plot the experimental data of Nikuradze in
the {Inn, vy} plane. We obscrve that for n > 25 (fe, outside
the viscous sublayer) all the data except for very few fall on
the bisectrix, confirming the validity of our scaling law. (A
plausible explanation for the four excepticnal points as a ty-
pographical error has been offered by Professor Coles
[personal communication] but we shall not presume to make
corrections to the data published by Nikuradze,) For further
details on these comparisons, see [7], {9]. It is important to
see that Fig 7 also testifies to the self-consistency of the
Nikuradze data.
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It is also important to compare the prediction of the scal-
ing law (4.9) for the Reynolds number dependence of the
drag coefficient with the experimental values. The usual
definition of the drag coefficient A is

2
T U,
= =8(?} . 413
.
The average velocity & is given by _
— 8 wun d
W=y i u(y)[—z--— y)dy. (4.14)

To calculate 7 , we assume that it is possible to replace u(y)
in (4.14) by the scaling law (4.9), which is strictly true only
in the intermediate region (3) (Fig 1); this introduces a sys-
tematic error which should be small at large Re, when the
near-wall region 1 and the near-axis region (2) are small.
The result is .

=3
Ly, P (f‘ﬁ] ! : (4.15)
o \v) 2%(i+o)(2+q)
From our previous analysis, Re = exp(3/2¢), and therefore
171+
ud _ )y a(l+a)(2+a) (i) 4.16)
v 3+5a '

Some further algebra yields an explicit relationship between
the dimensionless drag coefficient A and the Reynolds num-
ber Re:

17 |
_ .

#

inm
Fig 7. Experimental points in the coordinates (Inm, y) at 7 > 30 lie
close to the bisectrix of the first quadrant, confirming the scaling

law (49). 1) &, Re=4-10%2) A Re=6.1 - 10%;3) 0, Re = 9.2 -

105 4) *, Re = 1.67 - 10 5) 1|, Re=2.33 - 10", 6) M, Re = 4.34 -
10% 7) v, Re= 1.05 - 10°; 8) ¥, Re =2.05 - 10%9) U, Re = 3.96 -
10 10) W, Re=7.25-10% 11) 6, Re = 1.11 - 10 12) ®, Re =
1.536 - 10" 13) +, Re = 1.959 - 10% 14) x, Re = 2.35 - 10% 15) 0,
Re=279-10°% 16) @, Re=3.24 . 10°
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B
. A- - W, (4. l 7)
where

s
2%a(l+a)2+a)  2lnRe’

The implicit relation between A and Re, predicated on the
logarithmic law, can be found eg in [29], page 301, formula
(5.45).

In Fig 8 we present the values of the ratio & =A_ /A ;.
as a function of In Re for all 125 data points in Nikuradze’s
paper [31]; &, is the experimental value and A, ;..., is the
value given by (4.17) above. Ideally £ should be equal to
one; the difference is within the bounds of experimental er-
ror, The very slight systematic deviation may be ascribed to
the fact that the scaling law (4.9} is not valid near the wall or
near the axis. Figure 9 displays, as a function of In Re, the
following functions: (1) A as given by (4.17) as a conse-
quence of the scaling law (4.9); (2)A as given by the cor-
rected Prandil law designed to fit the data [35]; (3} A as de-
tived from the legarithmic law, using the constants sug-
gested by Zagarola er al [38), [39]. The agreement between
the first two speaks for itself: No further manipulation of the
power law is needed to bring its consequences into line with
the experimental data.

5 FURTHER ANALYSIS OF THE SCALING LAW
AND OF THE UNIVERSAL LOGARITHMIC LAW

Cur proposed scaling law can be written in the form

1 5 3inn
=|—=IRe+= R 5.1
¢ (\ﬁ ? e+2]exP(21nReJ Gh
clearly revealing the self-similarity property of the scaling

law curves in the (inn, §) plane: The curves (5.1) can be ob-
tained from each other by similarity transformations; in the

1.2
1.1

1?0 ;D:F‘m afdo 8 a m‘s‘ﬁ;i}auﬁg%%d‘ow "
09+

RS
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Fig 9. Friction parameter A as a function of In Re, obtained as fol- .

tows: 1) A as given by (4.17) as a consequence of the power law; 2)
A as given by the “corrected Prandtl law” designed to fit the data
£35]; and 3} A as derived from the logarithmic law, using the con-
stants k = 0.44, 8 = 6.3 suggested by the Princeton group (38].

~l
. 3Inn 5
educed bles X =——— Y= InRe+ all the
reduced variable: T Fe” ¢[J_n e 2]

scaling law curves collapse on a single curve. For gach value
of Re we obtain a distinct curve ¢ = ¢(ry), in contrast to the
prediction of the universal logarithmic law, according to
which all the data points should lie on a single curve in the
{Inm, ¢) plane. The envelope of the family of curves (5.1),
with parameter Re, is obtained by eliminating Re between
(5.1} and the condition 0, , ¢ = 0; the last equation can be
written as

3nm 3 20 )
sze——--iH(lﬂﬂ)[ J_lnnJ -t G2

This envelope is shown in Fig 10, together
with the straight line § = 2.5lnn + 5.5,
given by Schlichting [35] as the universal
logarithmic law. It is clear that these two

ey
booah
s "-‘¢-+++"f>+ﬁ4*+

0.8+ 280 +65— ¢\ ione

07 $ 20

0.6 _

05 i i ! | | 3 [ S R Lk : ) 10 ! n
8 9 0 1 12 13 14 15 2 * tan © ’

In Re

Fig 8. Nikuradze data for various pipes and various Reynolds numbers confirm with
good accuracy the friction law (4.17) which follows from the scaling law (4,9); the figure
for various pipes: | Ld=Tcem A, d=2cem; ¢, d=3em; x,d=§

shows &= At

cm; +, d=10em

Fig 10. The envelope of the scaling law
curves in the (Inn, ¢)-plane is very close to
the generally accepted straight line of the
universal logarithmic law, even at moder-
aten.
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curves are close in the range of 1 under consideration, If the
constant 5.5 is replaced by 5.1 the two curves practically
coincide. Indeed, the line ¢ = 2.5 In i + 5.1 is the universal
logarithmic law as quoted in Monin and Yaglom [29].

If one allows In Re — w0, lnt) — oo while remaining on the
envelope, the coefficients in the equation of the envelope
tend to a finite limit, such that -

e > (5.3)

¢= Tln n+ Ee+ small guantities.

The value [—2— = 425 is close to the value of von Kar-

mén’s constant K = 417 obtained by Nikuradze. However,

the value of the additive constant -és-e = 6.79 is substantially

larger than the values coramonly ascribed to the additive
constant B in the logarithmic law (1.7). For this asymptotic
value to be observed the values of in 1 and In Re have to be
large enough for two things to happen simultaneously: The
asymptotic regime must be reached on the asymptote while
the asymptote still approximates the individual curves (see
below). Apparently, velocity profiles at small enough values
of v and close enough to the wail have not been measured in
experiments with pipe flow.

Figure 11 presents three of Nikuradze’s experimental
runs, with Reynolds numbers differing approximately by an
order of magnitude: Re = 1.67 x 10*, Re = 2.05 x 10°, Re =
324 x 10°. The corresponding scaling curves (4.9), the
straight line of the universal logarithmic law, and the enve-
lope of the family of scaling law curves are also exhibited. It
can be seen that the scaling law curves have a small system=
atic and discernible advantage over the logarithmic law, At
this stage, we do not wish to emphasize this advantage, and
indeed, we would like to point out that all of Nikuradze’s
data correspond to points near the envelope of the scaling
law curves. We shall later present far more decisive criteria
for deciding between the logarithmic and scaling laws,

Having fitted constants to the scaling law from the avail-

- able data, which are close to the envelope, we shall now ex-
trapolate the resulting law to points farther from the enve-
lope, taking care not to alter the constants. If the constants
are universal, they should be the same for all data points
from all experiments whose quality matches that of
Nikuradze’s experiments. If the extrapolation is successful in
predicting the data, the result is a dramatic validation of the
scaling law. The extrapolation will be carried out with the
help of vanishing-viscosity asymptotics, based on the hy-
pothesis that a vanishing-viscosity limit exists, as explained
above.

Consider again the scaling law, equation (4.9). If one
stands at a fixed distance from the wall, in a specific pipe
with a given pressure gradient, one is not free to vary Re =
#d / vand n = uyfv independently because the viscosity v
appears in both, and if v is decreased by the experimenter,
the two quantities will increase in a seif-consistent way. The
Timit of the velocity gradient that corresponds to the experi-
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.mental situation is the limit of vanishing viscosity, The ex-

istence of this limit has already been asserted. When one
takes the limit of vanishing viscosity, onc considers flows at

ever larger ) at ever larger Re; the ratio 3inn tends to 3/2
2InRe

because v appears in the same way in both numerator and
denominator. Indeed, consider the combination 3Inn/2InRe.
It can be represented in the form

3[lni‘-‘—‘i+1nl] :
3Inn _ v d (5.4)
2InRe ud 7l )
2l In—+In—
v U,

According to (4.15), at small v, ie large Re, & /u, ~ In Re,
so that the term (i /«, ) in the denominator of the right-hand

side of (4.9) is asymptotically small, of the order of Inln Re,
and can be neglected at large Re. The crucial point is that
due to the small value of the viscosity v the first term
In(z.dfv) in both the numerator and denominator of (5.4)
should be dominant, as long as the ratio y/d remains bounded
from below, for example by a predetermined fraction. Thus,
as long as one stays away from a suitable neighborhood of
the wall, the ratio 3lnm/2In Re is close to 3/2 (y is obviously
bounded by d/2). Therefore the quantity

1-tnn/InRe

can be considered as a small parameter, as long as y > A,
where A is an appropriate fraction of 4. The quantity
exp(3lnn/2ln Re) is approximately equal to

3 3 Inn Iz 3 Inn
2 2 InRe 2 InRe (5.5)

_esfz[i_*&n__l}
T |2tmRe. 2]

According to (4.9) we have also

Fig 11, Expesimental points and the scaling law curves at various
Reynolds numbers: i) (+, Re = 1.67 - 10", if) (0, Re = 2.05 - 10°),
iti) (x, Re = 3.24 - 10{'), iv) universal logarithmic law, and v} enve-
lope
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V3 15 3iny
00 = Oinnh = [T ¥ 4inRe e,“:'(2111 Re }’ (56)

and the approximation (5.5) can also be used in (5.6). Thus
in the intermediate asymptotic range of distances y: y > A,
but at the same time y slightly less than 4/2, the following
asymptotic relations should hold as Re —

/2
¢=e3'2(-‘/—§+ 15 Jlnn——e——InRe—-:—em, 6.7

2 4InRe 23
and
W3
By =" (5.8)

At the same time it can be easily shown that for the envelope
of the power-law curves the asymptotic relation is

Ot = -‘g—ge. (5.9)

The difference in slopes between (35.8) and (5.9) is signifi-
cant. It shows that individual members of the family (4.9)
should have at Jarge Re an intermediate part, represented in
_the plane (Inn, ¢) by straight lines, with a slope different
from the slope of the envelope by a facior Ve ~165. There-
fore the graph of the individual members of the family (4.9)
should have the form presented schematically in Fig 12,

We now examine in detail a well-known argument for
determining the structure of the flow in the region intermedi-
ate between the immediate vicinity of the wall and the region
far from the wall. This argument is due to Izakson, Millikan
and von Mises (IMM) (see eg [18], [29]). In this argument, it
is assumed that from the wall outward, for some distance,
one has a generalized law of the wall,

. b=ulu, = fluy/v) (5.10)
where [ is a dimensionless function; the influence of the

Inn

Fig 12. The individual members of the family of scaling laws (4.9)
near the envelope in the ¢, Inn-plane have a straight intermediate
interval with a slope substantially larger than that of the envelope:
1) Part close to the envelope; 11) Straight intermediate part; 111) Fast
growing ultimate part having ne physical meaning because there
are no cotresponding points in the pipe; [V) Region near the axis of
the pipe where the scaling law is invalid; V) Part which was never
observed because of the large diameter of the pauge.
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Reynolds number Re, which contains the external length
scale (for pipe flow, the diameter 4 of the pipe) is neglected;
heuristically, it is assumed that fluid near enough to a
smooth wall does not feel the outer part of the flow, Adja-
cent to the axis of the pipe in pipe flow and extending to the
sides one assumes a defect law,

ug, —u=ug(2y!d), .11

where u,, is the average velocity at the centerline and g is
another dimensionless function. Here the neglect of the ef-
fect of Re means that the effect of viscosity is neglected,
heuristically, one assumes that near the axis, where the ve-

locity gradients are small, the effect of a small enough vis- .

cosity is unimpottant. Both assumptions taken together con-
stitute an assumption of separation of scales, according to
which at large enough yet finite values of Re viscous scales
and inviscid scales can be studied in partial isolation. Self-
consistency then demands that for some interval in y the laws
(5.10} and (5.11) overlap, so that

ua_-—u=uCL-u.f(u_,y/v)=u_g(2y/d). (5.12)
After differentiation of (5.12) with respect to y followed by
multiplication by y, one obtains

|
W '(n)=—Lg (%)=, (5.13)

where 1 = uylv, § = 2y/d, and x is a constant; integration
then yields the law of the wall

f(n)=-tnn+ 8, (5.14)
as well as the defect law
I
g(g)=_K1ng+B,, (5.15)

" with

B =Y _lynd p
u, &k 2v

However, the experimental data (see eg Fig 7 in [38]) do
net support the assumption of separation of scales. We now
examine what happens if one repeats the elegant but over-
simplified argument we have just described without drop-
ping the effects of Re near the wall and near the center of the
pipe. We shall see that, when properly improved, the argu-
ment survives and supports our conclusions.

We begin by noting that in the nearly linear portion I of
the graph of Fig 12 the flow can be described by a local
logarithmic law with 2 Reynolds number dependent effective

von Kérmdn constant k,, = k(Re):

2
S = oy G169

. 2
as Re — =, x(Re) tends to the limit x,, =—F—~
. e
0.2776..., smaller than the usuwal von Kdarmdn constant

K=—2—~ 425.. by a factor ve~165... With this in
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mind, the IMM procedure can be modified as follows: The
law of the wall, equation (5.10), becomes

o=ulu, = f(uy/v,Re) (5.17)
so that the influence of Re, which contains the external scale,

is included, The previous defect law (3.2} is also replaced by
the Reynolds number dependent defect law

ucy —u=w.g{2y/d,Re), (5.18)
50 that the influence of the molecular viscosity v is pre-
served. Now assume that the laws (5.17) and (5.18) overlap
on some y interval:

Upy —U =Ygy —u.f(u.y/ v,Re) = u.g(?.y/d,Re).
Replacing fby its expression (5.7) yields:

g(2y/d,Re)= ey - [TInRe+ ;J o |
_(£+__’_§_]e3’2xn(2y/d) (5.19)

2 4InRe
-e¥? -—Ji+ 15 Ine.,
2 4inRe 2

where ¢, = u,,/u,. This calculation is self-consistent, and
differs from the original IMM procedure by matching a

- Reynolds number dependent defect law to the actual curves
of the scaling law (4.9} rather than to their envelope misin-
terpreted as being identical to the actual curves.

Another way of looking at the calculation we have just
performed is to note that if one requires an overlap between
a law of the wall that does not depend on d and a defect law
that does not depend on v, one obtains an overlap that de-
pends on neither d nor v; this enforces complete similarity
and results in the von Karman-Prandtl law, which can be
obtained by simply removing the quantities & and v from the
list of arguments in equation (1.8). On the other hand, more
realistic requirements on the laws being matched leave room
for incomplete similarity and are consistent with the scalmg
taw (4.9) and with the experimental data;
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cause the scaling law has an intermediate range that is ap-
proximately linear in /av; the success of the matching does
not depend on the specific values of the constants C,, C, and
o, in (4.9).

Note also that the inner and outer portions of the flow feel
each other for all finite values of Re; the coupling disappears
only in the limit of vanishing viscosity. Note further that as
the viscosity is decreased beyond the point where the chev-
ron appears, the location of the kink in the chevron moves
slowly towards the wall; at extremely high Reynolds num-
bers, well beyond those currently achieved in the laboratory,
the power law collapses onto the upper part of the chevron,
resulting in an apparent new logarithmic law, with constants
different from the usual constants in the von Karmén-Prandtl
law; in particular the new value of the von Kdrmdn constant

would-be, as shown above, k= 75.-2?2—- ~02776. It is im-

portant to remember that this new logarithmic law, corve-
sponding to the upper part of the chevron, lies in the area of
deviation in Fig 2 and 3 and not where the usual von Kdrmdn
-Prandtl is usually placed. '

6 FURTHER COMPARISON OF THE SCALING LAW
WITH THE EXPERIMENTAL DATA

The dramatic feature of the velocity profile in the (Inn,d)
plane at a small viscosity v, predicted in the previous scc-
tion, is its chevron (broken line) form: The limits v — ¢ of
the scaling law curves have a kink where they leave the en-
velope, and the difference in the slopes of the two branches
of the chevron is substantial, more than Je ~165.

There exist many confirmations of this behavior, both in
old and in new experiments. A few examples should suffice:
the experimental data of Schubauer and Klebanoff [29], (the
full squares in Fig 3), the 1951 experimental data of Wie-
ghardt and Tilliman [36], (Fig 13), and the particularly in-
structive data presented by Fernholz and Finley in 19935

for example, Flg 7in [38] exhibits CIearly 35 T T T T T T T T

the dependence of the profile in the - :

neighborhood of the centerline on v. The C ¥

-matching was successfully carried out be- ag - .
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Fig 13' Data Of Wieghardt and Ti”iman 10 C al 1 L1 |IIE 1 1 11 lJ_I_!‘I | 1 N LY I1 2, 1 { - | N
(see [37]) obtained in a boundary layer 10 100 1000 10,000 100,000

flow confirm the chevron-like velocity M

distribution in the (In v, ¢) plane predicted

Fig 4. Data of Magib and Hites [23], [30] obtained in a floor boundary layer flow.

inFig 12 (Reproduced with permission from [30])
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([19], see in particular their Fig 28 - 30) and by Nagib and
Hites [23], [30] in 1995 (see Fig [4). The chevron structure
of the flow was not properly understood at the time when
these data were published, and the upper branch was attrib-
uted either to the nature of the external flow or ta experi-
mental scaiter. However, all these data were for boundary
layer flows rather than for pipe flow, and thus have addi-
tional features which we shall discuss elsewhere.

Recently there ‘appeared an experimental study from the
Princeton group of Zagarola ef al [38], [39] with many new
data points for pipe flow, obtained in the high-pressure pipe
(superpipe) proposed by Brown [12]. High pressure in-
creases the density p, and increases the dynamic viscosity p
at a ruch stnaller rate, decreasing the kinematic viscosity v
= w/p substantially and thus increasing the Reynolds number
Re. It was claimed that in this way one can increase the Rey-
nolds number by an order of magnitude over the Re achieved
by Nikuradze with a flow of water.

it is shown, later in this section, that for Reynolds number
Re > 10°, the Princeton data contain a systematic error, Nev-
¢rtheless, as one can clearly see from Fig 15 reproduced with
permission from [38], the appearance of a chevron structure
and the splitting of the velocity curves according to their
Reynolds number are so strong that even a systematic error
at large Re cannot destroy them. To each Re corresponds its
own curve in the {Inn,$) plane, with a pronounced linear part
whose slope is larger than the slope of the envelope by a
factor that is always larger than 1.5. For smaller values of y
the deviation of the curves from their envelope is small
(corresponding to part | of the curve in Fig 13).

We consider this graph to be a clear confirmation of the
proposed scaling law, and as a strong argument against the
universal logarithmic law. '

We emphasize the important consequences of our van-
ishing-viscosity analysis of the scaling law eurves and of the

40 T IIIIIII T J('[1IT[ T T ITI_ITII I T IIIII\| T T TTTT
Ae = 35x108
a5 Re=10x108—_ "%
' Re = 3,1x105 453
Re = 1.0x10°— o £3N
30 Re=310x107— 00
+: g 25 RQ=99X103-—._,__ -‘Fc“ * ut=1/.44 [ny++5.3
&7 Re=s2x10% T
20 —
15 - —
i .
10 AT SR R TTIT N B SN T S S ST 7117 M SR ee T
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Fig 15, Princeton data [38] obtained in a high-pressure pipe con-
firm the splitting of the experimental data according to their Rey-
-nelds numbers and the predicted chevron-like velocity distribution
in the (Inm, ¢}-plane. The splitting and chevron-like form of the
velocity profile agree with the scaling law, and are incompatible
with the universal logarithmic law. (Reproduced with permission
from [38]).
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experimental data:

(i) Both linear parts of the piecewise linear chevron struc-
ture belong to the same scaling law; the constants that
describe the inner (/e closer to the wall) segment also
describe the outer segment.

(ii) The overiap region is the outer segment of the chevron;
thus the outer segment belongs both to the wall region
and to the defect region. ‘

(iii} There is no other possible locus for the overlap; as the
slopes of the outer and the inner segments tend to two
different constants as v —» 0, one can never get them to
overlap on the inner segment.

{iv) The whole chevron constituting a single law, the possi-
bility that the inner segment is described by the univer-
sal (7e Re independent) logarithmic law is excluded.

(v} More generally, since the defect law musi be a concave-
downward function of y/d, the only way there can ever
be a portion of the velocity profile that is concave up-

wards outside the near vicinity of the wall, as observed .

in Fig 15, is fo make the overlap region be concave up-
ward, as we are proposing, rather than straight.

We note that the prediction of a difference Ve between
the slopes of the individual velocity profiles and the slope of
their envelope provides an easily verified criterion for as-
sessing the agreement between the experimental data and the
scaling law. At high Re the difference between the proposed
scaling law and the universat logarithmic law is Jarge enough
to have a substantial impact on the outcome of engineering
calculations.

Now we come to more detailed comparison of the pro-
posed scaling law with the data presented by the Princeton
group. The advantage of this set of data for such compari-
sons is that, like the data of Nikuradze, they are presented in
tabular form. The Princeton group presented results of 26
runs (series of experiments), each run contajning the data
from measurements of the velocity distribution over the
cross-section of the pipe, as well as the measured drag coef-
ficients. The experiments were performed with air flow in a
pipe at high pressure (the pressure varied from ~ 1 to ~ 190
atmospheres). The kinematic viscosity of air under normal
conditions is ~ 0.15em/s, that of water is ~ 0.0 lcmzls, there-
fore the Princeton group had to compress the air to roughly
|5 atmospheres to reach the kinematic viscosity of water. As
we will see later, it is at this point that the Princeton experi-
ments became inaccurate.

Another important advantage of the Princeton data is that
they contain many experimental points far from the envelope
(see Fig [5). In the published experiments of Nikuradze
there were no such data. Therefore the most interesting step
is the comparison of the Princeton data with the scaling law
(4.9) according to the same procedure as in section 4. Thus
alt the Princeton data were plotted in the (lnm, ) plane,
where, as before,

I pleli] 3

¥ =—In s 0= s
a 3+5a 2InRe

For the first ten runs (Re = 3.16 - 10", 4.17 - 10°, 5.67 - 10",
7.43 . 10%, 9.88 - 10°, 146 - 10°, 1.85 - 10°, 2.30 - 10°,

Re="2 §_ % (61
v Uy
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3.09 - 10°, 4.09 - 10%), the data are presented in Fig 16. It is
seen that as in the case of the Nikuradze data, the experi-
mental points after | = 25 concentrate near the bisectrix of
the first quadrant, as they should according to the model pre-
sented above, The points close to the pipe axis should be re-
moved because the scaling law should be invalid for them. It
was enough to remove only the points where 2y/d was more
than (.95, .

However, for the last six runs (Re = 1.02 - 107, 1.36 - 10,
1.82 - 10", 2.40 - 107, 2.99 - 10", 3.52 - 10") the situation is
different: the experimental points for all these runs are con-
centrated (for /R < 0.95, R = d/2) along straight lines, par-
allel to the bisectrix, but not on the ‘bisectrix itseif (Fig 17).
Note that all these curves present a chevron, and there is a
separate curve for each value of Re; the advantage of the
scaling law over the universal logarithmic law is not in
question even in the presence of this disturbing shift in the

, processed curves. )

Some hint to what happens was given by a comparison of
the experiments of Nikuradze and of the Princeton group
performed at roughly equal Reynolds numbers. There are six
such experiments, and for five of them, at moderaie Rey-
nolds numbers, a satisfactory coincidence was found, This
coincidence means that our scaling law (4.9) is also con-
firmed by the Princeton experiments. However, for the Prin-
ceton run #16 with Re =2.345 - 10°, and the corresponding

~run of Nikuradze (Re = 2.35 - 10%), which, like the other
_ Nikuradze runs, cotresponds quite satisfactorily to our
model, a noticeable disagreement was found (Fig 18). In the
main part of the graph in the (lnn, ¢)-plane there is a nearly
uniform shift along the Inn axis. What can be the meaning of
such a shift? if both u, and y were measured correctly, the
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Fig 16. The lower Reynolds number Princeton data [39] are in
agreement with the scaling law: In the (In n, W) plane they are close
to the bisectrix (except, as it should be, in the_near—axis region),
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most likely source of the discrepancy is in the determination
of the viscosity. It is of importance that the pressure gradi-
ents in these experiments are small encugh not to create a
variation of the viscosity along the pipe,-and thus in each run
the viscosity can be viewed as constant.

We concluded that something happened in the high Rey-
nolds number-high pressure Princeton experiments which

15

+ Re=1.0248 107
® 1.8598 107
o 1.8196 107
o 23977 107
s 2.5927 107
. 3.5259 107

5 . 1o 15
In T

Fig 17. There is 2 noticeable disagreement between the large Rey-

nolds numbers Princeton data and the prediction of the sceling law

{4.9): In the (In 1, W) plane they concentrate along lines paralle! to

the bisectrix, not on the bisectrix itself. The points with 2y/d > 0.95

are excluded; they are in the near-axis region,

34y
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Fig 18. There is disagreement between the Princeton data at Re =
2.345 - 10° and Nikuradze’s data at Re =2.35 - 10",
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shifted the viscosity that determines the velocity profile from
its actual value v to a shifted, effective value v/, 5o that

lnn--lnu‘y =In “‘:y +lnz . (6.2)

and the shift ln(v’lv) is constant for each run.

To check this conclusion, the following procedure was
used for the last six runs. For every experimental point of
each run, the value of difference

=lan-v (6.3)
and %, the mean value of y per run, were calcuiated. The

dispersion of this quantity was alse calculated and found to
be very small. Then every experimental point was shifted by
¥ inwards along the In 1 axis. The results are presented in

15
i
¥ o1g| -—— — — - .
i + Ras1.0248 107
x 1.3598 107
o 1.5196 107
o 23977 107
a 2,9927 107
. 3.5259 107
5
5 10 15

Inn
Fig 19. After the viscosity correction (constant for each run), the
large Reynolds numbers Princeton data agree with the prediction of
the scaling law in the (In 11, ) plane; the poinis are close to the bi-
sectrix (except for the near-axis poinis).
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Fig 20. Drag coefficient 3 as a function of the Reynolds number for
pipes of various roughness (after Monin and Yaglem [297). (1)
Laminar flow, (2) law for smooth pipes.
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Fig 17 (unshifted points), and Fig 19 (after the shift). They
show that there exists a single factor per run by which the
viscosity is altered and shifts the velocity profiles at high
Reynolds numbers; this does not happen at moderate Rey-
nolds numbers. ‘

Three possible reasons were investigated.

(i) Incorrect pressure or temperature measurement. The
density and viscosity were not measured directly, but were
calculated by the Princeton group on the basis of the meas-
ured pressures and temperatures. Therefore an incorrect
pressure measurement could be the reason for the “shift” (the
measurement of the temperature was not in doubt). Afier an
inspection of the information presented in the thesis [39] we
came to the conclusion that this was unlikely.

(ii} Incorrect density and viscosity calculations. Indeed,
the Princeton group used rather old pressure-density rela-
tions for their calculations. We asked Dr Friend (National In-
stitute of Standards and Technology) to supply us with the
values of the density and viscosity of air at the pressures and
temperatures recorded in {39]. The data of Friend [20] con-
firmed the Princeton group’s calculations very accurately.

This confirmatien has left only one possible explanation
for the observed shift in the viscosity. As is well known, if
the walls of the pipe are not sufficiently smooth, the rough-
ness protrudes from the viscous sublayer, and a shift in the
velocity profile is observed in the intermediate region, ex-
actly as if the viscosity of fluid were changed. There is a
well known formuta for the equivalent viscosity (see eg
Monin and Yaglom [29], p 286, formula (5.25b})). Therefore,
the last possible reason for the shift is:

(tii} The roughness of the pipe walls is revealed at large
Reynolds numbers. To check this possibility we turn to well-
known data concerning the Reynolds number dependence of
the drag coefficient for flows in rough pipes (see Fig 20,
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Fig 21. Drag coefﬁc:ent A as a function of the.Reynolds number for
the Princeton data. *. Princeton data; the continuous line is the law
for smooth pipes.
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available, eg in Monin and Yaglom [29] p 308). The general
situation is as follows. For a given mean height of the
roughness the data for smooth and rough pipes coincide, up
to a critical Reynolds number. When this is reached the Rey-
nolds number dependence of the drag coefficient for rough
pipes deviates from that for smooth pipes. Clearly the critical
Reynolds number depends on the mean height of the rough-
ness: the lesser the height, the later the deviation begins.

The analog of Fig 20 for the Princeton experiments is pre-
sented in our Fig 21; the solid line corresponds to the theo-
retical relation (4.17). The grz%ph shows that the deviation
starts approximately at Re = 10", This is a sensitive indicator
of the quality of the velocity profiles; it shows that starting
from run 13 (Re = 1,02 - 106) the profiles presented by the
Princeton group are inappropriate for comparison with theo-
retical predictions for smooth pipes, and that this is the rea-
son for the observed differences between predicted profiles
and the profiles measured by the Princeton group.

An even sharper visualization of the effect of roughness
on the Princeton data is offered in Fig 22, where the relative
friction coefficient § = A /A .. (already used in Fig 8
above), calculated from these data is plotted-as a function of
In Re. One can see that starting approximately from Re = 10°
{In Re ~ 13.8) the values of £ begin to grow steeply
(compare with Fig 8 where nothing happened at this value of
Re). If the same viscosity correction as the one used in Fig
19 is introduced into the calculation of A oo the kink dis-
appears, as one can see in Fig 23, where § =& /A, is
plotted. This shows that starting with Re = 10° the drag esti-
mate based on the assumption that the pipe is smooth be-
comes increasingly insufficient.

As we see, the procedure proposed in section 4 was sen-
sitive enough to detect the disagreement between the Prin-
ceton experimental results and thecretical predictions for
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Fig 22. Relative friction § = ?L"pl?\.mdim for the Princeton data as a
function of in Re
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velocity profiles in smooth pipes, which starts at the point
where the roughness comes out of the viscous sublayer ac-
cording to the drag coefficient data.

Moreover, consider the kinematic viscosity of air in the

last run which comresponds to a smooth pipe. According to

the Princeton data it can be estimated as approximately 1.05

10 %em’s — equal to the kinematic viscosity of water.

We come to the conclusion that the Princeton group did
not surpass the range of Reynolds number achieved by
Nikuradze or reach its upper bound. It is possible that this
problem could be cured in a large-pipe experiment, as pro-
posed by Hussain [24]. ’

All the new data support the scaling law over the loga-
rithmic law, and for the lower and intermediate ranges of
Reynolds numbers also support the power [aw with the spe-
cific constants we have derived from the Nikuradze data,
The data at higher Reynolds aumbers are not reliable, and no
quantitative conclusions can be drawn from them.

As was noted by Hussain, in addition to the problems
with roughness there are the additional issues of the size of
the sensor, which ¢an have a significant averaging effect,
and the length of the superpipe, which may be too short to
allow a full development of the flow. The required length
may well depend on Re.

7 CONCLUSION
We have shown that the von Karmén-Prandtl universal loga-
rithmic law for the intermediate region of wall-bounded
shear flow must be jettisoned and replaced by a power law,
of which we have offered a specific form that agrees with the
data. In particular, the friction coefficient can be derived
from our power law without any further ad-hoc manipuia-
tions.

It is interesting to discover what physical mechanisms are
responsible for producing a power law. We shall now briefly
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Fig 23. The relative friction &' =&, /A, With corrected viscos-
ity as in Fig 19 does not exhibit a kink at Re ~ 10",
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show that the scaling law (4.9) arises because the vorticity in
the pipe is intermittent; this intermittency, associated with
the vorticity bursting process, is well-documented in the ex-
perimental and numerical literature [101, [27], [36], [37].-

Indeed, a natural measure of the length scale of the cross-
section of the transverse vortical structures near the wall,
which are responsible for the vertical variation in the veloc-
ity &, is £ = (8 u/u,)"'; The scaling law (4.9) gives

3
= 2lnke’ (.1

3 2 o o
o)

Note that ¢ is proportional to y'_a rather than to y, show-
ing that the transverse vortical structures are not space filling
if (4.9} holds; the universal logarithmic law, on the other
hand, produces an ¢ proportional to y. In a viscous flow the
vorticity can presumably vanish only on smooth surfaces,
but one can define an essential support of the vorticity, (see
[14]), as the region where the absolute value of the vorticity
exceeds some predetermined threshold; according to (7.1),
the intersection of that essential support with a vertical line
has fractal dimension 1—c. If the essential support js statisti-
cally invariant under translations paratlel to the wall, the es-
sential support itself has dimension 3~a. This conclusion
agrees well with the data reported in [10], where the more
powerful streamwise vortices are indeed not space filling.
One could even hypothesize that, as the streamwise vortices
meander, the transverse vortices that produce v can be iden-
tified at least in pait with transverse components of vortices
that are mostly streamwise.

An interpretation of these observations is suggested by
the discussion in [37]. The process that occurs in a wall layer
is a transfer of momentum or impulse from the outer regions
to the wall, or, equivalently, a transfer of impulse of opposite
polarity from the wall to the interior. This transfer is inter-
mittent, concentrated in localized bursts which create a vor-
ticity scale different from y, consistent with the power law
(4.9).

Note that as Re tends to infinity, o tends to zero. One
should be very careful not to conclude from this that as the
viscosity tends to zero the power law somehow converges to
the von Kdrman-Prandtl universal Jogarithmic law. As was
already pointed out above, as the viscosity tends to zero the
scaling law converges to the upper branch of the chevron.
This upper branch then covers most of the pipe’s cross-
section, and in the limit of vanishing viscosity corresponds
to a highly intermittent vorticity field concentrated on very
thin, very strong and very folded vortices. No length scale
can be assigned to this limiting vorticity field other than an
external scale which in the present case is y. As the viscosity
becomes finite the various processes associated with it, eg
smoothing, cancellation of hairpin vortices and reconnection,
create coherent vortices with a distinct vortical length scale
associated with the exponent .. One can view our scaling
law as a small-viscosity perturbation of the very intermittent
flow that generates the upper branch of the chevron.

A scaling analysis similar to the one offered above can
also be carried out for the inertial range of local structure in
turbulence, where it leads to the Kolmogorov-Obukhov

Appl Mech Rev vol 50, no 7, July 1997

scaling laws as well as to a novel analysis of the effects of
intermitiency. This analysis is presented elsewhere, More
generally, we wish to point out that our use of advanced
similarity methods together with an asymptotic expansion
based on a statistical argument constitutes a step towards an
analysis of turbulence from first principles.
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