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Abstract. Intermittency, a basic property of fully developed turbulent flow, decreases with
growing viscosity; therefore classical relationships obtained in the limit of vanishing viscosity must
be corrected when the Reynolds number is finite but large. These corrections are the main subject
of the present paper. They lead to a new scaling law for wall-bounded turbulence, which is of key
importance in engineering, and to a reinterpretation of the Kolmogorov–Obukhov scaling for the
local structure of turbulence, which has been of paramount interest in both theory and applications.
The background of these results is reviewed, in similarity methods, in the statistical theory of vortex
motion, and in intermediate asymptotics, and relevant experimental data are summarized.
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1. Introduction. Self-similar states and the corresponding scaling laws are the
cornerstones of statistical theories in physics; in the case of turbulence, the best
known self-similar states are found in the intermediate region in wall-bounded turbu-
lence, whose mean structure has been widely thought to be well described by the von
Kármán–Prandtl universal logarithmic law of the wall, and in the intermediate region
of local structure, for which Kolmogorov and Obukhov proposed their well-known
scaling laws. These laws have been put to use in a wide variety of applications and
constitute a substantial fraction of the accepted wisdom in turbulence theory. The
goal of the present paper is to reexamine much of that accepted wisdom.

Our basic premise is that turbulence can be described by the Navier–Stokes equa-
tions. As the viscosity tends to zero, these equations formally converge to the Euler
equations, but their solutions acquire temporal and spatial fluctuations with a lim-
iting behavior that is at this time imperfectly understood. However, certain average
properties of the flow, which will be identified as we proceed, have well-defined lim-
its as the viscosity tends to zero, and the existence of these limits is the basis for
expansions in a small parameter that tends to zero as the viscosity tends to zero.

In the case of wall-bounded turbulence, our argument will show that the classical
von Kármán–Prandtl law should be abandoned and replaced, when the viscosity is
small but finite, by a scaling (power) law. The well-known graphs that seem to exhibit
the classical von Kármán–Prandtl law are misleading for reasons we shall explain. In
fact, arguments commonly used in favor of the von Kármán–Prandtl law support our
conclusions once they are properly understood.

In the case of local structure, the classical Kolmogorov–Obukhov scaling of the
second- and third-order structure functions is exact in the limit of vanishing viscosity,
when the turbulence is most intermittent and least organized. When the viscosity
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266 G. I. BARENBLATT AND A. J. CHORIN

is nonzero (the Reynolds number is large but finite), Reynolds-number-dependent
corrections to the Kolmogorov–Obukhov scaling of these structure functions appear
and are due to a viscosity-induced reduction in intermittency. These conclusions are
antithetical to common assumptions according to which the Kolmogorov–Obukhov
scaling somehow omits the effects of the spottiness or intermittency that is inherent
in turbulence and must be corrected accordingly. For higher order structure func-
tions the vanishing viscosity limit ceases to exist because of intermittency, and thus
the Kolmogorov–Obukhov scaling fails for these structure functions not because it
must be corrected for intermittency, but because of the intermittency that it already
describes.

It is worth noting that though both the Kolmogorov–Obukhov scaling and the
von Kármán–Prandtl law are widely used and accepted, they have not been immune
from all criticism. In the case of local structure, Landau (see Landau and Lifshitz [36])
made a case for “intermittency corrections” shortly after the original laws were formu-
lated, and the need for such corrections was endorsed by Kolmogorov and Obukhov
themselves [35], [42]. An elaborate statistical theory of turbulence has arisen in recent
decades, and while it has not been particularly successful elsewhere, it is widely be-
lieved to offer a good and sufficient explanation not only of the Kolmogorov–Obukhov
scaling but also of the need for correcting it (see, e.g., [26], [37], [38]). Laws other than
the von Kármán–Prandtl law have been long known to fit the data near a wall (see
[46]), and a self-consistent alternative has been offered by one of the present authors
starting with the monograph [1].

In both problems the focus is on an intermediate range of scales, between the
scales ruled by outside forcing and the scales where viscosity is important; this will
bring us into the realm of intermediate asymptotics. In addition to intermediate
asymptotics, our mathematical tools include similarity methods as well as vanishing-
viscosity asymptotics motivated by the statistical mechanics of vortex motion, all of
which will be summarized in the next two sections. In the sections that follow we shall
consider the wall region and local structure, with special attention to the “overlap”
asymptotic argument and to the experimental data. We shall then turn to a unified
treatment of intermittency and offer conclusions.

We wish to express our belief that the combination of similarity methods with
asymptotics based on a statistical theory constitutes a step forward in the analysis
of turbulence from first principles, and that it has the signal advantage of placing
turbulence theory within a broad framework shared by other nonequilibrium theories
in statistical physics.

The example we shall dwell on most is fully developed turbulent flow in a pipe,
and in order to motivate the theoretical discussion in the next few sections we begin
by summarizing its salient features.

Consider a long cylindrical pipe with a circular cross-section and the average flow
in its working section, i.e., far from its inlet and outlet. Data about turbulent flow
are generally presented in a dimensionless form, making possible a unified description
of flows of different fluids, in pipes of various diameters, etc. This dimensionless
description should be independent of the choice of the magnitude of the basic units of
measurement. In particular, it is customary to represent u, the average longitudinal
velocity in a pipe, as

φ = u/u∗,(1.1)

where u∗ is the “dynamic” or “friction” velocity that defines the appropriate velocity
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TURBULENCE 267

FIG. 1. Schematic view of flow in a pipe. 1. Viscous sublayer. 2. Near-axis region. 3. Inter-
mediate region.

scale:

u∗ =
√
τ/ρ,(1.2)

where ρ is the density of the fluid and τ is the shear stress at the pipe’s wall defined
as

τ =
∆p
L

d

4
.(1.3)

Here ∆p is the pressure drop over the working section of the pipe, L is the length of
the working section, and d is the pipe’s diameter. The dimensionless distance from
the pipe wall is represented as

η =
u∗y

ν
,(1.4)

where y is the actual distance from the wall and ν is the kinematic viscosity. Note
that the length scale ν/u∗ implicit in (1.4) is typically very small—of the order of
tens of microns or even less in some of the data discussed below.

An important parameter in the problem is the Reynolds number

Re =
ūd

ν
,(1.5)

where ū is the mean velocity averaged over the cross-section, i.e., the average fluid
flux divided by the area of the cross-section. When the Reynolds number Re is large,
one observes that the cross-section is divided into three parts (Figure 1): a thin ring
(1) near the wall, where the velocity gradient is so large that the shear stress due to
molecular viscosity, i.e., to the rate of momentum transfer by the thermal motion of
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268 G. I. BARENBLATT AND A. J. CHORIN

the fluid’s molecules, is comparable to the turbulent shear stress, i.e., to the rate of
momentum transfer due to the turbulent vortices. This is the viscous sublayer. In a
cylinder (2) surrounding the pipe’s axis the velocity gradient is small and the average
velocity is close to its maximum. We shall focus on the intermediate region (3) which
occupies most of the cross-section.

During the last sixty years two contrasting laws for the velocity distribution in
the intermediate region could be found in the literature (see, e.g., Schlichting [46]):
the first is the “scaling” or “power” law,

φ = Cηα,(1.6)

where the C and α are parameters independent of η but believed to depend weakly
on Re. Laws such as (1.6) were used by engineers in the early years of turbulence
research. The second law found in the literature is the “universal,” Reynolds number
independent logarithmic law,

φ =
1
κ

ln η +B,(1.7)

where κ (von Kármán’s constant) and B are assumed to be “universal,” i.e., Re-
independent, constants. The values of κ in the literature range between .36 and .44,
and the values of B range between 5 and 6.3.

A widely accepted derivation of the universal logarithmic law (1.7), due originally
to von Kármán [30] and Prandtl [44], who used some additional assumptions, and in
its final form to Landau and Lifshitz [36], proceeds as follows. Assume that the
velocity gradient ∂yu (∂y ≡ ∂

∂y ) in the intermediate region (2) of Figure 1 depends
on the following variables: the coordinate y, the shear stress at the wall τ , the pipe
diameter d, and the properties of the fluid: its kinematic viscosity ν and density ρ.
We consider the velocity gradient ∂yu rather than u itself because the values of u
depend on the flow in the viscous sublayer where the assumptions we shall use are
not valid. Thus

∂yu = f(y, τ, d, ν, ρ).(1.8)

Dimensional analysis (see section 3 below) gives

∂yu =
u∗
y

Φ(η,Re), Re =
ūd

ν
, η =

u∗y

ν
,(1.9)

where Φ is a dimensionless function. The same kind of dimensional analysis gives for
the “friction” velocity

u∗d

ν
=
ūd

ν
· F (Re),(1.10)

where F is a dimensionless function and the Reynolds number Re is given by equation
(1.5). Thus equation (1.8) can be rewritten in the form

∂ηφ =
1
η

Φ(η,Re), φ =
u

u∗
.(1.11)

Outside the viscous sublayer, η is large—of the order of several tens and more; in the
kind of turbulent flow we consider the Reynolds number Re is also large, of the order
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TURBULENCE 269

FIG. 2. The comparison of the universal logarithmic law with experiment (after Monin and
Yaglom [39]).

of 104 at least. It was therefore natural to assume that for such large values of η and
Re the function Φ no longer varied with its argument and could be replaced by its
limiting value Φ(∞,∞) = κ−1. Substitution into (1.11) yielded

∂ηφ =
1
κη
,(1.12)

and an integration yielded the logarithmic law (1.7).
However, as we shall see in detail below, there is no overwhelming reason to

assume that the function Φ has a constant, nonzero limit as its arguments tend to
infinity, nor that the integration constant remains bounded as Re tends to infinity.
When either assumption fails other conclusions must be reached.

It is often stated that the universal logarithmic law (1.7) is in satisfactory agree-
ment with the experimental data both in pipes and in boundary layers. Graphs such
as those in Figure 2 (drawn after Monin and Yaglom [39]) are adduced as evidence.
However, the scaling law (1.6) has also found experimental support, provided the de-
pendence of the quantities α and C on the Reynolds number was properly taken into
account. Indeed, Schlichting [46], following Nikuradze [41], showed that the experi-
mental data agree with the scaling law over practically the whole cross-section of a
pipe. We shall show that if one plots experimental points on a graph without regard to
Reynolds number, as was done in the preparation of Figure 2, then it is natural but in
fact misleading to focus on the envelope of the family of Reynolds-number-dependent
curves, which happens to be close to the graph of the von Kármán–Prandtl law.

In later sections, after appropriate preliminaries, we shall discuss which of these
laws, if any, best describes turbulent flow of fluids such as air or water. This question is
of great practical as well as theoretical significance. We shall then use our conclusions
in the discussion of local structure, and more generally, in a discussion of scaling and
intermittency in turbulence.
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270 G. I. BARENBLATT AND A. J. CHORIN

2. The near-equilibrium statistical theory of turbulence. It is well known
that if one adds to a hyperbolic system of equations (for example, to the equations of
inviscid gas dynamics) a suitable viscous term with a small viscosity coefficient and
then makes the viscosity tend to zero, one obtains in the limit a suitable solution of the
equations with zero viscosity. On the other hand, if one adds to the hyperbolic system
a dispersive term (for example, a small coefficient multiplying a third derivative) and
then decreases the small coefficient, one observes in general rapid oscillations in the
solution which do not disappear as the limit is approached. Due to the interaction and
self-interaction of vortices, the three-dimensional Navier–Stokes equations partake of
both hyperbolic and dispersive properties. For example, the motion of vortex lines
can be described, in certain approximations, by equations of Schroedinger type [32],
which is one of the most common examples of a dispersive equation. As a result, one
cannot in general expect individual solutions of the Navier–Stokes equations to be
well behaved in the limit of vanishing viscosity [6]. However, it turns out that one can
expect certain average properties of collections of solutions to be well behaved as the
viscosity decreases, a fact that will turn out to be important below. To explain why
this is so one has to make a short detour through the statistical theory of turbulence.
The goal of this statistical theory is to understand and quantify the behavior of
ensembles of solutions of the Navier–Stokes equations; experience in fluid mechanics
as well as in other parts of physics suggests that such ensembles are much more
amenable to analysis than the individual solutions.

It is natural to focus first on stationary random solutions of the Euler or Navier–
Stokes equations, just as it is natural in the kinetic theory of gases to focus first
on stationary distributions of the momenta and positions of particles. A stationary
random solution in turbulence is the natural generalization of a statistically steady
state in a system of N particles; it is an ensemble (i.e., a collection) of solutions, each
one of whose members may be varying in time, even rapidly. But the ensemble has
the property that its averages and other statistical properties are invariant in time.
This is analogous to the “equilibrium” solutions in the kinetic theory of gases, which
describe systems in which each molecule is moving and undergoing collisions, but the
average properties of the collection of particles are stationary.

Stationary random solutions are important because they may attract others; i.e.,
if one starts with a nonstationary random solution, in which even the averages are
time varying, one may expect that after some time interval the averages will become
stationary, and in particular one may be able to replace long-time averages of in-
dividual members of the ensemble by averages over a stationary statistical solution
(i.e., over the appropriate ensemble of solutions with its time-independent statistics).
In addition, nonstationary statistical solutions depend on their initial conditions and
few general conclusions can be reached about them. When time averages can be re-
placed by averages over a stationary statistical solution, the latter is called ergodic.
It is understood that stationary solutions may provide only a partial description of
real solutions; in turbulence, this partial description often applies to the small scales,
but not exclusively so; for example, the large-scale flow outside the viscous sublayer
in the center section of a long pipe can be viewed as stationary, in the sense that
its averages are time-invariant, and can in principle be related to averages over an
ensemble of solutions that satisfy the same boundary conditions. The explanation of
how a nonrandom equation can produce a random solution belongs to the realm of
chaos theory [19].D
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TURBULENCE 271

Statistically stationary flows come in two flavors: equilibrium and nonequilib-
rium. An equilibrium is what one finds after a long time in an isolated system or a
portion of an isolated system. One can generally assume that at equilibrium, every
individual solution (member of the ensemble) that satisfies the boundary conditions
has a probability P of being observed in an experiment, with P = 1

Z e
−βH , where H

is the kinetic energy of the solution, β is an “inverse temperature,” and Z is a nor-
malizing factor which ensures that the sum of all probabilities is one. In turbulence,
the “inverse temperature” β is not necessarily related to what one usually thinks of as
the temperature of the fluid but is a more abstract concept, related to the energy of
the turbulence. This formula for P is known as Gibbs’s formula, and an ensemble in
which this formula holds is known as a Gibbsian ensemble. In a Gibbsian ensemble,
there is no loss of energy nor any transport of mass or momentum from one point to
another or to a wall. A full discussion of Gibbsian ensembles in fluid mechanics can
be found in [18], [19], [20], [21].

Nonequilibrium steady states are the analogs of what one obtains in kinetic theory
when one considers, for example, the distribution after a long time of velocities and
momenta of gas particles between two walls at different temperatures. That distri-
bution of momenta and locations is stationary but not Gibbsian. Unlike a Gibbsian
equilibrium, it allows for the irreversible transport of mass, momentum, and energy
across the system.

The great discovery of Onsager, Callen, and Welton (see [15]) is that in a system
not too far from a Gibbsian equilibrium, nonequilibrium properties (e.g., transport
coefficients) can be evaluated on the basis of equilibrium properties. An example
is heat capacity, which is perfectly well defined at equilibrium, but measures the
response of a system to external perturbations. Most of the theory of nonequilibrium
processes deals with systems not far from equilibrium; its machinery, for example,
the formalism for calculating properties such as energy loss, is not applicable except
near equilibrium. Clearly, turbulence is not in Gibbsian equilibrium, in particular
because it features an irreversible energy transfer from large to small scales or of
momentum from the interior to the walls. The interesting question is: can turbulence
be viewed as a small perturbation of a suitable Gibbsian equilibrium? The key word
here is “suitable” and the answer is positive; this positive answer greatly simplifies
the analysis of statistical solutions of the Euler and Navier–Stokes equations. An
estimate of the time available for the small scales to settle to equilibrium, compared
with the time scale of overall decay, will be given in section 6 below.

Statistical equilibria in vortex systems and their limiting behavior have been
studied by a variety of numerical and analytical methods, some of which exploit an
analogy with the vortex-dominated phase transitions that occur in superfluid and
superconducting systems. A major conclusion of the available analyses is that the
postulated equilibria exist and exhibit velocity correlation and structure functions up
to order 3 that are consistent with the Kolmogorov scaling discussed below. Typical
flows have a vorticity that is highly concentrated in small volumes, and are thus
highly intermittent. A consequence of this analysis is that one can expect correlation
and structure functions of low order for Navier–Stokes flows to have a well-behaved
limit as the viscosity tends to zero. As noted above, it is not claimed that individual
solutions of the Navier–Stokes equations converge to an Euler limit (and indeed, in
the case of wall-bounded flow, this is clearly false [31]). Further, the precise nature of
the convergence of the random solutions as the viscosity tends to zero remains open;D
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272 G. I. BARENBLATT AND A. J. CHORIN

all that is asserted is that certain moments up to order 3 have limits as the viscosity
tends to zero.

3. Intermediate asymptotics, scaling laws, and similarity. Fluid dynam-
icists are familiar with the concept of dynamic Reynolds number similarity: if one
has found a flow in a given geometry, with a length scale L, viscosity ν, and velocity
scale U , one can find a flow in a similar geometry, with a different length scale and a
different viscosity, by scaling the velocity so that the Reynolds number Re = UL/ν is
the same; in other words, if the length scale and the viscosity change, one can obtain
a solution of the new problem by multiplying (“scaling”) the velocity field by the
appropriate constant that keeps Re fixed. We wish to generalize this simple analysis
of the effects of changes in scales.

We first note that all of the problems we shall discuss involve a range of scales
intermediate between very large and very small scales, and our analyses will be valid
only in that range. We shall thus be performing intermediate asymptotics; a function
u = u(s) of the independent variable s has an intermediate asymptotic expansion if
that expansion is asymptotic in a range S1 << s << S2 but not beyond. A simple
example of intermediate asymptotics is afforded by the asymptotic solution T of the
heat equation with heat conductivity κ:

T =
Q

2
√
πκt

e−x
2/4κt,(3.1)

where x is the space variable, t is the time, and Q is a constant determined by
the initial data, assumed to have compact support. Note that this is the temperature
distribution due to a point source of strength Q at the origin; it provides a description
of the temperature field on scales at which the support of the data can be viewed as
small, i.e., on long enough scales after enough time. On the other hand, every heat
flow problem refers to a finite rather than an infinite slab, and thus the solution
(3.1) breaks down on scales and is at times large enough for finite-size effects to be
important. This solution is thus asymptotic to the full solution of the heat equation
when

h2

κ
� t� λ2

κ
,(3.2)

where λ is the length of the slab in which the solution is sought and h is the size
of the support of the initial data. This solution has a property of self-similarity:
temperature distributions at various values of t can be found from each other by
similarity transformations, which we now define.

Consider a physically meaningful relation between physical variables:

y = f(x1, x2, . . . , xk, c),(3.3)

where the arguments x1, x2, . . . have independent dimensions while the dimensions of
y and c are monomials in the powers of the dimensions of the xi:

[y] = [x1]p . . . [xk]r,(3.4)

[c] = [x1]q . . . [xk]s.

Here [x] denotes the dimensions of the quantity x, and for simplicity we restrict
ourselves to the case of a single argument c with dependent dimensions.
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TURBULENCE 273

A physical relationship similar to (3.3) must hold for all observers even if they
use a different system of physically equivalent units having different magnitudes. The
change from one observer to another is expressed by the transformation of the values
of y, x1, . . . , xk, c, of the form

x′1 = A1x1, . . . , x′k = Akxk, y′ = Ap1 . . . A
r
ky, c′ = Aq1 . . . A

s
kc.(3.5)

Such transformations form a group; the invariants of the group, i.e., the quantities
which remain invariant after the transition from one observer to the next, are obviously

Π =
y

xp1 . . . x
r
k

, Π1 =
c

xq1 . . . x
s
k

;

thus the invariant form of equation (3.3) is

Π = Φ(Π1),(3.6)

where Φ is a dimensionless function. A comparison of equations (3.3) and (3.6) shows
that the function f(x1, . . . , xk, c) has the generalized homogeneity property

f(x1, . . . , xk, c) = xp1 . . . x
r
kΦ
(

c

xq1 . . . x
s
k

)
.(3.7)

These considerations belong to standard dimensional analysis.
Consider now what happens when the variable Π1 is small, Π1 << 1. In such

cases one is accustomed to assume that the function Φ can be replaced by the constant
C = Φ(0). If this is indeed true, the problem is greatly simplified; for small enough
Π1 one can replace equation (3.1) by the simpler relation

y = Cxp1 . . . x
r
k.(3.8)

Here C is a single constant to be determined, and the parameter c completely disap-
pears from the equation for small Π1. The powers p, . . . , r can be found by simple
dimensional analysis. When this situation holds, one says that one has complete sim-
ilarity in the parameter Π1. Complete similarity in the parameter 1/Re, where Re is
the Reynolds number, is known as Reynolds number similarity. The strong implicit
assumption here is that as Π1 → 0, Φ tends to a constant nonzero limit C. This is
what was assumed in the derivation of the von Kármán–Prandtl logarithmic law in
the introduction. However, it is obvious that in general complete similarity does not
hold; in general, there is no reason to believe that Φ has a finite nonzero limit when
Π1 → 0, and the parameter Π1, far from disappearing, may well become essential,
even when, or particularly when, it is small.

Here, however, there is an important solvable special case. Assume that Φ has no
nonzero finite limit when Π1 tends to zero, but that in the neighborhood of Π1 = 0
one has for Φ a representation of the form

Φ(Π1) = CΠα
1 + . . .(3.9)

for some C and α, where the dots represent smaller terms. Substituting (3.9) into
(3.6) for Π1 small we find

Π = CΠα
1 ,(3.10)
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274 G. I. BARENBLATT AND A. J. CHORIN

or, returning to dimensional variables,

y = Cxp−αq1 . . . xr−αsk cα;(3.11)

i.e., the power relation is of the same general form as in (3.8), but with two essen-
tial differences: the powers of the variables xi, i = 1, . . . , k, cannot be obtained by
dimensional analysis, because α is unknown, and must be derived by an additional,
separate analysis, and the argument c has not disappeared from the resulting relation.
We refer to such cases as cases of incomplete similarity in the parameter Π1: a scaling
law is obtained, however the parameter c does not disappear but enters that law, al-
beit only in a certain well-defined power combination with the parameters x1, . . . , xk.
Although the determination of the parameter α requires an effort beyond dimensional
analysis, the relation (3.11) has a “scaling” (power) form. Such scaling relations have
a long history in engineering, where a widely shared opinion held, until recently, that
since they cannot be obtained from dimensional considerations, they were nothing
more than empirical correlations. In fact they are merely a more complicated case of
similarity.

Note that the relation (3.9) makes sense only for Π1 6= 0, while the neglect of
the lower order terms in that equation is legitimate only when Π1 is not too large.
Thus conclusions based on equation (3.10) also constitute intermediate asymptotics,
as defined above.

As an application of these ideas, consider a problem which has a qualitative
connection with the fluid mechanics of wall-bounded turbulent flows, as will appear
in what follows. Consider the equation

u′ =
1

ln(1/δ)
u

y
,(3.12)

where the prime denotes differentiation with respect to y, y > 0, u is subject to the
boundary condition u(δ) = 1, and δ is a small parameter; we are interested in what
happens when δ is small. One can view δ as a dimensionless viscosity, and thus δ−1

is analogous to a Reynolds number.
An obvious piece of erroneous reasoning proceeds as follows. For δ small, u′ is

approximately zero, and thus u is a constant, which can only be the constant 1. We
can derive the same false result for small y and δ by an assumption of complete
similarity: equation (3.12) is homogeneous in the dimensions of u and y, and thus
one can view both of these variables as dimensionless. By construction, δ must be
dimensionless. The scaling relation between these variables then takes the form

u = Φ(δ, y),(3.13)

and if one assumes that for δ, y small Φ is constant, one finds again that u is a constant
that can only be the constant 1.

However, both of these arguments are in error. Equation (3.12) has the following
solution that satisfies the boundary condition:

u(y) =
(y
δ

) 1
ln(1/δ)

.(3.14)

Note that for any positive value of δ this solution constitutes a power law and is not a
constant. We can obtain this solution for small y and δ by assuming that the problem
has incomplete similarity in the variable y and no similarity in the variable δ; this
leads to a solution of the form u = A(δ)yα(δ). A substitution into equation (3.12)
yields the unknown functions A(δ), α(δ) and the correct solution.

D
ow

nl
oa

de
d 

08
/1

7/
12

 to
 1

69
.2

29
.5

8.
33

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



TURBULENCE 275

FIG. 3. The solutions of the model equation (3.12) for δ = 10−n, n = 1, . . . , 6.

An important remark can now be made. Consider the solution (3.14) and, for a
nonzero value of y, consider its limit as δ → 0. One can easily see that(y

δ

) 1
ln(1/δ)

= exp
(

ln(y/δ)
ln(1/δ)

)
= exp

(
ln(1/δ) + ln(y)

ln(1/δ)

)
,(3.15)

and thus, as δ → 0, u → e; i.e., the limit of (3.12) for y > 0 is the constant e. As
we have found from the (false) assumption of complete similarity, the limit of u is
a constant, but it is not the same constant as was obtained from the assumption of
complete similarity. Furthermore, for a finite value of δ, however small, u cannot be
viewed as constant everywhere; for y < δ, u is not equal to e, and for y large enough,
u cannot be approximated by e either. The approximate equality u ∼ e holds, for
small but finite δ, only in an intermediate range where y = O(1), and it constitutes
another example of intermediate asymptotics. The solutions of equation (3.12) are
plotted in Figure 3 for various values of δ. For a general discussion of similarity and
intermediate asymptotics, see [1].

These remarks about equation (3.12) will find a counterpart in the discussion of
the intermediate layer in wall-bounded turbulence as well as in the problem of local
structure.

4. The intermediate region in wall-bounded turbulence. We now turn to
a discussion of the intermediate region in wall-bounded turbulence. For the sake of
definiteness we shall discuss mostly flow in a pipe; analogous considerations apply to
turbulent boundary layers, but in this case there are additional factors that will be
considered separately elsewhere.

We already derived in the introduction the general relation

∂yu =
u∗
y

Φ(η,Re) , Re =
ūd

ν
, η =

u∗y

ν
,(4.1)

where Φ is a dimensionless function. An equivalent form of this equation was found
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to be

∂ηφ =
1
η

Φ(η,Re) , φ =
u

u∗
.(4.2)

By making the assumption of complete similarity, i.e., Φ is constant for sufficiently
large values of its argument, Φ(∞,∞) = κ−1, one obtains after an integration, and
provided the integration constant is finite, the von Kármán–Prandtl logarithmic law
of the wall (1.7). Of course, our knowledge of the Navier–Stokes equations and of their
solutions is not sufficient to decide whether such a limit exists. Assume, as suggested
in the previous section, that this limit does not exist, but that at large η the function
Φ can be represented as a power of the form

Φ(η,Re) = Aηα,(4.3)

where the quantities A and α may depend on the Reynolds number. As in the
example at the end of the preceding section, we are assuming incomplete similarity
in the parameter η but no similarity nor any other invariance in the parameter Re.
Hence,

∂ηφ = Aηα−1.(4.4)

By integration, equation (4.4) yields

φ =
A

α
ηα + constant.(4.5)

The scaling law (1.6) is obtained if one sets C = A/α and sets the additive constant
equal to zero. This last condition is an independent statement; it is not a consequence
of the no-slip condition at the wall because equation (4.5) is not valid in the viscous
sublayer near the wall. The justification for the dropping of the additive constant is
the comparison with experiment. Making explicit the dependence of A and α on Re,
we obtain

Φ(η,Re) = A(Re)ηα(Re),(4.6)

in conjunction with the general relations

∂yu =
u∗
y

Φ(η,Re) or ∂ηφ =
1
η

Φ(η,Re) .(4.7)

An important conclusion has been reached: the power law (1.6) and the logarith-
mic law (1.7) can be derived with equal rigor but from different assumptions. The
universal logarithmic law is obtained from the assumption of complete similarity in
both η and Re; physically, this assumption means that neither the molecular viscosity
ν nor the pipe diameter d influences the flow in the intermediate region. The scaling
law (1.6) is obtained from an assumption of incomplete similarity in η and no simi-
larity in Re; this assumption means that the effects of both ν and d are perceptible
in the intermediate region.

Note immediately a clear-cut difference between the cases of complete and incom-
plete similarity. In the first case the experimental data should cluster in the traditional
(ln η, φ) plane (φ = u/u∗, η = u∗y/ν) on the single straight line of the logarithmic
law. In the second case the experimental points occupy an area in the (ln η, φ) plane.
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TURBULENCE 277

Both similarity assumptions are very specific. The possibility that Φ has no
nonzero limit yet cannot be represented asymptotically, as a power of η has not
been excluded. Both assumptions must be subjected to careful scrutiny. In the
absence of reliable, high-Re numerical solutions of the Navier–Stokes equation and
of an appropriate rigorous theory, this scrutiny must be based on careful comparison
with experimental data.

We now specify the conditions under which we may expect (4.6) to hold, and
narrow down the possible choices for A(Re) and α(Re) (see [2], [3], [4], [5], [6]). We
expect equation (4.6) to hold in fully developed turbulence. Experiment shows that it
is not possible to view fully developed turbulence as a single, well-defined state with
properties independent of Re. We may expect a single, well-defined, fully turbulent
regime in the limit of infinite Reynolds number, but experiment, even in the largest
facilities, shows that what anyone would consider fully developed turbulence still
exhibits a perceptible dependence on Re. We thus define fully developed turbulence
as turbulence whose mean properties (for example, the parameters A and α in (4.6))
vary with Reynolds number like K0 + K1ε, where K0,K1 are constants and ε is a
small parameter that tends to zero as Re tends to infinity, and is small enough so
that its higher powers are negligible, yet not so small that its effects are imperceptible
in situations of practical interest; the latter condition rules out choices such as ε =
(Re)−1. Under these conditions we expect A(Re) and α(Re) in (4.6) to have the form

A(Re) = A0 +A1ε, α(Re) = α0 + α1ε,(4.8)

where A0, A1, α0, α1 are universal constants. Here we have implicitly used a principle
that can be derived from the statistical theory of section 2, according to which the
average gradient of the velocity profile has a well-defined limit as the viscosity ν tends
to zero [7], [9], [19]. This is the vanishing-viscosity principle. We thus expand the
functions A(Re), α(Re) in powers of ε and keep the first two terms; the result is

Φ = (A0 +A1ε) ηα0+α,ε(4.9)

in the range of Re we shall be considering. Substitution of (4.9) into (4.7) yields

∂ln ηφ = (A0 +A1ε)ηα0+α1ε = (A0 +A1ε)e(α0+α1ε) ln η.(4.10)

The requirement that this quantity have a finite limit as ν tends to zero yields imme-
diately α0 = 0 and shows that ε must tend to zero as Re tends to infinity like ( 1

lnRe )
or faster. The assumption of incomplete similarity, experiment, and the vanishing-
viscosity principle show that the threshold value ε = 1

lnRe is the proper choice. A
substitution of this choice into equation (4.9) and an integration yield

φ =
u

u∗
= (C0 lnRe+ C1)η

α1
lnRe ,(4.11)

where the additional condition φ(0) = 0 has been used.
A useful property of the expression (4.11) is its asymptotic covariance [11], [27].

At large Re equation (4.11) should be invariant under a change in the definition
of Reynolds number, which contains an arbitrary choice of length scale and velocity
scale. A change in these choices multiplies Re by a constant Z, and we expect formula
(4.11) to remain valid, with the same C0, C1, α1, when Re is replaced by Z ·Re. The
obvious relation ln(ZRe) = lnRe + lnZ ∼ lnRe for large Re ensures that equation
(4.11) satisfies this requirement.
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According to this derivation, the coefficients C0, C1, α1 are universal constants,
the same in all past and all future experiments of sufficiently high quality performed
in pipe flows at large Reynolds numbers. In the paper [12] the proposed scaling law
for smooth walls (4.11) was compared with what seemed to be the best available
data, produced by Nikuradze [41] under the guidance of Prandtl at his institute in
Göttingen. It is particularly important that these data are available in tabular form
and not only as graphs. The comparison has yielded the coefficients α0 = 0, α1 = 3/2
(C0 = 1√

3
, C1 = 5/2), with an error of less than 1%. For the details of the analysis of

the experimental data, see [12]. Thus the final result is

φ =
(

1√
3

lnRe+
5
2

)
η3/2 lnRe ,(4.12)

or, equivalently,

φ =

(√
3 + 5α
α

)
ηα , α =

3
2 lnRe

.(4.13)

The proposed scaling law (4.11) produces a separate curve φ = φ(η) in the
(ln η, φ) plane, one for each value of the Reynolds number Re, in contrast with the
von Kármán–Prandtl law (1.7) which would produce a single curve for all values of
Re.

We now wish to use the law (4.11) to understand what happens at larger Reynolds
numbers and for a broader range of values of η than were represented in the exper-
iments reported by Nikuradze. If this extrapolation agrees with experiment, we can
conclude that the law has predictive powers and provides a faithful representation of
the intermediate region. We have already stated that the limit that must exist for
descriptions of the mean gradient in turbulent flow is the vanishing-viscosity limit,
and thus one should be able to extrapolate the law (4.11) to ever smaller viscosities
ν. This is different from simply increasing the Reynolds number, as ν affects η and
ū as well as Re. Note that the decrease in the viscosity corresponds also to what is
done in the experiments: if one stands at a fixed distance from the wall, in a specific
pipe with a given pressure gradient, one is not free to vary Re = ūd/ν and η = u∗y/ν
independently because the viscosity ν appears in both. If ν is decreased by the ex-
perimenter, the two quantities will increase in a self-consistent way, and ū will vary
as well. When one takes the limit of vanishing viscosity, one considers flows at ever
larger η at ever larger Re; the ratio 3 ln η

2 lnRe tends to 3/2 because ν appears in the same
way in both numerator and denominator. Consider the combination 3 ln η/2 lnRe. It
can be represented in the form

3 ln η
2 lnRe

=
3
[
ln u∗d

ν + ln y
d

]
2
[
ln u∗d

ν + ln ū
u∗

] .(4.14)

According to [3], at small ν, i.e., large Re, ū/u∗ ∼ lnRe, so that the term ln(ū/u∗) in
the denominator of the right-hand side of (4.14) is asymptotically small, of the order
of ln lnRe, and can be neglected at large Re. The crucial point is that, due to the
small value of the viscosity ν, the first term ln(u∗d/ν) in both the numerator and
denominator of (4.14) should be dominant, as long as the ratio y/d remains bounded
from below, for example, by a predetermined fraction. Thus, as long as one stays

D
ow

nl
oa

de
d 

08
/1

7/
12

 to
 1

69
.2

29
.5

8.
33

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p
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away from a suitable neighborhood of the wall, the ratio 3 ln η/2 lnRe is close to 3/2
(y is obviously bounded by d/2). Therefore, the quantity

1− ln η/ lnRe

can be considered as a small parameter, as long as y > ∆, where ∆ is an appropriate
fraction of d. The quantity exp(3 ln η/2 lnRe) is approximately equal to

exp
[

3
2
− 3

2

(
1− ln η

lnRe

)]
≈ e3/2

[
1− 3

2

(
1− ln η

lnRe

)]
(4.15)

= e3/2
[

3
2

ln η
lnRe

− 1
2

]
.

According to (4.7) we also have

η∂ηφ = ∂ln ηφ =

(√
3

2
+

15
4 lnRe

)
exp

(
3 ln η

2 lnRe

)
,(4.16)

and the approximation (4.15) can also be used in (4.16). Thus in the intermediate
asymptotic range of distances y: y > ∆, but at the same time y slightly less than d/2,
we find, up to terms that vanish as the viscosity tends to zero,

φ = e3/2

(√
3

2
+

15
4 lnRe

)
ln η − e3/2

2
√

3
lnRe− 5

4
e3/2,(4.17)

and

∂ln ηφ =
√

3
2
e3/2.(4.18)

We shall call equation (4.18) the asymptotic slope condition. It asserts that as ν → 0
the slope of the power law tends to a finite limit whose value, the limiting slope,
is given by equation (4.18). In the von Kármán–Prandtl law an asymptotic slope
condition is also assumed, with a limiting slope equal to 1/κ. Note that the limiting
slope in equation (4.18),

√
3

2 e
3/2 = 1/.2776, is approximately

√
e ∼ 1.65 larger than

the generally accepted values for κ−1. We emphasize that equation (4.18) contains
no analog of the finite additive constant in a classical logarithmic law.

The analysis just given remains valid if ∆, the lower bound on the range of y,
tends to zero, provided it tends to zero with ν more slowly than 1/ ln(1/ν).

Before explaining the difference in limiting slopes between the scaling law and
the von Kármán–Prandtl law, we wish to point out the geometric significance of
the vanishing viscosity limit in the scaling law. Note that the range of values of
ln η = lnu∗y/ν that corresponds to a given portion of the pipe, say the one between
the values y = d/40 and y = d/2, is constant, independent of ν. On the other hand,
the value of ln η that corresponds to the beginning of the range goes up as ν tends
to zero. As the Reynolds number tends to infinity, the curves φ = φ(η) given by the
scaling law become flatter and their slope converges to

√
3

2 e
3/2. Simultaneously, the

window that corresponds to most of the pipe’s cross-section moves to the right. For
every finite value of ν we have a power law, but at vanishing viscosity the limit of
the power law, within the range of values of y that corresponds to the major part of
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the cross-section, can be represented asymptotically as a straight line. It is important
for our analysis that the motion of the window and the flattening of the curves occur
simultaneously as ν tends to zero. Thus, the asymptote of the power law occupies
most of the pipe at a small enough viscosity; in the (ln η, φ) plane it is located at
infinity, because of the presence of ν in the definition of η.

It is easy to show that the family of curves φ = φ(η) parametrized by Re has an
envelope, whose equation tends to

φ =
1
κ

ln η +
5
2
e,(4.19)

with κ = 2e/
√

3 = .425.., very close to the standard value of κ found in the literature.
The corresponding value of 1

κ is exactly
√
e times smaller than the value on the right-

hand side of (4.18). It is natural to conjecture that the logarithmic law usually found in
the literature corresponds to this envelope; indeed, if one plots points that correspond
to many values of Re on a single graph (as is natural if one happens to believe the
von Kármán–Prandtl law (1.7)), then one is likely to become aware of the envelope.
The visual impact of the envelope is magnified by the fact that the small y part of the
graph, where the envelope touches the individual curves, is stretched out in graphs
such as Figure 2 by the effect of ν on the values of ln η. Also, the measurements at
very small values of y, where the difference between the power law and the envelope
could be noticeable again, are missing because of experimental difficulties very near
the wall. Thus, if our proposed scaling law is valid, the conventional logarithmic law
is merely an illusion which substitutes the envelope of the family of curves for the
curves themselves. The discrepancy of

√
e between the slope of the curves and the

slope of the envelope is the signature of the power law, and if observed in the data,
it helps to decide whether the power law is valid. Note also that the family of curves
(3.12) in the example at the end of section 3 also has an envelope, which is of little
relevance to the structure of the individual members of the family for y > 0. The
situation is summarized in Figure 4, in which we show schematically the individual
curves of the scaling law, their envelope, and the asymptotic slope.

Historically, the understanding of the flow in the intermediate region of wall-
bounded turbulence has been influenced by the well-known “overlap” argument due
to Izakson, Millikan, and von Mises (IMM) (see, e.g., [22], [39]). This argument
is also important in the history of matched asymptotic expansions. Its gist is that
one can find general asymptotic forms for the velocity profile near the wall and for
the velocity profile near the center of the pipe; these forms are assumed to match
in the intermediate region, and the match reveals the intermediate asymptotics of
that intermediate region. We have shown in an earlier publication [5] that the IMM
argument in its original form starts from an assumption of complete similarity in the
Reynolds number Re and amounts to a demonstration that complete similarity in
Re together with the asymptotic matching principle is sufficient to justify the von
Kármán–Prandtl law. We now present a form of this argument that does not start
from this sweeping and doubtful assumption.

Assume that from the wall outward one has a “wall law” of form

φ = u/u∗ = f(η,Re),(4.20)

where f is a dimensionless function; note that this form can be derived by our usual
similarity argument. What is significant here is that we are not making use of the
specific representation of f that we have already derived. In the region adjacent to
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TURBULENCE 281

FIG. 4. Schematic of the power law curves, their envelope, and their asymptotic slope. 1.
The individual curves of the scaling law. 2. The envelope of the family of scaling law curves (often
mistaken for a logarithmic law of the wall). 3. The asymptotic slope of the scaling law curves.

the axis of the pipe the flow assumes a “defect law,”

uCL − u = u∗g(2y/d,Re),(4.21)

where uCL is the average velocity at the centerline and g is another dimensionless
function. This form is chosen because it is natural to assume that far enough from
the wall φ is no longer a function of a variable such as η that emphasizes the influence
of the wall. Asymptotic matching then demands that for some interval in y the laws
(4.20) and (4.21) overlap asymptotically, so that

uCL − u = uCL − u∗f(u∗y/ν,Re) = u∗g(2y/d,Re),(4.22)

up to terms that are small when Re is large. After differentiation of (4.23) with
respect to y followed by multiplication by y one obtains

η∂ηf(η,Re) = −ξ∂ξg(ξ,Re) = G(Re),(4.23)

where η = u∗y/ν, ξ = 2y/d, and G(Re) is a function of Re only. We now appeal to
the vanishing-viscosity principle and find that G(Re) must have a limit, say G0, as
Re→∞. Thus one half of equation (4.23) states that the function η∂ηf(η,Re) must
have a constant limit when the viscosity tends to zero, and we already know (equation
(4.18)) that our scaling law satisfies this condition. The other part of equation (4.23)
serves to restrict the possible forms of the function g. Thus the IMM argument and
our scaling law are perfectly compatible; indeed, one can derive the asymptotic form
of the gradient of the scaling law from the IMM argument.

We wish to add two remarks. (i) Suppose one assumes complete similarity in Re
in the foregoing argument; the function G(Re) must then be a constant, and equation
(4.24) then leads, after integration, to a logarithmic law, provided the additive con-
stant can be defined. However, there are neither logical nor experimental reasons to
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FIG. 5. The Princeton data [52] obtained in a high-pressure pipe confirm the splitting of the
experimental data according to their Reynolds numbers and the rise of the curves above their envelope
in the (ln η, φ)-plane. The solid line is the envelope; the curves turn at the center of the pipe.
The splitting and form of the curves agree with the scaling law and are incompatible with the von
Kármán–Pradtl universal logarithmic law. (Reproduced with permission from [51].)

make this assumption. (ii) The overlap argument suggests no value for the limiting
constant G0; if one decides to obtain this constant from the envelope of the family
of velocity profiles rather than from the profiles themselves, one obtains the wrong
value.

Finally, note that our description of the intermediate region in pipe flow is singular
near the point y = 0 as well as for ν = 0; the effective boundary condition is imposed
on the intermediate region just outside the wall sublayer. Those are the features of
our problem that have been built into the model problem at the end of the previous
section.

5. The experimental data. Detailed comparisons of the power law and the
von Kármán–Prandtl laws with experimental data are available in [8], [9], [12]. We
shall be content here to show some experimental curves and corresponding profiles
from our scaling law (4.7).

Figure 5 exhibits a series of mean velocity profiles in the (ln η, φ) plane, as obtained
in the Princeton experiments of Zagarola et al. [51], [52]. The curves turn down at
the center of the pipe; the solid line is the conventional von Kármán–Prandtl law with
the constants obtained in [51],[52], which differ from the conventional ones. Note that
(i) there is a separate curve for each Reynolds number, in agreement with the power
law (1.6) but not with the universal logarithmic law (1.7); (ii) the fact that the curves
for various values of Re were drawn on a single graph brings out the envelope of the
family of curves; the range of values of ln η at which the envelope appears to be close
to the individual graphs is exaggerated by the properties of ln η discussed above; (iii)
each curve has a nearly straight upper part that forms a well-defined angle with the
envelope; the ratio of the slopes is never less than 1.5. The curves appear staggered
as a result of the use of ln η as ordinate.
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TURBULENCE 283

FIG. 6. The graphs of the individual power law curves for Re ≤ 106 agree well with the
experimental data.

These properties are properties of our proposed scaling law. Our claim is that
the slope in the asymptotic slope condition is the slope to which the upper parts of
the individual curves converge, while the usual slope in the von Kármán–Prandtl law
is the slope of the envelope of the family of curves (see Figure 3). The same situation
holds for the older data of Figure 2, where of course the upper parts of the profiles are
less distinct because some of the Reynolds numbers are lower and thus the data points
are closer to the envelope. Note also that some of these data are related to flows in
boundary layers; note further that as the Reynolds number increases, the slope of the
asymptotic slope condition approximates the slope of the individual curves over an
increasing part of the pipe, as is logically necessary, while the illusory logarithmic law
based on the envelope of the individual graphs approximates the real profiles over a
decreasing part of the pipe. Similar data are available also for boundary layers (see,
in particular, [28], [40]). These data are discussed in detail elsewhere [10].

These experimental graphs can be compared with the curves in Figures 6 and 7,
which are derived from our scaling law (4.7). In Figure 6 we show only the first six
profiles which agree very well with the experimental profiles. In Figure 7 we exhibit
the profiles which correspond to all the curves in Figure 5. For the higher values of
Re there is some quantitative discrepancy between the theoretical and experimental
profiles, which we have traced to roughness in the walls of the experimental set-up.
At these high Reynolds numbers the thickness of the sublayer (region (1) in Figure
1) is a fraction of a micron; the small imperfections in the wall protrude from the
sublayer and modify the flow. The importance of roughness is explained, e.g., in [39];
the blunting of the rise in u as a result of roughness is shown in [16, p. 134]. In [8],
[9] we showed how to allow for the roughness in the comparison of experimental and
theoretical data and that once this allowance is made all the experimental curves agree
with the scaling law quantitatively as well as qualitatively. In [9] it is also shown how
the replacement of the von Kármán–Prandtl law by the scaling law brings quantities
of interest to engineers (for example, the friction coefficient) into agreement with the
experimental data.
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284 G. I. BARENBLATT AND A. J. CHORIN

FIG. 7. The graphs of the individual power law curves for the same values of Re as in Figure
5. The experimental curves rise slightly more slowly than the theoretical curves because of roughness
in the pipe’s walls.

These figures make an additional important point: the dependence of the pro-
files on lnRe means that one needs a very high Reynolds number to see clearly the
vanishing-viscosity limit of a turbulent flow. In general, it is dangerous to assume
that available experimental data, and a fortiori numerical data, have reached the
asymptotic regime in any manifestation of turbulence.

6. Local structure in turbulence. The analogy between the inertial range in
the local structure of developed turbulence and the intermediate range in turbulent
shear flow near a wall has been noted long ago (see, e.g., [17], [50]), and we appeal to
it to motivate the extension of the scaling analysis above to the case of local structure,
where the experimental data are much poorer. In the problem of local structure the
quantities of interest are the higher moments of the relative velocity field, in particular,
the second-order tensor

Dij = 〈(∆r)i(∆r)j〉,(6.1)

where ∆r = u(x + r) − u(x) is a velocity difference between x and x + r. In in-
compressible flow all the components of this tensor are determined if one knows
DLL = 〈[uL(x + r) − uL(x)]2〉, where uL is the velocity component along the vec-
tor r.

To derive an expression for the function DLL we assume, following the ideas of
Kolmogorov, that for r = |r| small, it depends on the following quantities: 〈ε〉, the
mean rate of energy dissipation per unit volume, r, the distance between the points at
which the velocity is measured, a length scale Λ, which can be picked for convenience
as the Taylor scale ΛT deduced from the correlation function of the overall flow, and
the kinematic viscosity ν; thus,

DLL(r) = f(〈ε〉, r,ΛT , ν),(6.2)
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TURBULENCE 285

where the unknown function f is identical for all developed turbulent flows. If r is
large, other variables may appear as a consequence of external forces or boundary
conditions. The most interesting, and also the most important, argument in this list
is the rate of energy dissipation ε.

We now introduce the Kolmogorov scale ΛK , which marks the lower bound of the
“inertial” range of scales in which the energy dissipation is negligible:

ΛK =
ν3/4

〈ε〉1/4 .(6.3)

Clearly, the velocity scale appropriate to the inertial range is

u = (〈ε〉ΛT )1/3,(6.4)

and this yields a Reynolds number

Re =
(〈ε〉ΛT )1/3ΛT

ν
=
〈ε〉1/3Λ4/3

T

ν
=
(

ΛT
ΛK

)4/3

.(6.5)

We now consider the inertial range of scales, intermediate between the scales on
which the fluid is stirred and the scales where viscosity dissipates its energy; it is the
analog of the intermediate region we considered in wall-bounded flow. In that range
the general scaling law that corresponds to (1.11) is

DLL = (〈ε〉r) 2
3 Φ
(

r

ΛK
, Re

)
,(6.6)

where as before, the function Φ is a dimensionless function of its two dimensionless
arguments, which have been chosen so that under the circumstances of interest here
they are both large.

If one now subjects the expression (6.5) to an assumption of complete similarity
in both its arguments one obtains the classical Kolmogorov 2/3 law [34]

DLL = A0(〈ε〉r) 2
3 ,(6.7)

from which the well-known Kolmogorov–Obukhov “5/3” spectrum [42] can be ob-
tained via a Fourier transform. If, on the other hand, one makes an assumption of
incomplete similarity in r/ΛK , one obtains a law of the form

DLL = A0(〈ε〉) 2
3 r(2/3)+αΛ−αK ,(6.8)

where α is an unknown correction to the exponent; the assumption that α is a universal
constant corresponds to the “corrected” Kolmogorov–Obukhov theory (see [26], [35],
[38], [39], [43]). Note, however, that ΛK tends to zero as the viscosity tends to zero,
and if DLL has a finite limit when the viscosity tends to zero, as one may conclude
from the statistical theory, the assumption that α is independent of Re becomes
untenable.

The most interesting assumption, as in the case of wall-bounded flow, is the
assumption of incomplete similarity in r/ΛK and no similarity in Re. (In a subsequent
paper [7], we shall show that this assumption is generically applicable in turbulence.)
The result is

DLL(r)
(〈ε〉r)2/3 = C(Re)

(
r

ΛK

)α(Re)

,(6.9)
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where C,α are functions of Re only. As before, we expand C and α in powers of 1
lnRe

and keep the two leading terms; this yields

DLL = (〈ε〉r)2/3
(
C0 +

C1

lnRe

)(
r

ΛK

)α1/ lnRe

.(6.10)

(α0 has been set equal to zero as the result of the requirement that DLL have a finite
limit as ν → 0.) In the present problem, the molecular viscosity ν appears only in
the variable Re, so that the limit of vanishing viscosity and the limit of infinite Re
coincide.

In real measurements for finite but accessibly large Re, α1/ lnRe is small in com-
parison with 2/3, and the deviation in the power of r in (6.9) could be unnoticeable.
On the other hand, the variations in the “Kolmogorov constant” have been repeatedly
noticed (see [45], [47]). Complete similarity is possible only if A0 6= 0. If A0 6= 0 one
has a well-defined turbulent state with a 2/3 law in the limit of vanishing viscosity,
and finite Re effects can presumably be obtained by expansion about that limiting
state. In the limit of vanishing viscosity, there are no corrections to the “K-41” scaling
if equation (6.10) holds; this conclusion was reached in [18] by the statistical mechan-
ics argument summarized in section 2 above. We shall have more to say about the
relation between the “K-41” scaling and the limit of infinite Reynolds number in the
next section.

Kolmogorov [34] proposed similarity relations also for the higher order structure
functions:

DLL...L(r) = 〈[uL(x + r)− uL(x)]p〉,

where LL . . . L denotes L repeated p times; the scaling gives DLL...L = Cp(〈ε〉r)p/3.
Experiments, mainly by Benzi et al. (see [13]), show some self-similarity in these
higher-order functions, obviously incomplete, so that DLL...L is proportional to rζp ,
with exponents ζp always smaller then p/3 for p ≥ 3, so that ζ4 = 1.28 instead of
1.33, ζ5 = 1.53 instead of 1.67, ζ6 = 1.77 instead of 2.00, ζ7 = 2.01 instead of 2.33,
and ζ8 = 2.23 instead of 2.67. It is tempting to try for an explanation of the same
kind as for p = 2:

DLL...L =

(
C0
p +

C1
p

lnRe

)
(〈εr〉p/3(r/ΛK)αp/lnRe).(6.11)

In other words, it is assumed that at Re = ∞ the classic “K-41” theory would be
valid, but the experiments were performed at Reynolds numbers too small to reveal
the approach to complete similarity. If this explanation were correct, the coefficients
αp would be negative starting with p = 4, where there would be a reversal in the effect
of the Kolmogorov scale (or whatever scale was used to scale the first argument in Φ).

As is well known, for p = 3 the Kolmogorov scaling is valid with no corrections.
For p > 3, however, one must proceed with caution. We would like, however, to
present a simple argument that casts doubt on the good behavior of the structure
functions for integers p > 3 in the vanishing-viscosity limit. Indeed, as Re→∞, the
“active” regions of the flow shrink while energy is conserved. If V0 is the fraction of the
volume that corresponds to a unit mass of fluid where the kinetic energy ≈ u2 is large,
then u ≈ 1√

V0
; one can easily see that fourth moments such as 〈u4〉 diverge as V0 → 0.

This makes it likely that fourth-order structure functions also blow up (no conclusion
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can be drawn for p = 3 because for odd powers p cancellations can occur and the
integrals can remain finite). Note that p = 3 is the power where the sign of the power
of r

ΛK
in an expansion in powers of 1

lnRe would change. The experimental results of
Benzi et al. can be understood when one notices how slowly the vanishing-viscosity
limit is approached.

A further comment relates what we have just discussed to the statistical theory of
section 2: it may well be that the higher moments of u require a longer time to relax
to their equilibrium values than is available in a turbulent system; in this case the
near-equilibrium theory does not apply to them and one cannot expect a valid small-
viscosity limit. Indeed, according to Benzi’s data [8], the time scale characteristic of
moments of order p increases with p for p > 3.

Finally, the discussion in the present section allows us to explain why, in the
statistical analysis of section 2, one can assume that the small scales of turbulence
have enough time to settle to an equilibrium, at least as far as an analysis of the lower
order structure functions is concerned. At large Re, one can conclude from equation
(6.10) that the characteristic velocity of an “eddy” of size r is proportional to r1/3;
the characteristic time (length/velocity) is thus proportional to r2/3 and tends to zero
for small enough scales.

7. Intermittency. We have shown that when the viscosity is small the von
Kármán–Prandtl universal logarithmic law for the intermediate region of wall-bounded
shear flow must be replaced by a power law, of which we have offered a specific form
that agrees with the data. It is interesting to consider what physical mechanisms pro-
duce this power law. We shall argue that the scaling law (4.6), (4.7) arises because
the vorticity in the pipe is intermittent; i.e., most of the vorticity is concentrated on
a small set. This intermittency, associated with the vorticity bursting process, is well
documented in the experimental and numerical literature [14], [29], [33], [48], [49].
For historical reasons, intermittency is usually defined by the statement that most
of the dissipation takes places in a small fraction of the available volume, and it is
not obvious that the two definitions are equivalent. Ours is more convenient here.
Intermittency can be viewed as a measure of the degree of turbulence in the flow—
the more concentrated the vorticity is, the larger are the fluctuations whose presence
defines fully developed turbulence.

A natural measure of the length scale of the cross-section of the transverse vortical
structures near the wall, responsible for the vertical variation in the velocity u, is
` = (∂yu/u∗)−1. The scaling law (4.8) gives

` =
2√

3 + 5α
y1−α(ν/u∗)α, α =

3
2 lnRe

.(7.1)

Note that ` is proportional to y1−α rather than to y, showing that the transverse
vortical structures are not space filling if (4.7) holds. One can define an essential
support of the vorticity (see [19]) as the region where the absolute value of the vorticity
exceeds some predetermined threshold; according to (7.1), the intersection of that
essential support with a vertical line has fractal dimension 1−α. If the essential
support is statistically invariant under translations parallel to the wall, the essential
support itself has dimension 3−α. This conclusion agrees well with the data reported
in [14], where the more powerful streamwise vortices are indeed not space filling.
One could even hypothesize that, as the streamwise vortices meander, the transverse
vortices that produce u can be identified at least in part with transverse components
of vortices that are mostly streamwise.
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An interpretation of these observations is suggested by the discussion in [49]. The
process that occurs in a wall layer is a transfer of momentum (or impulse) from the
outer regions to the wall, or, equivalently, a transfer of impulse of opposite polarity
from the wall to the interior. This transfer is intermittent, concentrated in localized
bursts of vorticity which create a vorticity scale different from y, consistent with the
power law (4.7).

As the viscosity tends to zero, several things happen simultaneously: the slope
of the scaling law approaches the asymptotic slope, the scale of the transverse vor-
tices become proportional to y, the turbulence becomes highly intermittent, and one
expects the vorticity to be concentrated on a small fraction of the available volume.
One obtains a constant slope and a zero exponent α when the viscosity tends to zero
and the turbulence is extremely intermittent, in the sense that most of the vortic-
ity is concentrated in a very small volume. A nonzero viscosity, or equivalently, a
finite Reynolds number, creates a correction to this ideal intermittency and produces
a viscous correction to the asymptotic slope.

The explanation of this phenomenon, which runs counter to the usual analyses
of the effect of intermittency, is straightforward: in the limit of vanishing viscosity
one obtains a tangle of fractal vortex lines to which one can associate the scale of the
volume that contains them. In the present case, this scale is y, and then the slope
of the profile becomes constant. When the viscosity is finite, it exercises an ordering
effect on the vortex lines (see [23], [24], [25]), creates a viscous scale for the organized
vortices, and alters the scale of the transverse vortices. Thus the introduction of a
small, finite viscosity into the problem creates a correction to the state of perfect
intermittency and changes the asymptotic self-similar state. A small viscosity thus
reveals the intermittency of the flow.

The asymptotic constant slope in the vanishing viscosity limit has a broader
significance. The von Kármán–Prandtl law, which also has a constant slope, was
derived on the basis of an assumption of complete similarity; i.e., it can be derived
by standard dimensional analysis. Self-similar laws derived by dimensional analysis
usually correspond to mean-field theories, i.e., statistical theories in which the effect
of fluctuations on mean quantities has been neglected. The scaling law (4.7) has been
derived on the basis of an assumption of incomplete similarity, the kind of assumption
that leads to anomalous exponents and can describe theories in which fluctuations play
a significant role. We have found that the vanishing viscosity limit of a theory with
intermittency also leads to an asymptotic constant slope, just as the von Kármán–
Prandtl law does, but it is not the slope usually identified with the von Kármán–
Prandtl law, which is in fact the slope of the envelope of the scaling law curves.
It is important to note that a specific qualitative conclusion (here, the existence of
an asymptotic slope) can be derived from an incorrect similarity assumption and
yet survive in a correct theory, albeit with a different interpretation and a different
quantitative behavior. The example at the end of section 3 provides a simple example
of this phenomenon, where the property in question is the constancy of the function
u(y, δ). A similar phenomenon appears in the case of local structure.

Indeed, with the help of the analogy between wall-bounded turbulence and local
structure, the discussion just given explains why there is no intermittency correction
to the K-41 theory as Re→∞. When the limit is approached, there is no length scale
attached to the vortices in the flow and no correction to the 2/3 exponent. A small
viscosity orders the flow and thus creates a new length scale and a correction. This
argument gathers support from the analysis in [19], where a 2/3 exponent was derived
in a statistical theory where the vorticity was highly intermittent and the viscosity
was absent.
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Further, the analysis explains why the Kolmogorov–Obukhov scaling succeeds for
the second- and third-order functions but fails for the higher order functions. The
Kolmogorov–Obukhov scaling, viewed as the limit as Re → ∞ of the expressions
one gets from an assumption of incomplete similarity, already takes into account
the intermittency of the flow. This very intermittency is what makes the structure
functions of high enough order diverge [7]. Thus, while we have recovered the form of
the Kolmogorov–Obukhov scaling of the second- and third-order structure functions
and thus of the energy spectrum, we are proposing a very different model for the
underlying flow.

8. Conclusions. The following conclusions have been reached above. (i) A
careful consideration of applicable similarity theory, in particular, the inclusion of
functional forms suggested by incomplete similarity, broadens the range of possible
scaling laws for the intermediate range of wall-bounded turbulence. A specific power
law suggested by incomplete similarity is supported by the experimental data and is
explained dynamically by the intermittency of the flow in the wall region when the
viscosity is sufficiently small. This conclusion is significant in the numerical modeling
of turbulence, where a wall law is often used as a boundary condition (see, e.g., [15]).

(ii) The analysis has been extended to the case of local structure in turbu-
lence, where it leads to the conclusion that the corrections to the “K-41” theory are
Reynolds-number-dependent and vanish in the limit Re→∞. The new interpretation
of the “K-41” theory, as a limit of the scaling law derived from an assumption of incom-
plete similarity rather than as a result of complete similarity, makes it possible to view
the resulting structure functions as corresponding to a highly intermittent flow field.
In particular, there are no intermittency corrections to the Kolmogorov–Obukhov
“5/3” spectral exponent. The new interpretation of the Kolmogorov–Obukhov scaling
is compatible with the breakdown of the scaling for high-order structure functions;
it is supported by experimental evidence and is in full agreement with conclusions
reached on the basis of the near-equilibrium statistical theory of vortex motion.

(iii) In the language of statistical physics, we have shown that exponents de-
rived from the Kolmogorov–Obukhov scaling are not mean-field exponents, as is of-
ten claimed, but are the correct critical exponents for turbulence. More generally, the
present work suggest that a workable statistical theory of turbulence is more likely to
arise out of small-viscosity asymptotics than out of renormalized expansions in powers
of a very large Reynolds number.
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