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1. Introduction.

Deciding the solvability of systems of polynomial equations is a fundamental problem in
computer algebra. Most symbolic algorithms for this problem are based on multivariate
resultants or Grobner bases, and the study of these methods is an active area of current
research. A key issue which has received comparatively little attention so far is that of
sparseness. The significance of sparseness stems from the fact that polynomial systems
arising in practise often have only few monomials appearing with non-zero coefficients.

In this article we present a new elimination theory which is custom-tailored for sparse
systems of polynomials equations. Qur approach is based on recent advances in com-
binatorics which were achieved by Gelf’and, Kapranov and Zelevinsky in the context of
generalized hypergeometric functions [10],[11]. This line of research deals with secondary
polytopes (3],[4],(13],(14], A-discriminants [12],[13] and A-resultants [15],[19]. A key ingre-
dient from algebraic geometry is the theory of toric varieties [25],[30].

The objective of this paper is threefold. First, we wish to give a self-contained intro-
duction to the above developments and illustrate their computational significance. Sec-
ondly, we derive several new results (mainly on Grobner bases of toric varieties), and we
give a new proof for the asymptotics of the A-resultant [19, Theorem 5.3]. The results
about Cayley-Koszul complexes on which the earlier proof was based are now replaced
by elementary combinatorial arguments. Thirdly, we show that the A-resultant can be
computed in single-exponential time, and we present practical algorithms for doing so.

Let C[x| := C|z,,...,Zm) denote the polynomial ring in m complex variables. Each
monomial x* in C|x] is identified with a lattice point a € Z7. In order to model sparse-
ness, we fix a finite set of lattice points A = {a;,a3,...,a,} C Z7. We assume that the
corresponding monomials are qﬁsi-homogeucou, which means there exists a linear func-

tional h : ZT — Q with h(a;) =... = h(an) = 1. Let k be the rank of the sublattice of
Z™ which is spanned by A. We consider the following system of polynomial equations:
i(xX) = cnx® +c12x*? + ... +c1ax*™ = 0
fa(Xx) = enx® 4 c22X®? + ... X" =

(1.1)
fi(x) =
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CriX® 4 caXx®? 4+ ... FcCpax* = 0
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Under which condition on the coefficient matrix (c;;) does (1.1) have a “non-trivial” zero 7
Let Zo(.A) denote the set of all matrices (c;;) in C**™ such that (1.1) has a zero
x € (C*)™ with all coordinates non-zero. The set Z¢(.A) is usually not Zariski closed, and
we need to consider its closure Z(.A) in the affine space C**",
The Newton polytope of the polynomials in (1.1) is the (k — 1)-dimensional polytope
Q = conv(A). Let Vol(-) denote the unique volume form on the affine hull of Q which

i1s normalized by requiring that the non-zero simplex volumes Vol( conv(a;,,...,a;,)), MP”—

1 <i <...< i <n, are relative prime integers. Our starting point is the following
theorem, which is essentially due to Kushnirenko [20], but was first stated in this form in
[19]. We will give a proof in Section 3.3. Note that (b) is a consequence of the classical
First Fundamental Theorem of Invariant Theory (see e.g. [31)).

Theorem 1.1.

(a) The variety Z(.A) is a hypersurface in C**™, which is defined by a unique (up to sign)
irreducible polynomial R 4(ci;j) with integer coefficients, called the A-resultant.

(b) The A-resultant R 4 can be expressed as a polynomial R 4 in the brackets

Ciésy Cliy .-+ Ci4,
[t182...%&) := det (1< <13<... <1 <n).

Ckiy, Chkiy +++ Chiy

(c) The degree of R4 as a polynomial function in the brackets equals Vol(Q).

This article is organized as follows. Section 2 deals exclusively with examples of A-
resultants. For specific choices of A we obtain the Sylvester resultant, the Bezout resultant,
the classical multivariate resultant, the Dizon resultant and the hyperdeterminant. In
studying these examples, we will encounter remarkable connections between the bracket
terms occurring in R4 and triangulations of the Newton polytope Q.

In Section 3 we explain our polyhedral discoveries in a systematic fashion, and we give
complete proofs for all results stated (including Theorem 1.1). To this end we first prove
an asymptotic formula (Corollary 3.5) for the Chow form of an arbitrary projective variety
in terms of its Grobner bases. This formula is applied to the toric variety associated with
A, whose Chow form is seen to equal the A-resultant. As an important technical tool we
introduce the concept of regular triangulations of snieger monosds.

In Section 4 we investigate the complexity of computing the A-resultant, and we
describe a practical algorithm for computing R4 in small cases. We also introduce a
perturbation technique for evaluating the multivariate resultant for given polynomials with
rational coefficients. We close in Section 5 with a few suggestions for future research.




3. Examples of A-resultants

In this section we present four classes of examples of A-resultants for specific sets A, and
we relate the extreme terms of R to the regular triangulations of Q = conv(A).

2.1) The Sylvester resultant. Qur first example is the resultant of two binary forms

3 + 132232} + ...+ 23, 2.1)
z7 + (:g;z'l‘q::g 4+ ...+ Cg..::;'"

6113?-1 + Cn:l';-
-3

fi(z1,72)

fz(-"n-‘h) = cnt';""l + cn::i'

of degree n — 1. Their monomials correspond to n equidistant points on the affine line:
A = {(n-10),(n-21),(n-32),..., o,n-1)} c 2% (2.2)

and the Newton polytope Q = conv(A) is a Line segment of length Vol(Q) = n — 1.
Here the A-resultant equals the determinant of the (2n — 2) x (2n — 2)-Sylvester matnx

iy €12 €13 ... Cin 0 0 0

C2y €22 €23 .- Cin 0 0 0
0 i1 €2 €13 ... Cinm 0 0
0 c21 €22 €23 ... Cin 0 0

RA(CIJ) — det 0 0 Ci1 €12 €13 .o Cin 0 (23)

0 0 C21 €22 €23 ... Cin 0
0 O 0 ci1 a2 <3 Cin
0 0 0 ¢ c¢22 CcC23 C2n

This determinant can be expanded as a homogeneous polynomial of degree 2-Vol(Q) =
2n — 2 in the variables c;;. For a complete combinatorial description of the monomials
occurring in this expansion we refer to [14].

A more economical expansion of this determinant 1s the Laplace expansion with re-

spect to adjacent pairs of rows. This gives a formula for R4 as a homogeneous polynomial
of degree Vol(Q) = n —1 in the brackets [s7] = det (z;' z;’ ) An explicit such
i €2

formula is the Bezout resultant; see e.g. (27, Lesson 1X.84], [17, Corollary 5.1).
For instance, for n = 5 the Bezout resultant equals

[12] [13] [14] [15]
(13] [14] + [23] [24] + [15] [25]
(14] [24] + (15] [25] + [34] (35}
5] (2] 35)  [45]

Ra([ij]) = det (2.4)

For n = 5 the complete expansion of R4 has 219 monomials of degree 8 in the c;; while

the expansion of the Bezout resultant R 4 has 36 bracket monomials of degree 4:

— (12)[14](35]* + [12][14][25](45] + [12][14](34][45] — [12][15]*[45] + 2[12][15}(25}[35]

+ [12](23](25](45] + [12](23][34][45] — [12]23](35])° — 2[12][24][15][45] + 2[12][24][25](35)}

— [12][25]® — [12][25])%[34] -- 12] [24]2[45[ + 2(13)(14](15)[45] + 2[13](14][24][45]

— 2(13)(14)(25])(35] — 2[13)[15]2[35] + 2[13)[15}(25]? — 2[13][15][24][35] + 2[13][15](25](34]

+ [13)[35]* — [13]*[25][45] — [13]*[34]45] + 2[14]*[15)[35] — 3[14](15]" 25}

— 2(14][15][24](25] — [14][15]*([34] + 2(14][15)(23](35] — [14]*[23][45] + [14]*[25)°

— [14]°[45] - [15)[23][25] — [15]*[23](34] + 2[15]°[24] + [15]*[24]" + [15)
The eight underlined terms play the following special role. We define the wesght of a bracket
monomial [J[ij] to be the integer vector } (e;+e¢;) where e; denotes the s-th unit vector
in Z%. Thus the weight of [][i;] is its column degree with respect to the 2 x 5-matrix (c;;).
For instance, we have weight([12][14][35)?) = (2,1,2,1,2), weight([12][23][34][45]) =
(1,2,2,2,1), and weight([14][15)*[25]) = (3,1,0,1,3). Let L(A) denote the convex hull
in R3 of the set of all weights occurring in the A-resultant R4. Following [13], we call
T(A) the secondary polytope. (The “primary polytope” is the Newton polytope Q). In

our example £(A) is a 3-dimensional polytope combinatorially isomorphic to a cube. The
underlined bracket monomials correspond to the vertices.

[130%257
(24042)- 20402 &
[13) (3¢][+5]
(20321)
[12)R3) s
(123221
1423 [¢s]
--------- (300%1)
[12](2s
(14003) [12) [J‘P]a'[‘l\f]
(13031)

Figure 1. The secondary polytope L(A) of five equidistant points on a line.

The vertices of the cube £(.A) in Figure 1 are labeled with the eight extreme terms in
R4 and their weights. The weights of all other 28 bracket monomials he in the convex hull
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of these eight weights. In this example we can make the following interesting geometric
observation (see Figure 2.) The triangulations of the Newton polytope Q with vertices in
A are precisely the extreme bracket monomials in R 4. Here each 1-simplex conv{a;,a;}
together with its volume Vol(ij) appears as a bracket power [i;]V°!(%),

[12])(23](34][45] @&——0—0—@—@  [13]%[34][45] o—-—-eo——o—=@ ~i: 2022

[12)[23)35)? ©——8———o (13?357 @— o — @ 0402
[12](25]® *—eo——90 [15 r—e 40004
[12][24)2[45) O—o———0—0 [14°[45] o— o o 2004
Figure 2. The triangulations of the Newton polytope Q = conv(A).
Let us now consider a system of two sparse polynomials with five monomials:
fi(z,y) = enzy® + c1azy® + crazy®® + cuzy®™ + sy (2:6)
fi(z,y) = enzy™ + cazy™ + caszy®® + cazy® + caszy®, |

where €; < e3 < e3 < ¢4 < es. While here the (quasi-)homogenization is different from
the one in (2.1), the set A still consists of five points on the affine line. If these five points
are equidistant, then their A-resultant is identical to R 4 as before in (2.4).

For a general configuration of five points we let g denote the greatest common divisor
of the differences e3 —e;,e3—e3, ¢4 —e3, e5 — ¢4, and we introduce the “normalized volumes”
dij := (ej —e;)/g9,1 <i < j<5. The A-resultant is a bracket polynomial of degree d,s,
which has the same structure of eight extreme bracket terms as before:

Ra = [12]%2[23]%2[34]%+[45]% 4 [13]%12[34]9s¢[45]% 4 [12]912[25]9> 4 [13]%12[35] s
+ [12)912[23]423[35) %28 4 [15]¢'® + [12]912[24])¢ + [14)*'¢[45]%** + many interior terms ...

In particular, the secondary polytope ¥(.A) is combinatorially isomorphic to the 3-cube.

@hc dense multivariate resultant. We next discuss the classical multivariate resultant
dense homogeneous polynomials of degree d. Here A is the set of all n := (""":"l)
lattice points (1),12,...,8m) € Z7 with &) + i3 +... + iy = d. The Newton polytope @
is a regular (m — 1)-simplex. Its normalized volume equals Vol(Q) = d™!.

As an example we consider the case m = 3,d = 2. Here the A-resultant R 4 agrees
with usual resultant of three ternary quadrics

h(z,y,2) = enz’ + Cliyz +c132” + C14ZY + C15Z2 + C18Y2,
fa(z,y,2) = ¢’.!1-‘l22 : cny’ + caz’ + C24TY + C25T2 + C26Y2, (2.7)
f3(3: v, z) - 0313-‘2 + Cawz + 63322 + C34TY + C3522 4+ Cc36Y=.

S

The exponmt' set equa'ls A = {(21 01 0)1 (0: 21 0)1 (01 or 2)1 (11 1! 0)1 (1: Or 1)! (0‘! 11 1)}1 and
Q = conv(A) is a triangle with normalized area Vol(Q) = 4. We list a complete expansion
of the A-resultant R4 as a bracket polynomial of degree 4:

[145](246][356][456] — [146][156][246][356] — [145][245)[256](356] — [145)[246][346][345]

-+ [125][126][356](456] — 2[124][156][256)[356] + [134](136][246][546] — 2[135][146][346][246]

+ [325](324)[154][654] — 2[326][354][254][154] — [126]%[156][356] — [125]%[256][356]
— [134)%[246][346] — [136]%[146][246] — [145][245](235])% — [145][345](234)
+ 2[123][124](356][456) — [123][125)[346][456] — [123][134]([256][456] + 2[123][135][246][456]
— 2(123][145)[246)(356] — 2[124)%[356)% + 2[124][125][346][356] + 2[124][134][256](356]
+ 3[124][135][236][456]) — 4[124][135][246](356] — [125])?[346)? + 2[125][135][246](346]
— [134]%[256)? + 2[134][135][246][256] — 2[135)2[246]* — [123][126][136][456)
+ 2[123][126][146][356] — 2[124][136)%[256] — 2[125][126][136][346)
— [213][215][235][465] + 2[213][215][245][365] — 2[214][235]*[165] — 2[216][215][235][345]
— [321][324][314][654] + 2[321)[324)[364]{154] — 2[326][314])?[254] — 2[325][324][314][164]
— 3[163][125][523][126] + 3[126][153][623](125] + [163][125)%[623] + [126)?[153][523]
— 3[143)[163][126][423] + 3[124][143][163](623] + [143)?[126](623] + [124][163])?[423]
+ 3[124][153](423](523] — 3(143][423](523][125] + [153][423]%[125] + [124](523]2([143]
— 3[123][124][153][623] — [123][143][523][126] — [123][153][126][423] — [123][143][623][125)
— [123][163][125][423] — [123][124][523][163] — 2[123)?[126][136] + 2[123]?[125][235]
— [136]*[126)* — [125]%[235)® — [134)*[234]* — 2[123]%[134][234] - [123]*

This expansion was computed using the algorithm to be presented in Section 4.2.

The secondary polytope T(A) is the convex hull in R® of all weights occurring in the
above expansion, e.g.,

weight([145][246)(356][456]) = (1,1,1,3,3,3), weight([123]?[134][234]) = (3, 3,4, 2,0,0).

We find that ¥(.A) is a 3-dimensional polytope with 14 vertices, which are the weights
of the underlined bracket monomials. These extreme bracket monomials are precisely the
triangulations of the triangle Q with vertices in A. In Figure 3 we depict a Schlegel diagram
of the polytope ¥X(.A). Each of the fourteen vertices is labeled with the triangulation of the

corresponding extreme bracket monomial. This polytope is isomorphic to the one depicted
in [28, Figure 4]; see also (19, Figure 1).




The coefficients (i, i,...i,) can be grouped into a (p + 1)-dimensional “hypermatrix”
of format k x (ky+1)x...x(kp+1). Here the A-resultant R 4 is a polynomial 1n ¢i;4yi;...5p
which is abbreviated Det(ci.i,i,...i,) and called the hyperdeterminant. The hyperdetermi-
nant Det = R4 is the natural generalization of the ordinary determinant (the p = 1
case). This notion was introduced already by Cayley in 1845. ' |
For a systematic development of the theory of hyperdeterminants we refer to the
current work of Gelfand, Kapranov and Zelevinsky [15]. It is known that Det has several
essentially different expansions. We are here interested in the expansion of the k x k; X
... X ky-hyperdeterminant as a polynomial R4 in brackets of rank k. Theorem 1.1 implies
that R4 is a bracket polynomial of degree (,, +~" ;) which vanishes if and only if (2.8)

has a non-trivial solution. By “non-trivial” we mean that none of the p groups of variables

specxa.hzes entirely to zero.

g § fi:Z[* 4 K 40 )
As an example we consider the hyperdeterminant of format 4 x3x2. Here Ra(cijx) =

Det(c;jx) is the irreducible polynomial which vanishes if and only if the bilinear system

cinZivi + iy + nZay + anay: + andsny +anzy = 0,
caniZiva + €a1271y2 + C2Za + 2222212 + 2y + 2Tz = 0, (2.9)
canZiyy + caztayz + canZa + c322TaY2 + C3n1Z3r + ca2Z3yz = 0,
canZiys + caz2Ziyz + a2l + %2z + CanZah a2z = 0.
Figure 3. The secondary polytope corresponding to three ternary quadrics. has a zero in the product of projective spaces P¢ x P, oS- The exponent configuration equals
A = {(1,0,0;1,0),(1,0,0;0,1), (0,1,0; 1,0), (0,1,0;0,1), (0,0,1;1,0), (0,0,1;0,1) }.
2.3. Multilinear systems and the hyperdeterminant. = Multilinear equations are a very 5
:pé' ortant class of sparse polynomials. Suppose our variables come in p groups X\ =
{I&' ),:cg'_'), o ,xi‘?}, 3 =1,2,...,p. We are interested in the multiinear system [1356][1235”2346]
[1246])[1346][1356] [2346](2356])(1235}
Z Cliiyia...ip xﬁf’xf-:’ , ..zg) = 0 T T . (2.8) - 3
1183...8)
where the sum is over all integer vectors (31,12,...,8p) With 0 <13 < kj,...,0 <1, < k).
In order to describe the set A of exponent vectors, it 1s convenient to use the notation l1345“1456“1246] 1235] [2345”2456_1
Ay for the set of unit vectors in R4t!. We view A, geometrically as the vertex set of
a regular d-simplex. Then A = A X A, X ... X A, C Z(kr+1)+..+(kp+1)  The rank
of the lattice spanned by A equals k := k; + k3 + ...+ kp + 1, and this 18 the correct A
number of equations to get a solvability condition of codimension 1. The Newton polytope A lf' [2456]{1245]{1345]

Q = conv(A) is a product of simplices. Its normalized volume equals the multinomial
coefficient (, £~! ) = (k—1)Y(kxlkz! - kp!).

I .lll.*’

e ———————— ——

Figure 4. The triangular prism Q3 x 4, and its secondary polytope (A2 x A1)
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The Newton polytope Q = conv(A) is the triangular prism A, x A,;, that is, the
direct product of a triangle A; with a line segment A;. The normalized volume of Q
equals 3; hence the 4 x 3 x 2-hyperdeterminant Det(c;,x) is a polynomial of degree 12.

The 4 x 3 x 2-hypermatrix (c;;:) is flattened in (2.9) to an ordinary matrix of size
4 x 6. The brackets are the maximal minors of the 4 x 6-coefficient matrix in (2.9). The
bracket expansion of Det = R4 equals

Ra

— [1246](1346](1356] + [1356](1236][2346] — [2346][2356][1235]

+ [1235][2345][2456] — [2456)[1245][1345) + [1345)[1456][1246)

+ [1234](1256][3456] + [1234)[1356)[2456] + [1235][1246][3456]
— [1235)[1346][2456] + [1245)[1346](2356]

(2.10)

The secondary polytope £(A2xA,) is the convex hull in R® of the seven occurring weights
3,1,2,2,1,3), (2,2,3,1,1,3), (1,3,3,1,2,2),(1,3,2,2,3,1),(2,2,1,3, 3, 1):(3,1,1,3,2,2),
and (2,2,2,2,2,2). We can see that L(Az x 4,) is a hexagon, whose vertices are the

first six weights. The corresponding underlined bracket monomials are precisely the six
triangulations of the triangular prism A; x A, ; see Figure 4.

{/ 2.4. The Dixon resultant. Consider the bithomogeneous system

W
Cn-‘l’}!ﬂ + 127232291 + cu-'c%m + Cu-ﬁm + c15T172y2 + Cu-"—'gyz = 0,
Cz:-‘l—"i'ln + c222122 + czstgm + cwtfyz + Cc257172y2 + Cu-'rgyz = 0, (2.11)
c31Ziy1 + CaaT1zay + ca3Tiyn + CaaTlys + CasTazayy + caezlyz = 0.

~ The exponent vectors are A = {(2,0,1,0),(1,1,1,0),(0,2,1,0),(2,0,0,1),(1,1,0,1),
| (0,2,0,1)}, and so the Newton polytope Q = conv(A) is a lattice rectangle of shape
2 x 1 and normalized volume Vol(Q) = 4: 1 3

8
! re

J
There is a classical elimination theory due to Dixon [8] for bihomogeneous polynomials.

In our example the Dixon resultant can be derived as follows. Let d1, 92,93 denote the
three polynomials in (2.11) and consider the linear map

¢ : (C[zl,z:;vhy‘zla,o)a - C[In-‘tz:vnv:]!:.l

(2.12)
(fhfm fs) — fig1 + fa92 + f3gs.

Here Clz},z2;y1,y2]s,1 is the 12-dimensional vector space of polynomials h(z;,z2;y1,y2)
which are homogeneous of degree 5 in (z,,z,) and homogeneous of degree 1 in (y;,y2).
Similarly, C[z},z3; y1,y2)3,0 is the C-linear span of 21,2522, 2,23, 23.

|

Let Z(A) denote the set of all coefficient matrices (ci;) € C**? such that the system
(2.11) has a solution (z;,z2;y;1,y2) in the product of projective lines PS x P&. Tt can
be shown that a coefficient matrix (c;;) lies in Z(.A) if and only if the linear map ¢ is

singular. Choosing monomial bases for both 12-dimensional vector spaces in (2.12), we
can represent ¢ by the following 12 x 12-matrix.

i 0 0 0 C21 0 0 0 C31 0 0 0
Ciq 0 0 0 C24 0 0 0 Ci4 0 0 0
¢iz €11 0 0 c22 ¢33 0 0 32 ¢33 0O O
cis ¢4 0 0 co5 c2¢ 0 O c35 c3¢ 0O O
¢13 €12 11 0 ¢33 €22 c21 0 ec33 c32 ¢33 O
Cie €15 Ciq¢ 0 c26 c2s c2¢ 0 c36 c35 c3¢ O

(2.13)

0 cje cCs 0 0 c3e c3s
0 0 Ci1a 0 0 C23 0 0 C33
0 ) Cie 0 0 C2¢ 0 0 Css

The determinant R 4(c;;) of this matrix is called the Dizon resultant. It vanishes if and
only if (c;;) € Z(A). By complete expansion of the determinant in (2.13) we find that
Ra(cij) is a degree 12 polynomial with 20,791 monomials.

A more economical representation of the Dixon resultant is its expansion R 4 in terms
of brackets. Here [i j k] denotes the 3 x 3-minor with column indices i, j, k of the 6 x 3-
coefficient matrix (c;;). The following expression equals R 4:

- [124][235)[245](356] A - [12s][45][236]256)  JINY
N

+ [124)[236][245)[256) + [125)[145][235][356]

+ [124])[234])(345][356] % + [126][145][156](236] @

— [136)%[145][156] — [134)%[345][356]
— [124](234)[346)? % — [126][146)[236] %
— [124][236][246)? — [135)%[145)(356] m
+ [134)%[346)? EZIIAI + [136)%[146)?
+ 2[123][145][345](356] + [134][135][245](356]
+ 2(124](126](236](456] — [125][126][246](346] + [125][136][246][246)
— 2(134](136][146][346)
+ 2[123](145](156][356] — [134][135][156][256] + [135][135)[146][256]
+ 2[124](234](236][456] + [124][235][246][346]

10
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_ 3(123]{123)(456](456] + 8[123][124](356] (456] — 2(123)[125] (346)[456]

_ 2(123)[134)(256](456] + 3(123](135](246](456] - (123)(145][246)(356]

_ 2{124][124)(356)(356] + 2(124][125](346](356] + 2(124][134] (256][356)

_ [124)[135)(236][456] — 2[124][135][246](356] + (125)[125)(346)[346]

— [125)[135](246](346] + [134][134][256](256] — [134](135][246](256]
+ (123][134](346](456] — 2[123)(145][346](346] — 2(134]{134]236](456] - (134][135)(246](346]
+ (123)[146](246][346] — 2(124][126][346](346] + 2[124)[136](246](346] + (134)[136)(246][246]
_ 2{134](134](156](356] + [134](135)[136(456] + 2(134][135][146](356] + (135)[135][146][346]
+ (123][136](146](456] — 2[123)(146](146](356] — 2[124)[136][136](456] - (135)[136)(146][246]

The first fourteen bracket monomials in this expansion are the triangulations of A. The
remaining ten weight components are presented as linear combinations of standard bracket
monomials (cf. Section 4.2). Their weights are the interior lattice points of the secondary
polytope L(A). It can be seen that £(A) is a 3-dimensional polytope with 14 vertices
which is combinatorially isomorphic to the secondary polytope in Figure 3.

3. A-resultants, Chow forms, and Grobner bases of toric varieties

This section provides a self-contained treatment of the theory of A-resultants. In the first
subsection we recall the definitions of regular triangulations and secondary polytopes, and
we state the main result (Theorem 3.1) about the asymptotics of the A-resultant. The
second subsection deals with Chow forms and Grobner bases of general projective varieties.
In the third subsection we focus our attention on the toric variety X4, and we characterize
:ta Grobner bases. We complete the proofs for Theorems 1.1 and 3.1 by constructing the
A-resultant R4 as the Chow form of X4.

3.1. Regular triangulations and the secondary polytope. In the following we assume famil-
jarity with some basic notions in the theory of convex polytopes (cf. [16],(21]). A polyhedral
complez is a finite collection of polytopes in R™ having the property that the intersection
of any two is a face of each and is itself in the collection. Let A = {a1,a2,...,8a} C 23
and Q = conv(A) as in the introduction. A subdivision of A1s a collection A of subsets

of A, called cells, whose convex hulls form a polyhedra.l complex whose union equals Q. If

-~ .. each cell in A is linearly independent in R™ then Ais a triangulation of A.

Every vector w = (w1,...,wn) € R" induces a subdivision A, of A as follows. For
any point ¢ € Q we choose a vector A = (A1,...,An) € R} satisfying Yoo, Aia; =¢q and
such that the inner product ;. Aiwi 18 minimal with this property. These requirements
determine the support Au(g) := {ai € A : A # 0} uniquely as a function of ¢ and w.
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We define A, := {A(Q)CA:¢€Q}.

The collection A, is a subdivision of A, and, if the weight vector w is chosen generic,
then A, is a triangulation of A. A triangulation of A is said to be regular if it equals
A, for some w € R™. For any regular triangulation A of A, the set C(A) = {w €
R" | A, = A} is an open convex polyhedral cone in R® (cf. [3],[13, Section 3A)).

Let us now assume the validity of Theorem 1.1. We define the weight of any mono-
mial m = ]'[c:;’ in the A-resultant R4(cij) to be its column degree weight(m) :=
(ELI Vily--- 12:.-_-1 vin) € Z%. The weight of a bracket monomial [],[o] is the weight
of any of the monomials occurring in its expansion into c;;’s, namely, weight( [1,[e)) =
Y (€0, +€o;, + ... T ¢C0, ). We define the secondary polytope ¥(A) C R"® to be the convex
hull of all the weights occurring in Ra.

For any v € Z(A) N Z3, let Rav denote the sum of all terms of weight v in R4.
The following result due to Kapranov, Sturmfels and Zelevinsky [19] gives a complete

description for all extreme terms of the A-resultant.

Theorem 3.1. [19] Let v be any vertex of the secondary polytope L(A). Then its
inner normal cone equals C(A) for some regular triangulation A of A. The corresponding
extreme term of the A-resultant equals the bracket monomial Ray = & I, calo ]V,

Here the product is over all maximal cells ¢ in 4, and Vol(o) is the normalized
volume defined in the introduction. The inner normal cone of £(A) at v is defined as

Lo
WA

7\

(WeR" : w-v>w-V forall v eZ(A)\{v}}. U (3.1)
It is clear from our construction that the closed polyhedral cones C(A) cover R", as A runs
over all triangulations of A, and that the intersection of the C(A) is a linear subspace of
dimension k in R”. These geometric considerations and Theorem 3.1 imply the following.

Corollary 3.2. The secondary polytope ¥(A) has dimension n — k, and 1ts vertices are
in one-to-one correspondence with the regular triangulations of A.

We briefly illustrate Theorem 3.1 and the subtle geometric concept of regular trian-
gulations for the classical resultant of three ternary quartics:

4 3 3 2.2 2
Ci1ZT TCi2T Y +Ci3T 21T CiaT Y + Ci 5T Yz + c;'gzzzz + c.*,-;:l:ya + ci,azyaz

+ ca.o-’cy22 + Ci,w-’rza + Ci,uy' + ci,12y3z + ci,13y222 + c.-_uyz’ + c.—_;sz‘. {5 = 1,2,3)

Here A= {(i,5,k) €Z3 : i+j+k=4},n=15, and the Newton polytope Q = conv(.A)
is a triangle with Vol(Q) = 16. Consider the following three triangulations of A:
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Figure 5. Three triangulations of the set of monomials in a ternary quartic
Each of these triangulations is encoded by a bracket monomial of degree 16:

A = [123][235][245][356][458][478][569][589][6910)-
.[7812][71112](8913][81213)[91014][91314][101415] -~ ¢« °.

A? = [158][1515]*[1811])*[589][5915][8911][91115]*

A® = [158][159][1811)*[589][1915])*[8911][91115)*

By Theorem 1.1, the resultant R 4(c;;) has degree 316 = 48. The triangulation A, is
regular; for instance, AY) = A, for w = (9,4,4,1,0,1,4,0,0,4,9,4,1,4,9). Theorem 3.1
implies that v = weight(A())) € Z® is a vertex of the 13-dimensional polytope I(A),
and we have R4, = +AW,

The triangulation A(?) is not regular (cf. [3, Fig. 1]) and hence does not occur as an
extreme term in the resultant R 4. On the other hand, the triangulation A(®) is regular.

- 3.2. The Chow variety and the Hilbert scheme.

The Chow form is a classical tool for

encoding an irreducible projective variety X «+ P"-! of dimension k — 1 by a single

polynomial [5),[9],(26, Sect. 1.6]). Consider k generic linear forms in Cly] = Cly1,...,yn):

li(Y) = CiuY1 +Caya + ... + CinVYn

defining an (n — k — 1)-flat £ in P*~). Let Z(X) denote the set of matrices (c;;) € C**"
with £ N X # 0. Using a dimension count and classical elimination theory, we see that
Z(X) is a hypersurface which is defined by a homogeneous polynomial Rx (cij) with
coefficients in the field of definition of X. We call Rx the Chow form of X.

Note that the Chow form depends only on the (n — k — 1)-flat £ and not on the
specific matrix (c;;). Hence Rx(c;j) can be expressed as a homogeneous polynomial R x
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in the brackets [i;1;...1x) := det(c,i, )1<u,v<k. These are the Pliicker coordinates of the
(n — k — 1)-flat £, and we may also write Rx(¢) for the bracket expansion of the Chow
form. The degree d of the bracket polynomial R x(¢) equals the degree of the variety X.
The latter is usually defined as the cardinality of X N n for any generic (n — k)-flat n,

but, as we can choose n D §, it follows that #(X N n) = d.

It is instructive to see how the variety X is recovered from its Chow form R x (see [9]
for details). A point y =(y1 :...:yn) € P*! lies in X if and only if span(¥,y) meets X
for all (n — k — 2)-flats ¥. If ¥ is chosen to be generic in P*~! and £ := span(¥,y), then
Rx(€) can be expanded as a polynomial in the Pliicker coordinates of ¥ with coefficients
,Un]. The variety defined by the set of coefficient polynomials is precisely X.
This construction also shows that R x 18 irreducible whenever X 1s irreducible.

Let V denote the vector space S¢ A*¥ C™ of all degree d bracket monomials modulo
the ideal of Grassmann-Plicker relations in degree d, and let P(V') denote the projectiviza-

n C[‘y],...

tion of V. A basis for the vector space V is given, for instance, by the standard Young

2775 tableaux of rectangular shape d x k (see e.g. [31]). Let C" ‘(P"") denote the set of all

Sl e = e e ey - S o g ———

irreducible subvarieties.of dimension k — 1 and degree d in P™-1, By the above argument,

B i L et i T — - =
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the map X +— Rx defines an embeddmg of this set into the projective space P(V). The
closure Ck4(P"-1) of CH4(P™-1) in P(V) is called the Chow variety. Its elements are
algebrasc cycles of degree d and dimension k — 1. Each cycle is coded by a product of
Chow forms [[RY., where the X; are irreducible (k — 1)-dimensional varieties in P"~!
with ) e;deg(X;) = d.

A meta-theorem of symbolic computation states that geometric computations with
projective varieties can be done in single-exponential time whjl;“:lz;e_brmc problems may
have doubl&exponentm.l complemty in the worst case (see e.g. [7]). This discrepancy is ex-
plained by the appearance of embedded and lower-dimensional components in subschemes

of P*~!. From this perspective algebraic cycles and the Chow variety are appealing since

o TR T, T ST

they ignore such “nasty” components. 'We refer to the recent work of Caniglia [5] on “how
to compute the Chow form of an unmixed polynomial ideal in subexponential time”.

Let us take a

We assume that the reader is familiar with the connection between Grébner bases and
Hilbert schemes described in [1]. We say that two homogeneous ideal I = ®%2,/, and
J = &2 ,Jr in C|y| are equivalent if I, = J, for all but finitely many degrees r € Z,.
By a subscheme of P"~! we mean an equivalence class of homogeneous ideals.

For each numerical polynomial h € Q[r], le¢ HILBA(P™~!) denote the set of sub-
schemes of P"~! having Hilbert polynomial h. This set i8 ca.lled the Hzlbcrt schcmc

— - AT AT ST IR B
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T ey —— e e e

e e ——

It is naturally eqmpped with the structure of a pro,]ectwe variety as “follows. We fix a
sufficiently large integer r » 0 which depends only on hA. Consider the vector space
W := AMTSTC", and let P(W) denote its projectivization. To each subscheme I we

. s
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closer look at the relation between Grobner bases and Chow forms. LH )




associate its r-th Hilbert point AMD I, € P(W), which is the Pliicker coordinate vector of
the h(r)-dimensional linear subspace I, of STC®. Then the map I — AMT I is a closed
embedding of HILBA(P"~?) into P(W).

Recall that the degree d and the dimension k — 1 of a subscheme I can be read off
from the Hilbert polynomial via h(r) = n%mr"" + O(r*—?). The general linear group
GL.(C) acts naturally (“by linear change of coordinates”) on the vector spaces V and W
and their projectivization. The following result 1s well known (see e.g. [24, Section 5.4]).

Theorem 3.3. The exists a unique GLn(C)-equivariant morphism of algebraic varieties

¢ : HILBA(P*') — c4(p*1t)
I - HR?“‘(K,I)

from the Hilbert scheme to the Chow variety. Here the product is over all irreducible
subvarieties X in P*~' and mult(X,I) denotes the geometric multiplicity of X in I.

The main theme of Grobner basis theory is the reduction of problems about ideals to
the case of monomial ideals. It is thus useful to have an explicit description of the map ¢
for monomial schemes, i.e., equivalence classes of ideals which are generated by monomials.

With each k-set 0 = {01 <... <01} € (I*)) we associate the coordinate (k—1)-flat
E, = span(eg,,---1,¢0,)- The Chow form Rg, of this linear variety equals the single
bracket (o] := [01032...04).

Let M be any monomial ideal with Hilbert polynomial h(r) = ﬁ-fﬂ-,r"*“ + O(r*-2).
Each (k — 1)-dimensional irreducible component of M is a coordinate flat E,. The support
of a monomial m in Cly] is the set supp(m) := {i € [n] : i divides m }. A monomial
m is called standard if m ¢ M. We define a standard pair to be a pair (m,0) consisting
of a monomial m and an index set 0 € ([:]) such that supp(m) N ¢ = @ and such that
m-m' is standard for all monomials m' with supp(m’) C 0.

Proposition 3.4. The Chow form of a (k — 1)-dimensional monomial ideal M equals

d(M) = H [0]C>™ , where Cg M counts the number of standard pairs (-,0).
o€('7)

Proof: We need to show that C, m equals the geometric multiplicity of E, 1n M. This
number is the C-dimension of the algebra Cly]lp/Mp where P = <y : t € o > 1s the
prime ideal of E,. We compute this algebra as the quotient of C[y; : # € o] modulo the
monomial ideal M' which is the image of M under the specialization yo, — 1,...,¥o, 1.
It can be seen that a monomial m € Cly; : i € o] is standard modulo M ' if and only if
(m,o) is a standard pair modulo M. This proves Proposition 3.4. 4
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We next consider Grobner bases for an arbitrary subscheme I of dimension k —
1 in P*-). Each term order on Cly] can be represented by a weight vector w =

— =
R R - LR,

(w1,w3,...,wn) € Z", or, equivalently, with a diagonal onc-parcmdcr subgroup

w : C* — GL(C™), t ~ diag(t**,t2,...,t“*). (3.2)
Let G be a Grobner basis for I with respect to w and init,(I) := <inity(9) : g € g >
the initial ideal of I. A monomial m is called standard if m ¢ init,(I). Recall that the set
of standard monomials forms a C-basis for the residue ring Cly]/I. By a standard pair
for I with respect to w we mean a standard pair (m, o) for the initial ideal init (). Let
Co.(I) denote the number of standard pairs of the form (-,0).

By Theorem 3.3, the morphism ¢ 18 equivariant with respect to the action of one-
parameter subgroup w on the Hilbert scheme and the Chow variety. Using Proposition
3.4, we can now read off the asymptotics of the Chow form of I from the Grobner basis §:

Corollary 3.5. The Chow form of a homogeneous ideal I satisfies the asymptotic formula:

b(w(t)-1) = ( I | a]C....(I))_tE_C-..-U)(n+-u+n) + highertoemn in &
o€(?))

3.3. Grobner bases for toric varieties. Let A = {ay,... ,Gn)} C Z7 and h: 27 — Q
as before. The set A spans a rank k monoid M(A) := {2 Aiai : Ai € Z,}in 27, and
we write C[A] := C[x*!,...,x**] < C|[x] for the monoid algebra of M(4). Both M(A)
and C[A] are graded by the linear functional h.

We define the toric variety X4 to be the projective spectrum of the graded algebra
C[A]. Equivalently, X 4 is the closure of the set {(x*:...:x%) : x€(C*)™ }in
Thus X4 is a (k — 1)-dimensional irreducible subvariety in P*~1. It is our goal to study
the Grobner bases of its prime ideal T4 := kernel (Cly] — Cix], yi — x*).

Our main new result (Theorem 3.7) is a natural bijection between the distinct initial
ideals of 74 and the regular triangulations of the monoid M(A). In Proposition 3.11 we
give an explicit formula for the multiplicity Co.u(Ta) of any coordinate flat E, in any
initial scheme init,(Z4). This sharpens [30, Theorem 3.1] where Cs.(Ta) was shown to
be non-zero if and only if o is a maximal simplex in the regular triangulation A,.

We say that a weight vector w € Z" 18 admissible if init,(T4) is monomial ideal,
i.e., if no ties occur during a Grobner basis computation for T4 with respect to w. Two
admissible vectors w,w' are equivalentif they give rise to the same initial ideal it (Za) =
init.(Z4). Recall from [1],[22],[30] that the equivalence classes are the lattice points 1n
the open cells of the Grobner fan, which is the normal fan of the state polytope of I4.
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Given w € Z™ admissible, we define & € Z™*" to be an elimination order on C|x, y]
which extends w. This means that x°y? >, y?" if a#0,orif a=0and w-8 > w-.1.
In order to compute the reduced Grobner basis § for T4 with respect to w, we introduce
the ideal J4 generated by x*! —y,,...,x** —y, in C|x,y], and we compute the reduced
Grobner basis § for J4 with respect to @. Note that a monomial y? is standard with
respect to § (i.e., y* € Cly] \ init.(Z4)) if and only if y* is standard with respect to G.

The ring map Cly] = C[x], y; — x* corresponds to an epimorphism of monoids

x 2 23 = M(A), A= (M,...,0) = ) Aa.

=1

(3.3)

If a € M(A) and A € x~!(a), then we say that A is a representation of a.

Lemma 3.6. A weight vector w € Z™ is admissible if and only each a € M(A) has a
unique representation A of minimum weight, i.e., w-A < w-p, forall p € 7= (a)\ {A}.

Proof: Suppose w is admissible, and let G and G be as above. Each element of Gisa
difference of monomials, since this property of the input set {x* —y;} is preserved by the
Buchberger algorithm. In particular, each element of G has the form y? —y?”. This implies
that the unique normal form of any monomial y* must be some standard monomial y*
with #(1) = n(u) and w:- A < w-p. For, let X' be any other representation of n()).
Then y* — y? lies in T4, and therefore y* must be the uniqile normal form of y*'. This
implies w- A < w- X.

Suppose w is not admissible. During the execution of the Buchberger algorithm we
run into a polynomial y* — y* € T4 with w-A = w- ) such that neither y* nor
y»" is a multiple of an w-initial term of some other element of Z4. This means that
a = n(A) = #()') has no representation of weight less that w-A = w-A'. 4

We define a section to be a map S : M(A) — Z% such that x 0 S is the identity on
M(A). By Lemma 3.6, each admissible w € Z™ defines a section S, which maps each
a € M(A) to its representation A of minimum weight. A section.S is said to be a regular
triangulation of the monoid M(A) provided S = S, for some admissible w € Z". The
next statement is a direct consequence of the proof of Lemma 3.6.

Theorem 3.7. The regular triangulations S, of the monoid M(.A) are in one-to-one

correspondence with the initial ideals init, (Z4). For any admissible w € Z™, the set of

standard monomials in Cly] modulo T4 equals S,(M(A)) := {y>(® : a € M(A)}.

Let us justify the geometric term “triangulation” by showing that the regular tnan-
gulation A, of the polytope Q = conv(A) can be recovered uniquely from the regular
trimgulu.ti_&h"i; of the monoid M(A) Here we will apply some known facts from Stan-
ley’s decomposition theory for integer monoids [29, Section 4.6).
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Let 0 = {01,...,04} C [n] such that A, = {a,,,...,as,} is linearly independent in
R™. Its convex hull Q, := conv(A,) is a (t—1)-simplex, its positive hull Q, := pos(A,)
is a t-dimensional simplicial cone, and its monoid M(A,) is a ssmplicial monosd of rank t.
In the case of maximal dimension t = k we write ¢, for the index of the (lattice generated

by) M(A,) in the (lattice generated by) the ambient monoid M(A).

Lemma 3.8. The index ¢, of a simplicial submonoid M(A,) in M(.A) equals the nor-
malized volume Vol( Q, ) of the corresponding (k — 1)-simplex Q,.

Proof: See [29, pages 227 and 239]. 4
For each independent set o we abbreviate M(A), := relint(Q,) N M(A), and we define

D, := {1€M(A) : 7 = A\MGg, +... + Aia,, where 0<A1,...,A¢51}. (3.4)

Here “relint” stands for the relative interior of a polyhedron in its affine span. The next
lemma states that D, is a system of representatives for the residue classes of M(A),
modulo its simplicial submonoid M(A,). In particular, if ¢ = k, then Lemma 3.9 implies
that |D,| = ¢co = Vol(Q, ); see also [29, page 227].

Lemma 3.9. We have the direct sum decomposition M(A), = M(A,) ® D,, that is,
every a € M(A), can be written uniquely as a = f++, where 8 € M(A,) and 7 € D,.

Proof: See [29, Lemma 4.6.7]. 4

Fix an admissible w € Z™, and let a € M(.A). There exists a unique independent
set 0 = o(w,a) such that a = A\ja,, +... + Aa,, with positive rational coefficients
Aly...yAg > 0 of minimum weight A\jwy, +... + Aiwg,. For, if 0 were not uniquely mini-
mal, then some integer multiple of @ would have two integral representations of minimum
weight, in contradiction to Lemma 3.6.

The collection {o(w,a) : a € M(A)} is a polyhedral subdivision of the polytope
Q. By construction, it agrees with the polyhedral subdivision A, defined above, and the
argument in the previous paragraph shows that A, is in fact a tnnangulation.

Proposition 3.10. The assignment S, A, is a well-defined surjective map from the
set of regular triangulations of M(.A) onto the set of regular triangulations of Q.

Proof: It remains to be seen that the map S, — A, 18 surjective. For any regular
triangulation A of Q the set C(A) of weight vectors w with A, = A is an open polyhedral
cone in R™. The subset of admissible rational weight vectors is dense in this cone, and,
after scaling, we can find an admissible w € Z™ N C(A). <

Fix any admissible w € Z™ and let S, — A, as above. We have shown that the
monoid M(.A) is the disjoint union of the submonoids M(A),, where o ranges over all
simplices in A,,. Fix a simplex o in A,,, and let a € M(A), of sufficiently large degree
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h(a). It follows from Theorem 3.7 and Lemma 3.9 that the unique normal form of x“
modulo J4 with respect to @ equals y?y” where supp(y?) = o and v € S.(D,). In
this case (y7,0) is a standard pair for J4 with respect to &, and hence also for J4 with
respect to w.

Proposition 3.11. Forany 7 € ([:l), the multiplicity of the (k — 1)-flat E, in the initial
ideal init (Z4) equals
Cruw(Ia) =

Proof: Let T € (l';]). It follows from the decomposition in Lemma 3.9 that a pair (m, 1) is
a standard pair if and only if 7 = o is one of the maximal cells in the regular triangulation
A, and m is a monomial whose exponent vector lies in S, (D,). <

{Vol(Q.,-) f re A,
0 otherwise

We are now prepared to prove our main results about the A-resultant.

Proof of Theorems 1.1 and 3.1. The toric variety X 4 is an irreducible variety of dimension

e ———— e

—— e s S =

k—1in P!, The variety Z(A) in C**® defined in the introduction coincides with the
irreducible hypersurface Z(X 4) defined in Section 3.2. This hypersurface is defined by the
Chow form R x ., which therefore agrees with the A-resultant R 4. This proves part (a)
and (b) of Theorem 1.1.

Let v be any vertex of the secondary polytope ¥(.A), and choose any admissible
vector w € Z™ in the inner normal cone of ¥(.A) at v. By Theorem 3.3 and Corollary 3.5,
the weight component R 4 v equals the algebraic cycle underlying the monomial scheme
init,(Z4). By Proposition 3.11, the Chow form encoding this algebraic cycle equals

¢(iﬂitw(l A)) - II [o.]Vol(c)

o€,

(3.5)

This completes the proof of Theorem 3.1, and it also proves part (c) of Theorem 1.1 since
Vol(Q) = T ,ea, Vol(o). 4

Remark 3.12. The above results imply a nice combinatonal description of the state
polytope of a toric variety X 4. Theorem 3.7 implies that the Graobner fan (cf. [22],(30])
of the toric ideal 7 4 is the common refinement of the normal fans of the lattice polytopes
conv(x~'(a)) C R" as a runs over the monoid M(A). In this common refinement it
suffices to consider finitely many a of the form a = n(A) = n(u) where y* — y# runs
over the universal Grobner basis given in [30, Corollary 2.6]. In the language of fiber

polytopes [4] this means that the state polytope of X 4 equals the integral (with respect to
a suitable measure on M(A)) of the corresponding projection bundle of lattice polytopes:

State(X4) = /M(.A) conv(x~!(a))da

(3.6)
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4. Computing the A-resultant
In this section we discuss algorithms for computing the A-resultant and their complexity.

4.1. Computational Complexity. We first give an estimate for the asymptotic complexity
of computing the A-resultant. Our input is a set of lattice points A = {a,,a3,...,ap} C
Z7 of rank k. We write V for the maximum of the normalized volume Vol(Q) of the
Newton polytope and the size of the coordinates log|a;;|, and we assume k,n < V.

Theorem 4.1. The A-resultant R 4(c;;) can be computed in VO(**) bit operations.

In order to prove this bound, we proceed as in [5] and we estimate the degree in a
representation of R 4(ci;) as a rational linear combination of the input polynomials

fi = (4.1)

Consider the ring S = Q|A][ci;] of polynomialsin x* with coefficients in the polynomial
ring Q|ci;] over the rational numbers. The Q-algebra S has a natural Z}*'-grading via
h and the weight of monomials in the c;;. Let S4 denote the subspace of all homogeneous
polynomials of Z%*'-degree (d,d,...,d) in S. The dimension of the Q-vector space S is
of order d2(*»)| and we can choose a basis for this space consisting of monomials x [] ¢,/
a € M(A). We will view f,, f2,..., fr as vectors in S;.

c.-lx“ + c.-gx" 4+ ... + c.-,.x"' (i = 1,2, iowy k).

Lemma 4.2. Foreach 3 =1,2,...,n and d > V there exists a homogeneous identity

x*“Ru(cij) = @hi+tgfat...+ak in  Sq.

Proof. Fix j and for each i1 = 1,...,k solve (4.1) for c;;. Substitute the resulting expres-
sions f; — 247 D4 cuX® into the A-resultant R4. Expand the result as a polynomial

x%i

in ¢;; and f; to get an expression of the form ;‘},,—i(g;fl +g2fa+...+9xfr), 9i € Sy-1. 4

Proof of Theorem 4.1. For d = V consider the Q-linear map

¢ . (Si—l)k -t Sd ’ (gligh”-:gk) =t glfl +92f2 +---+gkfk-

In time VO(") we can write down a matrix for ¢ with respect to the monomial bases.
Each entry in this matrix is either 0 or 1. The same holds for the coordinate projection
0; : Sq — [S/ < x%% >]4. In analogy to [5, Corollary 3.6), it now suffices to compute a
vector (91,92,---,9k) € ker(6; 0 ¢)\ ker(¢). Using linear algebra over the rationals, this
can be done in VO47) arithmetic operations, and, since all matrices have only zero-one
entries, it can be done in VO(¥®) bit operations. <

4.2. Practical computation. In this subsection we will explain the techniques which were
used to compute the bracket expansions of the A-resultants in Section 2. These techniques
are most useful for small numbers of monomials, say, n < 8.
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To simplify the computation we first dehomogenize the given equations (1.1). This
18 done by choosing a (k — 1)-dimensional coordinate flat onto which the affine span

of A projects one-to-one. After relabeling of indices we may suppose that the span of

€j1,...,ex—1 has this property. For each exponent vector a; we substitute its projection b;
onto the first £k — 1 coordinates.
Next we replace (1.1) by the row-reduced system

h](x) = X"‘ + dllk.’.lxh'“ + ... +d1nxb"‘
’Ig(l) = x*? + d2'1»+1xh'“ 4+ ... +dg,.,x"" (4 2)
he(x) = xb» + d;,_....;x"*' + ... +dg,.,x"".

The new coefficients d;; are indeterminates. They are thought of as local coordinates on
the Grassmannian with respect to the chart {[12... k] # 0}.

We are now left in (4.2) with a system of k polynomial equations in the affine variables
Zy,...,Zk—1. Using Grobner bases (or successive applications of the Sylvester resultant),
we eliminate zy,...,zx_; from (4.2), and we obtain an irreducible polynomial P4(d;; ).
This polynomial is the A-resultant expressed in local coordinates on the Grassmannian.

In order to recover the A-resultant, it is useful to decompose P4 into weight compo-
nents P4, where v € Z™. The weight of each variable d,; is the difference of standard
coordinate vectors e;j — e;. The convex hull of weights occurring P4(d; j) 18 the translated
secondary polytope L(A) —d(e; + ...+ ex), where usually, d = Vol(Q).

For each vertex w of £(.A) we now determine the corresponding regular triangulation
Awof A. fweset v = w—d(e;+...+ex), then we know that [[ ca_[0]V°(?) specializes
to either P4y or to —P4y. In the latter case we adjust the sign.

For each interior point w = v +d(e; +... + ex), we consider the weight component
Py v(dij)- We substitute d; j = 12 "'l' 'T" 2l and clear denominators to get a bracket
polynomial. We now apply the straightening algorithm as in [31, Example 3.3], and we
obtain [1,2,3,...,k]*-R 4w where e is some non-negative integer, and R 4 w is the unique
expansion of the desired weight component in terms of standard bracket monomials.

4.3. Example (Computing a pentagonal A-resultant)

Letn =5, m=4%k=3and A = {(1,0,0),(1,1,0),(1,4,2),(1,3,2),(1,1,1)}. Here the
Newton polytope Q = conv(.A) is a pentagon with normalized area Vol(Q) = 5. In order
to compute the A-resultant, we consider the dehomogenized system in local coordinates:

dy; +dny + y*'2? = dg+day + y*2?

ds; + ds» v+ yz = 0. (43)

Eliminating /) and z from (4.3), we obtain a polynom:a.l PA(d;l,dgg,d“,d4:,d51,d52)
which is the sum of weight components. Here weight(d;;) = e;j—e;. The weights are v; =
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(3,4,-3,0,—4), v2 = (5,2,-1,-2,-4), vs = (4,2,0,—-4,-2), v = (1,4,-1,-4,0), v5 =
(1, 51 _31 —1, ""2)1 Ve = (41 3: ""2: ""11 "4)1 = (21 41 ""21 -21 ""2)1 Vg = (31 3: ""'11 ""31 """2)1
and the corresponding weight components are

Pay, = d5;d3, — 2d3,d3,ds2dsy + d3,d5,dy, df,,

= d},d},dnd}, — 2d41dead} dsyds; + dyy d2,d8,,

= d:ldg:l — 2‘&1‘!42‘152‘151 + dindﬁzd%n

= dy dgy — di2di,day,

= ‘p:szdiﬁdsldgz - dgzdgzdih

= 2d},d3,dadsy — 2d32d5,d3 d3,dgy - 2d,od3, d3,d5, + 2d32d42d3, d3ydsa,

Pay, = 3d3,d5,d3, — 2d3,ds2dsads dgy — 5dyadeadsy d2,dey + 2d32d;,d3; dsads;
+2d},d5,d3,, and Pay, = 4dgadsdi,dy, — 3dyd}, d2, — 6d3,ds, dsads, dy

+ 4d32d}, dyadsadsy + 2dy,d3,d3, — d3ad3,d3,dy;

PA,\F,
PA,V'

NI
COCI
I | I |

Set w; := v;+(0,0,5,5,5). Then w,,...,ws are precisely the weights of the five trian-
gulations of A, while wg, w7, wg are interior vertices of the secondary polytope L(.A).

4 ¢ 3 4 3 $ 3 ¥ 3
: ) 1 2 1 2 i 2 i 2
A] Az A; A4 A.’u ) )

Figure 6. The five triangulations of the pentagonal set A

By construction, the brackets [i j k] are the maximal minors of the matrix
dyy dya2 1 0 0
dga dg2 0 1 0.
d51 d;z 0 0 1

From Figure 6 we now get the extreme terms of the A-resultant with their correct signs:

Raw, = [124]%[145)[234])?, Raw, = [123]2[134)2[145], Rauw, = [123]?[135]2[345],
Raw, = —[125][235)°[345), and Ruw, = [125][245)%[234)>.
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In order to determine the three interior weight components of R4, we substitute d3; =
g:—:} , doj = E—“—i} , dsj = gt into Pay, for 1 = 6,7,8 and j = 1,2. We clear
denominators and apply the straightening algorithm as in (31, Example 3.3]. As the result
we obtain the following linear combinations of standard bracket monomals.

Raw, = 2(123][423](124](143][145},

Raw, = 3[123][123)(245](245](345] — 5[123]{124} (235} 245)[345) + [123][134)[235](245] (245}
+ 2(124](124][235)[235](345] — [124](134](235](235][245]

Raw, = 2(123)(123)[125](345)(345] + [123][123][135](245][345] - 2[123](124][135)[235](345]

We now collect terms to get the final answer R4 = Y e R

4.3. Evaluating the A-resultant. Computing a complete expansion of R4 as in Example
4.3 makes only sense if the set A is sufficiently small. Otherwise it will be of interest to
represent the A-resultant R 4 as a black boz which returns a rational number R4 (ci;) when-
ever we input a rational k x n-matrix (c;;) [18]. Here we discuss a possible implementation
for such a black box.

Suppose the system (1.1) has rational coefhicients. In order to decide whether R 4(ci;)
is zero we may proceed as follows. Using the techniques of Section 3.3, we precompute a
Grobner basis ¢ for the toric ideal T4 with respect to any admissible w € Z™. Now replace
(1.1) by the system of linear equations

Ly) =

Remark 4.4. Theset § U {&,...,&} has a zeroin P™-! if and only if Ra(cij) = 0.

Ciiyh + G2 + ... + CinVn (l == 1121"'1k)‘

This means that we can decide the vanishing of the A-resultant by computing a
Grobner basis for ¢ U {&,...,&} with respect to w. However, from this Grobner basis
computation we cannot get the specific non-zero value of the A-resultant.

- For computing R 4(c: j) we suggest a multiplicative perturbation technique. It is based
on the validity of the following inttiguing_ conjecture |

Conjecture 4.5. Let (c;;) € Q**» guch that Ru(ci;) # 0. Then there exists a regular
triangulation A of A such that [o] = det(cq;,j)1<i,j<k is non-zero for all o € A.

Given (c;;) and A as above, then the rational number R a(cij) can be computed as
follows. Choose an admissible vector w = (wy,...,wn) € —C(A) N Z] whose negative

induces the regular triangulation A. Introduce a new variable z and extend w to an

elimination order w' on Q[y1,...,¥n,2] With y; > z. Replace (4.4) by the perturbed
system
lﬁ(y,z) = Cya z“* V1 + €2 g va + ... + Cin " Un, (t = 1,2,...,k) (4.5)
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and eliminate y;,...,yn from G U {£,...,£,}; for instance by computing a Grobner
basis with respect to w’. As the result we obtain a nnivanate monic polynomial P(z) =
28 4 pa_129V 4 ...+ po of degree d = 3,5 Vol(o)(ws, + ... + we, ). Indeed, by
construction, P(z) is a scalar multiple of the evaluation of the A-resultant at the perturbed
matrix (c};) = (cijz*/). Now the following is a direct consequence of Theorem 3.1.

Proposition 4.6. The specialized A-resultant equals Ra(ci;) = P(1)-[],¢ 5[]V =),

Example 4.7. (Evaluating the A-resultant of an octahedral system)
Consider the polynomial equations

Ci1T1Z2 + Ci2T1T3 + Cis T1Ta + Cig 2223 + Cis TaTq + Cie T3T4 = 0 (1=1,2,3,4)

1 2 3 4 5 6
v -1 =11 1 21 4
(¢i) = |n o 13 17 1 23
1 3 0 0 0 9

Here A is the vertex set of a regular octahedron Q = conv(A) with Vol(Q) = 4. We choose

the regular triangulation A = {1236, 1246, 1356, 1456}. The value at the corresponding
bracket monomial for our matrix in (4.6) equals

(4.6)

where

[1236][1246][1356][1456])(ci;) = 197506339956. (4.7)
We choose the weight vector w = (2,1,0,0,0,0) which lies in —C(A). Its w-weight equals
d = w - weight([1236](1246][1356)[1456]) = 10, while the two other triangulations of A
have w-weights 6 and 8.

We now replace the coefficient matrix (4.6) by (cij 2¥7) = (cij)-diag(2?,2%,1,1,1,1),
and we eliminate the variables z,, 3,3, Z¢. This results in the polynomial

P(z) = 12191749382 — 3620468652z° + 5758488 2% — 1047454227 + 35154°,

which has upper degree 10 and lower degree 6, as predicted. Using Proposition 4.6, we

conclude

197506339956

Z.P(1) = 138096442026.

+RAa(cij) =

71219174938




L

1?1
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5. Conclusion and future directions

This article has demonstrated how methods from polyhedral geometry can be applied to
problems in computational algebra, such as solving sparse systems of polynomial equations.
It is clear from the exciting work of Gelfand, Kapranov and Zelevinsky - and our discussion
above — that this theory is still in its infancy and that there are many connections yet to be
explored and many open problems yet to be investigated. Among the numerous potential
applications which could be mentioned at this point, the author was particularly inspired
by the work of Warren [32] on toric variety techniques in geometric modeling. Let us
briefly sketch four possible directions for future research.

The polynomial system (1.1) is rather special in the sense that all k polynomials have
the same set A of monomials. For many applications it is more natural to allow each input
polynomial fi(x) to have its own set A;. In this case the A-resultant would be replaced
by the mized resultant Dy, ,... .4, which was introduced in [13 Prop051t10n 1.3.1]. The
volume of the Newton polytope Q now gets repla.ced by the mized volume of the individual
Newton polytopes Q,,...,Q:. We refer to the work of Kushnirenko [20] and Bernstein
[2] who were the first to express the (mixed) degree of toric varieties as (mixed) volumes.
How can the techniques of Section 3 and the algorithms of Section 4 be best generalized to
this setting ? Is there a natural notion of a mized iriangulation or a mized Griobner basis ?

Modeling sparse systems as (1.1) means geometrically that we embed all varieties in
question into a toric variety X 4. It would be interesting to have an intrinsic Buchberger
algorithm on the toric variety X 4, i.e., using only the one-parameter subgroups of the
dense torus in X 4. Each term order w on C[x] induces a term order on the monoid algebra
C[A]. For each ideal T in C[A], we get an initial ideal init,(T), which, by noetherianity,
18 generated by finitely many monomials x®, a € M(A). It is possible to generalize the
Buchberger algorithm to this setting, but the details are subtle and not well understood.
For instance, a satisfactory sntrinsic Grobner basis theory on toric varieties should provide
an answer to the following question. The degree of the algebraic cycle defined by T on X 4

18 a certain element (cohomology class) in the Chow ring of X 4. How can this element be
read off from the generators of the initial ideal init,(Z) ?

The work of Gelfand, Kapranov and Zelevinsky on discriminants and resultants orig-
inated in their theory of A-hypergeometric functions [10],[11]. More precisely, the A-
discriminant describes the singularities of the system of A-hypergeometric differential
equations. It may be speculated that this deep connection to analysis will lead to an
entirely new approach to elimination theory. Here is a first concrete question in this direc-

tion: Is it possible to express the interior weight components R 4, of the A-resultant in
terms of A-hypergeometric integrals of Euler type ?

It is generally agreed that symbolic algorithms for elimination theory can be successful

in “real world” applications only in conjunction with numerical computations. A very
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interesting numerical algorithm is the homotopy method for multi-homogeneous systems due
to Morgan and Sommese [23]. The basic idea underlying their work is to embed the zero-
dimensional variety in question into a product of projective spaces P* x P*1 x ... x P*_
which frequently results in smaller Bezout numbers (cf. Section 2.3). It would be interesting
to extend this approach from A = A% x A% x ... x A* to an arbitrary set A, and to
study numerical homotopy continuation methods on any toric variety X 4. In order to
start the desired homotopies, however, one needs a supply of “nice” explicit systems whose
degree attains the Bezout number; in the toric case this 18 the volume Vol(Q) or a mixed
volume as in [2]. Here is a specific problem: For any A, find an explicit system (1.1)
with integer coefficients such that R 4(c;;) # 0 but each subsystem of k — 1 equations has

Vol(Q) rational roots in (C*)™.
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